Deep Ground Filtering of Large-Scale ALS Point Clouds via Iterative Sequential Ground Prediction
Abstract
:1. Introduction
- A novel deep-learning-based GF pipeline is proposed by converting the GF problem into a sequential ground prediction task based on points-profiles, which keeps high spatial resolution while acquiring a large context.
- An HCF module is proposed to capture large-scale contextual information efficiently and facilitate the recognition of large-scale artificial objects.
- The extensive experiments demonstrate that the SeqGP achieves state-of-the-art GF performance and universality in dealing with large-scale objects and mountain areas simultaneously.
2. Materials and Methods
2.1. Materials
2.1.1. Datasets
2.1.2. Relevant Concepts
2.2. Methods
2.2.1. Points-Profiles Generation
2.2.2. Sequential Ground Prediction
Algorithm 1 Sequential ground prediction algorithm |
Input: Points-profile set Output: prediction sequence
|
2.2.3. Training
2.2.4. Network Architecture
2.3. Implementation Details
2.4. Evaluation Metrics
3. Experimental Results
3.1. Comparisons with the Baseline Methods
3.2. Comparisons with State-of-the-Art Methods
3.3. Ablation Study
3.3.1. Module Effectiveness
3.3.2. Further Comparison of Different Network Architectures
3.3.3. Hyper-Parameters
3.4. Generalization Ability
4. Discussion
4.1. Memory Efficiency
4.2. Slicing Direction
4.3. Filtering Performance
4.4. Network Architecture
4.5. Performances in Different Land Use Classes
4.6. Limitations and Future Work
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- McCarley, T.R.; Hudak, A.T.; Sparks, A.M.; Vaillant, N.M.; Meddens, A.J.; Trader, L.; Mauro, F.; Kreitler, J.; Boschetti, L. Estimating wildfire fuel consumption with multitemporal airborne laser scanning data and demonstrating linkage with MODIS-derived fire radiative energy. Remote Sens. Environ. 2020, 251, 112114. [Google Scholar] [CrossRef]
- Stereńczak, K.; Kraszewski, B.; Mielcarek, M.; Piasecka, Ż.; Lisiewicz, M.; Heurich, M. Mapping individual trees with airborne laser scanning data in an European lowland forest using a self-calibration algorithm. Int. J. Appl. Earth Obs. Geoinf. 2020, 93, 102191. [Google Scholar]
- Doneus, M.; Mandlburger, G.; Doneus, N. Archaeological ground point filtering of airborne laser scan derived point-clouds in a difficult mediterranean environment. J. Comput. Appl. Archaeol. 2020, 3, 92–108. [Google Scholar]
- Mezaal, M.R.; Pradhan, B.; Rizeei, H.M. Improving landslide detection from airborne laser scanning data using optimized Dempster–Shafer. Remote Sens. 2018, 10, 1029. [Google Scholar]
- Nie, S.; Wang, C.; Dong, P.; Xi, X.; Luo, S.; Qin, H. A revised progressive TIN densification for filtering airborne LiDAR data. Measurement 2017, 104, 70–77. [Google Scholar] [CrossRef]
- Qin, N.; Tan, W.; Ma, L.; Zhang, D.; Li, J. OpenGF: An Ultra-Large-Scale Ground Filtering Dataset Built Upon Open ALS Point Clouds Around the World. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, TN, USA, 19–25 June 2021; pp. 1082–1091. [Google Scholar]
- Vosselman, G. Slope based filtering of laser altimetry data. Int. Arch. Photogramm. Remote Sens. 2000, 33, 935–942. [Google Scholar]
- Wang, C.; Tseng, Y. DEM gemeration from airborne lidar data by an adaptive dualdirectional slope filter. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2010, 38, 628–632. [Google Scholar]
