Backscattering Statistics of Indoor Full-Polarization Scatterometric and Synthetic Aperture Radar Measurements of a Rice Field
Abstract
:1. Introduction
- To provide more data sets with multifrequency, multi-angular, and full-polarization sensor configurations for research on rice field scattering characteristics and mechanisms.
- To illustrate the theoretical basis for processing methods of LAMP’s indoor scatterometric and SAR measurement data, particularly the methods to reduce backscattered signal fluctuations.
- To verify the applicability of the Rayleigh fading model and phase difference statistical model in rice fields.
- To verify the validity and accuracy of the LAMP’s measured data for distributed targets (rice fields) from both theoretical and experimental points of view.
- To elucidate the strengths and weaknesses of the data measured in the LAMP.
- To provide theoretical basis and contrast to potential applications for rice microwave scattering models and radar system designs through analysis of the measured data.
2. Measurement Setup
2.1. Overall System Configuration
2.2. Rice Field Scene Layout
2.3. Measurement Setup
3. Methodology
3.1. Rayleigh Fading Model
3.1.1. Linear Detection
3.1.2. Square-Law Detection
3.2. Phase Difference Statistical Model
3.3. Signal Fluctuation Reduction by Spatial Averaging
3.3.1. Linear Detection
3.3.2. Square-Law Detection
3.4. Signal Scintillation Reduction by Frequency Averaging
3.5. Scatterometric and SAR Imaging Data Processing
4. Results and Discussion
4.1. Statistical Results of Indoor Rice Field Scene Measurement Data
4.1.1. Real and Imaginary Part Statistics
4.1.2. Amplitude and Power Statistics
4.1.3. Phase Statistics
4.2. Experimental Results of the Rice Field Scene by Spatial and Frequency Averaging
4.3. Experimental Results of LAMP Scatterometric and SAR Measurements
4.4. Angular Variations of the Mean Backscattering Coefficient
4.5. Comparison between Scatterometric and SAR Data
4.5.1. Amplitude Statistics
4.5.2. Co-Pol Phase Difference Statistics
4.5.3. Backscattering Coefficients
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jia, M.Q.; Tong, L.; Zhang, Y.; Chen, Y.Z. Rice Biomass Estimation Using Radar Backscattering Data at S-band. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2014, 7, 469–479. [Google Scholar] [CrossRef]
- Shao, Y.; Li, K.; Touzi, R.; Brisco, B.; Zhang, F. Rice scattering mechanism analysis and classification using polarimetric RADARSAT-2. In Proceedings of the 32nd IEEE IGARSS, Munich, Germany, 22–27 July 2012. [Google Scholar]
- Mosleh, M.K.; Hassan, Q.K.; Chowdhury, E.H. Application of remote sensors in mapping rice area and forecasting its production: A review. Sensors 2014, 15, 769–791. [Google Scholar] [CrossRef] [PubMed]
- Global Report on Food Crises 2022 (GRFC 2022). Available online: https://www.fao.org/3/cb9997en/cb9997en.pdf (accessed on 6 December 2022).
- China Statistical Yearbook 2021. Available online: http://www.stats.gov.cn/tjsj/ndsj/2021/indexeh.htm (accessed on 6 December 2022).
- Shao, Y.; Fan, X.T.; Liu, H.; Xiao, J.H.; Ross, S.; Brisco, B.; Brown, R.; Staples, G. Rice monitoring and production estimation using multitemporal RADARSAT. Remote Sens. Environ. 2001, 76, 310–325. [Google Scholar] [CrossRef]
- Liu, Y.; Chen, K.-S.; Xu, P.; Li, Z.-L. Modeling and characteristics of microwave backscattering from rice canopy over growth stages. IEEE Trans. Geosci. Remote Sens. 2016, 54, 6757–6770. [Google Scholar] [CrossRef]
- Le Toan, T.; Ribbes, F.; Wang, L.F.; Floury, N.; Ding, K.H.; Kong, J.A.; Fujita, M.; Kurosu, T. Rice crop mapping and monitoring using ERS-1 data based on experiment and modeling results. IEEE Trans. Geosci. Remote Sens. 1997, 35, 41–56. [Google Scholar] [CrossRef]
- Li, K.; Brisco, B.; Shao, Y.; Touzi, R. Polarimetric decomposition with RADARSAR-2 for rice mapping and monitoring. Can. J. Remote Sens. 2014, 38, 169–179. [Google Scholar] [CrossRef]
- Lopez-Sanchez, J.M.; Ballester-Berman, J.D. Potentials of polarimetric SAR interferometry for agriculture monitoring. Radio Sci. 2009, 44, 1–20. [Google Scholar] [CrossRef]
- Inoue, Y.; Kurosu, T.; Maeno, H.; Uratsuka, S.; Kozu, T.; Dabrowska-Zielinska, K.; Qi, J. Season-long daily measurements of multifrequency (Ka, Ku, X, C, and L) and full-polarization backscatter signatures over paddy rice field and their relationship with biological variables. Remote Sens. Environ. 2002, 81, 194–204. [Google Scholar] [CrossRef]
- Inoue, Y.; Sakaiya, E.; Wang, C.Z. Capacity of C-band backscattering coefficients from high-resolution satellite SAR sensors to assess biophysical variables in paddy rice. Remote Sens. Environ. 2014, 140, 257–266. [Google Scholar] [CrossRef]
- Inoue, Y.; Sakaiya, E.; Wang, C.Z. Potential of X-band images from high-resolution satellite SAR sensors to assess growth and yield in paddy rice. Remote Sens. 2014, 6, 5995–6019. [Google Scholar] [CrossRef]
- Pazhanivelan, S.; Kannan, P.; Mary, P.C.N.; Subramanian, E.; Jeyaraman, S.; Nelson, A.; Setiyono, T.; Holecz, F.; Barbieri, M.; Yadav, M. Rice crop monitoring and yield estimation through Cosmo-Skymed and TerraSAR-X: A SAR-based experiment in India. In Proceedings of the ISPRS Archives, Berlin, Germany, 11–15 May 2015. [Google Scholar]
- Zhang, Y.; Liu, X.H.; Su, S.L.; Wang, C.Z. Retrieving canopy height and density of paddy rice from RADARSAT-2 images with a canopy scattering model. Int. J. Appl. Earth Obs. Geoinf. 2014, 28, 170–180. [Google Scholar] [CrossRef]
- Liu, L.; Li, K.; Shao, Y.; Pinel, N.; Yang, Z.; Gong, H.Z.; Wang, L.F. Extension of the Monte Carlo coherent microwave scattering model to full stage of rice. IEEE Geosci. Remote Sens. Lett. 2015, 12, 988–992. [Google Scholar]
- Lopez-Sanchez, J.M.; Ballester-Berman, J.D.; Paya, S.; Cazcarra-Bes, V.; Navarro, V.D. An advanced electromagnetic model for rice fields at X-band: Development and interpretation of dual-pol TerraSAR-X images. In Proceedings of the 8th EUSAR, Aachen, Germany, 7–10 June 2010. [Google Scholar]
- Jia, M.Q.; Tong, L.; Zhang, Y.Z.; Chen, Y. Multi-temporal radar backscattering measurements and modelling of rice fields using a multi-frequency L, S, C, and X scatterometer. Int. J. Remote Sens. 2014, 35, 1253–1271. [Google Scholar] [CrossRef]
- Wang, L.-F.; Kong, J.; Ding, K.; Le Toan, T.; Ribbes, F.; Floury, N. Electromagnetic scattering model for rice canopy based on Monte Carlo simulation. Prog. Electromagn. Res. 2005, 52, 153–171. [Google Scholar] [CrossRef]