- Zhang, K.; Chen, S.C.; Whitman, D.; Shyu, M.L.; Yan, J.; Zhang, C. A progressive morphological filter for removing nonground measurements from airborne LIDAR data. IEEE Trans. Geosci. Remote Sens. 2003, 41, 872–882. [Google Scholar]
- Chen, Q.; Gong, P.; Baldocchi, D.; Xie, G. Filtering airborne laser scanning data with morphological methods. Photogramm. Eng. Remote Sens. 2007, 73, 175–185. [Google Scholar]
- Axelsson, P. DEM generation from laser scanner data using adaptive TIN models. Int. Arch. Photogramm. Remote Sens. 2000, 33, 110–117. [Google Scholar]
- Kraus, K.; Pfeifer, N. Determination of terrain models in wooded areas with airborne laser scanner data. ISPRS J. Photogramm. Remote Sens. 1998, 53, 193–203. [Google Scholar]
- Błaszczak-Bąk, W.; Janowski, A.; Kamiński, W.; Rapiński, J. Application of the Msplit method for filtering airborne laser scanning data-sets to estimate digital terrain models. Int. J. Remote Sens. 2015, 36, 2421–2437. [Google Scholar]
- Zhang, W.; Qi, J.; Wan, P.; Wang, H.; Xie, D.; Wang, X.; Yan, G. An easy-to-use airborne LiDAR data filtering method based on cloth simulation. Remote Sens. 2016, 8, 501. [Google Scholar]
- Pfeifer, N.; Mandlburger, G. LiDAR data filtering and DTM generation. In Topographic Laser Ranging and Scanning; CRC Press: Boca Raton, FL, USA, 2017; pp. 307–334. [Google Scholar]
- Chen, Z.; Gao, B.; Devereux, B. State-of-the-art: DTM generation using airborne LIDAR data. Sensors 2017, 17, 150. [Google Scholar] [CrossRef] [PubMed]
- Hsu, C.W.; Lin, C.J. A comparison of methods for multiclass support vector machines. IEEE Trans. Neural Netw. 2002, 13, 415–425. [Google Scholar] [PubMed]
- Cutler, A.; Cutler, D.R.; Stevens, J.R. Random forests. In Ensemble Machine Learning; Springer: Berlin/Heidelberg, Germany, 2012; pp. 157–175. [Google Scholar]
- Lafferty, J.; McCallum, A.; Pereira, F.C. Conditional Random Fields: Probabilistic Models for Segmenting and Labeling Sequence Data; University of Pennsylvania: Philadelphia, PA, USA, 2001. [Google Scholar]
- Kang, Z.; Yang, J.; Zhong, R. A bayesian-network-based classification method integrating airborne lidar data with optical images. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2016, 10, 1651–1661. [Google Scholar] [CrossRef]
- Zhang, J.; Lin, X.; Ning, X. SVM-based classification of segmented airborne LiDAR point clouds in urban areas. Remote Sens. 2013, 5, 3749–3775. [Google Scholar]
- Niemeyer, J.; Rottensteiner, F.; Soergel, U. Classification of urban LiDAR data using conditional random field and random forests. In Proceedings of the Joint Urban Remote Sensing Event 2013, Sao Paulo, Brazil, 21–23 April 2013; pp. 139–142. [Google Scholar]
- Schmidt, A.; Niemeyer, J.; Rottensteiner, F.; Soergel, U. Contextual classification of full waveform lidar data in the Wadden Sea. IEEE Geosci. Remote Sens. Lett. 2014, 11, 1614–1618. [Google Scholar] [CrossRef]
- Niemeyer, J.; Rottensteiner, F.; Soergel, U. Contextual classification of lidar data and building object detection in urban areas. ISPRS J. Photogramm. Remote Sens. 2014, 87, 152–165. [Google Scholar]
- Guo, Y.; Wang, H.; Hu, Q.; Liu, H.; Liu, L.; Bennamoun, M. Deep learning for 3d point clouds: A survey. IEEE Trans. Pattern Anal. Mach. Intell. 2020, 43, 4338–4364. [Google Scholar]