- Sieber, A.J. The European Microwave Signature Laboratory. In Proceedings of the IGARSS’92, Houston, TX, USA, 26–29 May 1992. [Google Scholar]
- Nesti, G.; Sieber, A.J.; de Grandi, G.; Fortuny-Guasch, J.; Ohlmer, E. Recent advances at the European Microwave Signature Laboratory. In Proceedings of the SPIE, Rome, Italy, 21 December 1994. [Google Scholar]
- Fortuny-Guasch, J.; Sieber, A.J. Fast algorithm for a near-field synthetic aperture radar processor. IEEE Trans. Antennas Propag. 1994, 42, 1458–1460. [Google Scholar] [CrossRef]
- Fortuny-Guasch, J. Efficient Algorithms for Three-Dimensional Near-Field Synthetic Aperture Radar Imaging. Ph.D. Thesis, University of Karslruhe, Karslruhe, Germany, 2001. [Google Scholar]
- Mancini, M.; Vandersteene, F.; Troch, P.A.; Bolognani, O.; Terzaghi, G.; D’Urso, G.; Wuthrich, M. Experimental setup at the EMSL for the retrieval of soil moisture profiles using multifrequency polarimetric data. In Proceedings of the IGARSS’95, Firenze, Italy, 10–14 July 1995. [Google Scholar]
- Coppo, P.; Tarchi, D.; Weinberger, M. An experimental model for surface scattering models validation at the European Microwave Signature Laboratory. In Proceedings of the IGARSS’95, Firenze, Italy, 10–14 July 1995. [Google Scholar]
- Nesti, G.; Pampaloni, P.; Coppo, P.; Hallikainen, M.; Mancini, M.; von Schönermark, M. Experimental research at the EMSL on scattering properties of non-vegetated terrains. In Proceedings of the IGARSS’95, Firenze, Italy, 10–14 July 1995. [Google Scholar]
- Macelloni, G.; Nesti, G.; Pampaloni, P.; Sigismondi, S.; Tarchi, D.; Lolli, S. Experimental validation of surface scattering and emission models. IEEE Trans. Geosci. Remote Sens. 2000, 38, 459–469. [Google Scholar] [CrossRef]
- Ballester-Berman, J.D.; Lopez-Sanchez, J.M.; Fortuny-Guasch, J. Retrieval of biophysical parameters of agricultural crops using polarimetric SAR interferometry. IEEE Trans. Geosci. Remote Sens. 2005, 43, 683–694. [Google Scholar] [CrossRef]
- Ballester-Berman, J.D.; Lopez-Sanchez, J.M.; Sanjuan-Ferrer, M.J. Determination of scattering mechanisms inside rice plants by means of PCT and high resolution radar imaging. In Proceedings of the IGARSS 2009, Cape Town, South Africa, 12–17 July 2009. [Google Scholar]
- Lopez-Sanchez, J.M.; Fortuny-Guasch, J. Indoor polarimetric radar measurements on vegetation samples at L, S, C and X band. J. Electromagn. Waves Appl. 2012, 14, 205–231. [Google Scholar] [CrossRef]
- Lopez-Sanchez, J.M.; Ballester-Berman, J.D.; Fortuny-Guasch, J. Indoor wide-band polarimetric measurements on maize plants: A study of the differential extinction coefficient. IEEE Trans. Geosci. Remote Sens. 2006, 44, 758–767. [Google Scholar] [CrossRef]
- Fortuny-Guasch, J.; Sieber, A.J. Three-dimensional synthetic aperture radar imaging of a fir tree: First results. IEEE Trans. Geosci. Remote Sens. 1999, 37, 1006–1014. [Google Scholar] [CrossRef]
- Shao, Y.; Gong, H.Z.; Tian, W.; Zhang, Q.J.; Wang, G.J.; Bian, X.L.; Zhang, T.T.; Zhang, F.L.; Li, K.; Liu, Z.Q.; et al. Experiment of measuring targets’ full-parameters microwave properties. Natl. Remote Sens. Bull. 2021, 25, 323–331. [Google Scholar]
- Ulaby, F.T.; Dobson, M.C. Handbook of Radar Scattering Statistics for Terrain; Artech House: Norwood, MA, USA, 1989; pp. 35–49. [Google Scholar]