- Su, H.; Maji, S.; Kalogerakis, E.; Learned-Miller, E. Multi-view convolutional neural networks for 3d shape recognition. In Proceedings of the IEEE International Conference on Computer Vision, Santiago, Chile, 7–13 December 2015; pp. 945–953. [Google Scholar]
- Wu, B.; Wan, A.; Yue, X.; Keutzer, K. Squeezeseg: Convolutional neural nets with recurrent crf for real-time road-object segmentation from 3d lidar point cloud. In Proceedings of the 2018 IEEE International Conference on Robotics and Automation (ICRA), Brisbane, Australia, 21–25 May 2018; pp. 1887–1893. [Google Scholar]
- Hu, X.; Yuan, Y. Deep-learning-based classification for DTM extraction from ALS point cloud. Remote Sens. 2016, 8, 730. [Google Scholar] [CrossRef]
- Rizaldy, A.; Persello, C.; Gevaert, C.; Oude Elberink, S.; Vosselman, G. Ground and multi-class classification of airborne laser scanner point clouds using fully convolutional networks. Remote Sens. 2018, 10, 1723. [Google Scholar] [CrossRef]
- Yang, Z.; Jiang, W.; Xu, B.; Zhu, Q.; Jiang, S.; Huang, W. A convolutional neural network-based 3D semantic labeling method for ALS point clouds. Remote Sens. 2017, 9, 936. [Google Scholar] [CrossRef]
- Wang, B.; Wang, H.; Song, D. A Filtering Method for LiDAR Point Cloud Based on Multi-Scale CNN with Attention Mechanism. Remote Sens. 2022, 14, 6170. [Google Scholar]
- Jin, S.; Su, Y.; Zhao, X.; Hu, T.; Guo, Q. A point-based fully convolutional neural network for airborne lidar ground point filtering in forested environments. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2020, 13, 3958–3974. [Google Scholar]
- Li, B.; Lu, H.; Wang, H.; Qi, J.; Yang, G.; Pang, Y.; Dong, H.; Lian, Y. Terrain-Net: A Highly-Efficient, Parameter-Free, and Easy-to-Use Deep Neural Network for Ground Filtering of UAV LiDAR Data in Forested Environments. Remote Sens. 2022, 14, 5798. [Google Scholar]
- Zhang, J.; Hu, X.; Dai, H.; Qu, S. DEM extraction from ALS point clouds in forest areas via graph convolution network. Remote Sens. 2020, 12, 178. [Google Scholar] [CrossRef] [Green Version]
- Qi, C.R.; Su, H.; Mo, K.; Guibas, L.J. Pointnet: Deep learning on point sets for 3d classification and segmentation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 652–660. [Google Scholar]
- Qi, C.R.; Yi, L.; Su, H.; Guibas, L.J. Pointnet++: Deep hierarchical feature learning on point sets in a metric space. arXiv 2017, arXiv:1706.02413. [Google Scholar]
- Li, Y.; Bu, R.; Sun, M.; Wu, W.; Di, X.; Chen, B. Pointcnn: Convolution on x-transformed points. In Proceedings of the Advances in Neural Information Processing Systems, Montreal, QC, Canada, 3–8 December 2018; Volume 31. [Google Scholar]
- Wang, Y.; Sun, Y.; Liu, Z.; Sarma, S.E.; Bronstein, M.M.; Solomon, J.M. Dynamic graph cnn for learning on point clouds. ACM Trans. Graph. 2019, 38, 1–12. [Google Scholar] [CrossRef]
- Thomas, H.; Qi, C.R.; Deschaud, J.E.; Marcotegui, B.; Goulette, F.; Guibas, L.J. Kpconv: Flexible and deformable convolution for point clouds. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Seoul, Republic of Korea, 27 October–2 November 2019; pp. 6411–6420. [Google Scholar]
- Hu, Q.; Yang, B.; Xie, L.; Rosa, S.; Guo, Y.; Wang, Z.; Trigoni, N.; Markham, A. Randla-net: Efficient semantic segmentation of large-scale point clouds. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 14–19 June 2020; pp. 11108–11117. [Google Scholar]
- Janssens-Coron, E.; Guilbert, E. Ground point filtering from airborne lidar point clouds using deep learning: A preliminary study. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2019, 42, 1559–1565. [Google Scholar] [CrossRef]
- Fareed, N.; Flores, J.P.; Das, A.K. Analysis of UAS-LiDAR Ground Points Classification in Agricultural Fields Using Traditional Algorithms and PointCNN. Remote Sens. 2023, 15, 483. [Google Scholar]
- Nurunnabi, A.; Teferle, F.; Li, J.; Lindenbergh, R.; Hunegnaw, A. An efficient deep learning approach for ground point filtering in aerial laser scanning point clouds. Int. Arch. Photogramm. Remote Sens. Spat. Info. Sci 2021, 24, 1–8. [Google Scholar]
- Nurunnabi, A.; Teferle, F.; Li, J.; Lindenbergh, R.; Parvaz, S. Investigation of Pointnet for Semantic Segmentation of Large-Scale Outdoor Point Clouds. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2021, 46, 4. [Google Scholar] [CrossRef]
- Yotsumata, T.; Sakamoto, M.; Satoh, T. Quality improvement for airborne lidar data filtering based on deep learning method. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2020, 43, 355–360. [Google Scholar]
- Wang, P.S.; Liu, Y.; Guo, Y.X.; Sun, C.Y.; Tong, X. O-cnn: Octree-based convolutional neural networks for 3d shape analysis. ACM Trans. Graph. 2017, 36, 1–11. [Google Scholar]
- Klokov, R.; Lempitsky, V. Escape from cells: Deep kd-networks for the recognition of 3d point cloud models. In Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 863–872. [Google Scholar]
- Graham, B.; Engelcke, M.; Van Der Maaten, L. 3d semantic segmentation with submanifold sparse convolutional networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 9224–9232. [Google Scholar]
- Choy, C.; Gwak, J.; Savarese, S. 4d spatio-temporal convnets: Minkowski convolutional neural networks. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019; pp. 3075–3084. [Google Scholar]
- Schmohl, S.; Sörgel, U. Submanifold sparse convolutional networks for semantic segmentation of large-scale ALS point clouds. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 2019, 4, 77–84. [Google Scholar] [CrossRef]
- Huang, S.; Usvyatsov, M.; Schindler, K. Indoor scene recognition in 3D. In Proceedings of the 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Las Vegas, NV, USA, 24 October 2020–24 January 2021; pp. 8041–8048. [Google Scholar]
- Gwak, J.; Choy, C.; Savarese, S. Generative sparse detection networks for 3d single-shot object detection. In Proceedings of the Computer Vision—ECCV 2020: 16th European Conference, Glasgow, UK, 23–28 August 2020; pp. 297–313. [Google Scholar]
- Xie, S.; Gu, J.; Guo, D.; Qi, C.R.; Guibas, L.; Litany, O. Pointcontrast: Unsupervised pre-training for 3d point cloud understanding. In Proceedings of the Computer Vision—ECCV 2020: 16th European Conference, Glasgow, UK, 23–28 August 2020; pp. 574–591. [Google Scholar]
- Hu, W.; Zhao, H.; Jiang, L.; Jia, J.; Wong, T.T. Bidirectional Projection Network for Cross Dimension Scene Understanding. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, TN, USA, 19–25 June 2021; pp. 14373–14382. [Google Scholar]
- Guo, B.; Li, Q.; Huang, X.; Wang, C. An improved method for power-line reconstruction from point cloud data. Remote Sens. 2016, 8, 36. [Google Scholar] [CrossRef]