- Ulaby, F.T.; Long, D.G.; Blackwell, W.J.; Elachi, C.; Fung, A.K.; Ruf, C.; Sarabandi, K.; Zebker, H.; van Zyl, J. Microwave Radar and Radiometric Remote Sensing; University of Michigan Press: Ann Arbor, MI, USA, 2014; pp. 162–223. [Google Scholar]
- Ulaby, F.T.; Haddock, T.F.; Austin, R.T. Fluctuation statistics of millimeter-wave scattering from distributed targets. IEEE Trans. Geosci. Remote Sens. 1988, 26, 268–281. [Google Scholar] [CrossRef]
- Tian, W.; Shao, Y.; Liu, Z.Q.; Wei, Q.F.; Tang, Z.H.; Ni, C. A Full-Parameters Microwave Properties Measurement System of 20m Diameter Anechoic Chamber. In Proceedings of the IGARSS 2021, Brussels, Belgium, 11–16 July 2021. [Google Scholar]
- Nesti, G.; Fortuny-Guasch, J.; Sieber, A.J. Comparison of backscattered signal statistics as derived from indoor scatterometric and SAR experiments. IEEE Trans. Geosci. Remote Sens. 1996, 34, 1074–1083. [Google Scholar] [CrossRef]
- Sarabandi, K. Derivation of phase statistics from the Mueller matrix. Radio Sci. 1992, 27, 553–560. [Google Scholar] [CrossRef]
- Ulaby, F.T.; Sarabandi, K.; Nashashibi, A. Statistical properties of the Muller matrix of distributed targets. IEE Proc. F Radar Signal Process. 1992, 139, 136–146. [Google Scholar] [CrossRef]
- Wiesbeck, W.; Kaehny, D. Single reference, three target calibration and error correction for monostatic, polarimetric free space measurements. Proc. IEEE 1991, 79, 1551–1558. [Google Scholar] [CrossRef]
- El Assad, S.; Lakkis, I.; Saillard, J. Holographic SAR image formation by coherent summation of impulse response derivatives. IEEE Trans. Antennas Propag. 1993, 41, 620–624. [Google Scholar] [CrossRef]
- Broquetas, A.; Palau, J.; Jofre, L.; Cardama, A. Spherical wave near-field imaging and radar cross-section measurement. IEEE Trans. Antennas Propag. 1998, 46, 730–735. [Google Scholar] [CrossRef]
- Lee, J.-S.; Hoppel, K.W.; Mango, S.A.; Miller, A.R. Intensity and phase statistics of multilook polarimetric and interferometric SAR imagery. IEEE Trans. Geosci. Remote Sens. 1994, 32, 1017–1028. [Google Scholar]
- Lee, J.-S.; Krogager, E.; Ainsworth, T.L.; Boerner, W.-M. Polarimetric analysis of radar signature of a manmade structure. IEEE Geosci. Remote Sens. Lett. 2006, 3, 555–559. [Google Scholar] [CrossRef]
Rice Field Scene Parameters | Scene 1 | Scene 2 |
---|---|---|
Rice Growth Stage | Milky Stage | Milky Stage |
Rice Filed Scene Size (length × width, unit: m) | 1.8 × 1.6 | 1.6 × 1.2 |
Container Size/Number (length × width × height, unit: m) | 0.6 × 0.4 × 0.3; 12 Small Containers Assemble Together | 1.6 × 1.2 × 0.3; One Single Large Container |
Water Depth (cm) | 2 | Underlying Surface of Moist Soil |
Average Height of Rice Plants (cm) | 103.7 | 95.7 |
Cluster Size (length × width) | 9 × 8 | 8 × 6 |
Average Number of Rice Plants | 15 | 13.5 |
Row Space (cm) | 26.5 | 23.7 |
Column Space (cm) | 23.5 | 22.3 |
Measurement Mode | Parameter | Scene 1 | Scene 2 |
---|---|---|---|
Scatterometric Mode | Tx/Rx Mode | Quasi-Monostatic | Quasi-Monostatic |
Polarization | HH/VV/HV/VH | HH/VV/HV/VH | |
Incident Angle Range/Step (°) | 10–60/5 | 10–60/10 | |
Azimuth Angle Range/Step (°) | 0–360/45 | 0–360/5 | |
Frequency Range/Step (GHz) | 0.8–18/0.025 | 0.8–20/0.01 | |
SAR Imaging Mode | Tx/Rx Mode | Quasi-Monostatic | Quasi-Monostatic |
Polarization | HH/VV/HV/VH | HH/VV/HV/VH | |
Incident Angle Range/Step (°) | 10–60/10 | 10–60/10 | |