- Fan, J.; Ma, L.; Sun, A.; Zou, Z. An approach for extracting curve profiles based on scanned point cloud. Measurement 2020, 149, 107023. [Google Scholar] [CrossRef]
- Xu, X.; Yang, H.; Neumann, I. Time-efficient filtering method for three-dimensional point clouds data of tunnel structures. Adv. Mech. Eng. 2018, 10, 1687814018773159. [Google Scholar] [CrossRef]
- Sithole, G.; Vosselman, G. Filtering of airborne laser scanner data based on segmented point clouds. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2005, 36, W19. [Google Scholar]
- Mnih, V.; Kavukcuoglu, K.; Silver, D.; Rusu, A.A.; Veness, J.; Bellemare, M.G.; Graves, A.; Riedmiller, M.; Fidjeland, A.K.; Ostrovski, G.; et al. Human-level control through deep reinforcement learning. Nature 2015, 518, 529–533. [Google Scholar] [PubMed]
- Watkins, C.J.; Dayan, P. Q-learning. Mach. Learn. 1992, 8, 279–292. [Google Scholar]
- Liu, F.; Li, S.; Zhang, L.; Zhou, C.; Ye, R.; Wang, Y.; Lu, J. 3DCNN-DQN-RNN: A deep reinforcement learning framework for semantic parsing of large-scale 3D point clouds. In Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 5678–5687. [Google Scholar]
- Liao, X.; Li, W.; Xu, Q.; Wang, X.; Jin, B.; Zhang, X.; Wang, Y.; Zhang, Y. Iteratively-refined interactive 3D medical image segmentation with multi-agent reinforcement learning. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 13–19 June 2020; pp. 9394–9402. [Google Scholar]
- Sarmad, M.; Lee, H.J.; Kim, Y.M. Rl-gan-net: A reinforcement learning agent controlled gan network for real-time point cloud shape completion. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019; pp. 5898–5907. [Google Scholar]
- Lillicrap, T.P.; Hunt, J.J.; Pritzel, A.; Heess, N.; Erez, T.; Tassa, Y.; Silver, D.; Wierstra, D. Continuous control with deep reinforcement learning. arXiv 2015, arXiv:1509.02971. [Google Scholar]
- Sutskever, I.; Vinyals, O.; Le, Q.V. Sequence to sequence learning with neural networks. In Proceedings of the Advances in Neural Information Processing Systems, Montreal, QC, Canada, 8–13 December 2014; Volume 27. [Google Scholar]
- Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, Ł.; Polosukhin, I. Attention is all you need. In Proceedings of the Advances in Neural Information Processing Systems, Long Beach, CA, USA, 4–9 December 2017; Volume 30. [Google Scholar]
- Feng, W.; Zhuo, H.H.; Kambhampati, S. Extracting action sequences from texts based on deep reinforcement learning. arXiv 2018, arXiv:1803.02632. [Google Scholar]
- Kingma, D.P.; Ba, J. Adam: A method for stochastic optimization. arXiv 2014, arXiv:1412.6980. [Google Scholar]
- Fan, S.; Dong, Q.; Zhu, F.; Lv, Y.; Ye, P.; Wang, F.Y. SCF-Net: Learning spatial contextual features for large-scale point cloud segmentation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, TN, USA, 19–25 June 2021; pp. 14504–14513. [Google Scholar]
OpenGF | Southern China | |||||||
---|---|---|---|---|---|---|---|---|
Test Site I | Test Site II | Area 1 | Area 2 | Area 3 | Area 4 | Area 5 | Area 6 | |
Area (km) | 6.60 | 1.10 | 0.80 | 1.00 | 0.07 | 1.00 | 0.07 | 0.06 |
Number of points (M) | 46.00 | 6.22 | 0.62 | 3.30 | 2.53 | 3.24 | 2.57 | 1.25 |
Density (points/m) | 6.97 | 5.65 | 0.78 | 3.30 | 36.24 | 3.24 | 36.71 | 20.8 |
Method | Test Site I | Test Site II | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
OA | RMSE | MCC | KC | OA | RMSE | MCC | KC | |||||
MinkowUnet (0.5) | 96.45 | 0.27 | 93.84 | 92.28 | 92.82 | 92.81 | 92.31 | 3.26 | 84.85 | 86.49 | 85.38 | 84.62 |
MinkowUnet (1.0) | 93.84 | 0.27 | 89.62 | 86.86 | 87.49 | 87.49 | 93.15 | 1.47 | 86.70 | 87.63 | 86.64 | 86.31 |
MinkowUnet (1.5) | 90.33 | 0.34 | 84.76 | 79.09 | 80.59 | 80.13 | 91.74 | 0.55 | 84.11 | 85.32 | 83.87 | 83.49 |
Ours | 96.52 | 0.23 | 94.12 | 92.15 | 93.05 | 92.90 | 95.20 | 0.32 | 90.90 | 90.78 | 90.40 | 90.40 |
Method | Test Site I | Test Site II | ||||||
---|---|---|---|---|---|---|---|---|
OA | RMSE | OA | RMSE | |||||
PointNet++ | 97.58 | 0.25 | 95.75 | 94.68 | 87.38 | 4.89 | 75.19 | 79.63 |
DGCNN | 96.34 | 0.41 | 93.78 | 91.81 | 93.86 | 3.59 | 88.16 | 88.68 |
KPConv | 97.79 | 0.20 | 96.10 | 95.17 | 91.09 | 3.87 | 82.44 | 84.67 |
RandLA-Net | 96.29 | 0.29 | 93.74 | 91.65 | 94.96 | 1.20 | 90.38 | 90.42 |
SCF-Net | 95.92 | 0.83 | 92.97 | 91.14 | 95.21 | 0.95 | 90.66 | 91.04 |
MinkowUnet | 93.84 | 0.27 | 89.62 | 86.86 | 93.15 | 1.47 | 86.70 | 87.63 |
Ours | 96.52 | 0.23 | 94.12 | 92.15 | 95.20 | 0.32 | 90.90 | 90.78 |
Network | OA(%) | |
---|---|---|
Test Site I | Test Site II | |
MinkowUnet34C | 93.84 | 93.15 |
MinkowUnet34C + SeqGP | 95.95 | 94.28 |
MinkowUnet34C + HCF + SeqGP | 96.52 | 95.20 |
Number of Points-Profiles | OA(%) | |||
---|---|---|---|---|
d = 1.0 m | = 13.0 m | |||
Test Site I | Test Site II | Test Site I | Test Site II | |
94.89 | 88.76 | 96.77 | 95.75 | |
96.62 | 95.08 | 96.64 | 95.39 | |
96.52 | 95.20 | 96.52 | 95.20 | |
96.52 | 95.45 | 96.67 | 95.38 | |
96.53 | 95.29 | 96.64 | 95.39 |
Methods | OA(%) | |||||
---|---|---|---|---|---|---|
Area1 | Area2 | Area3 | Area4 | Area5 | Area6 | |
PMF | 88.67 | 90.06 | 85.77 | 91.66 | 81.38 | 70.45 |
CSF | 89.23 | 87.84 | 82.00 | 90.56 | 81.94 | 73.36 |
Ours | 92.9 | 93.78 | 85.68 | 95.49 | 87.84 | 77.55 |
Slicing Direction | OA(%) | |
---|---|---|
Test Site I | Test Site II | |
x | 95.80 | 94.33 |
y | 95.86 | 94.50 |
x + y | 96.52 | 95.20 |
Land Cover | OA (%) | RMSE | MCC (%) | KC (%) | ||
---|---|---|---|---|---|---|
Forests | 96.26 | 0.19 | 95.13 | 79.03 | 86.21 | 85.64 |
Grasslands | 95.08 | 0.05 | 85.11 | 92.32 | 88.29 | 87.58 |
Croplands | 96.21 | 0.02 | 90.38 | 93.78 | 91.81 | 91.71 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dai, H.; Hu, X.; Shu, Z.; Qin, N.; Zhang, J. Deep Ground Filtering of Large-Scale ALS Point Clouds via Iterative Sequential Ground Prediction. Remote Sens. 2023, 15, 961. https://doi.org/10.3390/rs15040961
Dai H, Hu X, Shu Z, Qin N, Zhang J. Deep Ground Filtering of Large-Scale ALS Point Clouds via Iterative Sequential Ground Prediction. Remote Sensing. 2023; 15(4):961. https://doi.org/10.3390/rs15040961
Chicago/Turabian StyleDai, Hengming, Xiangyun Hu, Zhen Shu, Nannan Qin, and Jinming Zhang. 2023. "Deep Ground Filtering of Large-Scale ALS Point Clouds via Iterative Sequential Ground Prediction" Remote Sensing 15, no. 4: 961. https://doi.org/10.3390/rs15040961
APA StyleDai, H., Hu, X., Shu, Z., Qin, N., & Zhang, J. (2023). Deep Ground Filtering of Large-Scale ALS Point Clouds via Iterative Sequential Ground Prediction. Remote Sensing, 15(4), 961. https://doi.org/10.3390/rs15040961