Azimuth Angle Range/Step (°) | 0–360/45 | 0–360/45 | |
Frequency Range/Step (GHz) | 0.8–1.7/0.025, 9–16/0.025 | 0.8–20/0.04 | |
Band | L, X, Ku | L, S, C, X, Ku | |
Linear Displacement Range (m) | −2.4–2.4 | −2.28–2.28 |
Detection Method | or | or | 90% Confidence Interval | 90% Interval Ratio (Percent) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Theo. | Meas. | Theo. | Meas. | Theo. | Meas. | ||||||||
HH | VV | HV | VH | HH | VV | HV | VH | ||||||
Linear Detection | 1 | 1.0 | 1.0 | 0.523 | 0.520 | 0.539 | 0.471 | 0.515 | [−11.90, 5.80] | 90.03 | 88.70 | 93.02 | 90.37 |
2 | 0.370 | 0.394 | 0.338 | 0.336 | 0.381 | [−7.08, 4.41] | 89.03 | 92.52 | 91.77 | 88.78 | |||
4 | 0.261 | 0.276 | 0.275 | 0.236 | 0.290 | [−4.52, 3.29] | 90.44 | 87.32 | 92.52 | 85.86 | |||
10 | 0.165 | 0.190 | 0.184 | 0.177 | 0.192 | [−2.65, 2.19] | 87.28 | 88.03 | 87.03 | 86.03 | |||
Square-law Detection | 1 | 1.0 | 1.0 | 1.000 | 0.980 | 0.958 | 1.001 | 1.036 | [−12.92, 4.75] | 86.89 | 90.26 | 89.51 | 89.51 |
2 | 0.707 | 0.716 | 0.687 | 0.670 | 0.758 | [−7.52, 3.74] | 88.24 | 89.69 | 89.05 | 90.18 | |||
4 | 0.500 | 0.503 | 0.522 | 0.467 | 0.569 | [−4.68, 2.87] | 92.13 | 89.50 | 93.44 | 85.30 | |||
10 | 0.316 | 0.298 | 0.333 | 0.313 | 0.311 | [−2.66, 1.95] | 90.34 | 87.54 | 91.28 | 90.65 |
Incident Angle (°) | Polarization | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
HH | VV | HV | VH | |||||||||||||
Mean (dB) | STD (dB) | 5% Level (dB) | 95% Level (dB) | Mean (dB) | STD (dB) | 5% Level (dB) | 95% Level (dB) | Mean (dB) | STD (dB) | 5% Level (dB) | 95% Level (dB) | Mean (dB) | STD (dB) | 5% Level (dB) | 95% Level (dB) | |
10 | −6.6 | 0.9 | −7.6 | −4.4 | −8.5 | 0.6 | −9.3 | −7.1 | −16.6 | 1.1 | −18.2 | −14.4 | −16.5 | 1.2 | −17.9 | −14.3 |
15 | −6.5 | 0.9 | −7.9 | −5.0 | −9.5 | 1.3 | −11.5 | −7.3 | −16.6 | 1.1 | −18.1 | −14.9 | −16.6 | 1.3 | −18.3 | −14.7 |
20 | −8.6 | 1.2 | −11.4 | −7.4 | −10.2 | 1.3 | −12.2 | −8.2 | −16.2 | 1.6 | −18.9 | −14.2 | −16.5 | 1.6 | −18.6 | −13.8 |
25 | −9.1 | 1.0 | −10.6 | −7.6 | −10.9 | 1.7 | −12.9 | −8.3 | −16.6 | 1.7 | −18.6 | −14.1 | −16.5 | 1.8 | −18.9 | −13.7 |
30 | −9.3 | 1.7 | −11.7 | −6.7 | −9.9 | 2.4 | −12.6 | −6.2 | −15.9 | 2.2 | −18.2 | −11.8 | −14.5 | 3.9 | −18.7 | −8.1 |
35 | −10.3 | 1.8 | −12.8 | −7.3 | −10.6 | 2.7 | −13.5 | −6.7 | −16.1 | 2.6 | −18.7 | −11.3 | −15.2 | 4.6 | −20.4 | −7.9 |
40 | −11.1 | 1.2 | −12.7 | −8.8 | −11.7 | 1.6 | −14.1 | −9.3 | −18.0 | 1.6 | −19.9 | −15.5 | −18.0 | 1.9 | −20.0 | −14.4 |
45 | −11.2 | 1.0 | −12.7 | −9.8 | −12.1 | 1.3 | −14.0 | −9.9 | −18.5 | 1.7 | −20.5 | −15.0 | −18.4 | 1.7 | −20.4 | −15.3 |
50 | −11.9 | 1.5 | −13.6 | −9.6 | −12.4 | 1.5 | −14.4 | −9.8 | −18.8 | 2.0 | −21.1 | −15.3 | −19.0 | 2.4 | −21.5 | −14.8 |
55 | −11.4 | 1.8 | −13.3 | −7.9 | −12.2 | 0.6 | −13.3 | −11.2 | −18.9 | 1.6 | −21.0 | −16.4 | −18.9 | 1.5 | −20.8 | −16.4 |
60 | −8.1 | 2.9 | −11.6 | −3.1 | −9.7 | 1.9 | −12.2 | −6.4 | −19.4 | 1.7 | −21.9 | −16.8 | −19.2 | 2.0 | −21.9 | −15.8 |
Incidence Angle (°) | Azimuth Angle (°) | SCT (dB) | SAR (dB) | ||||||
---|---|---|---|---|---|---|---|---|---|
HH | VV | HV | VH | HH | VV | HV | VH | ||
40 | 0 | −6.7 | −7.5 | −12.0 | −11.5 | −5.7 | −7.2 | −10.8 | −10.9 |
45 | −11.0 | −11.0 | −12.1 | −12.4 | −7.5 | −8.5 | −10.1 | −10.0 | |
90 | −10.5 | −10.7 | −12.5 | −12.2 | −5.9 | −8.0 | −9.0 | −9.2 | |
135 | −10.8 | −10.4 | −12.5 | −12.9 | −7.0 | −8.1 | −9.2 | −9.2 | |
−180 | −2.2 | −1.5 | −10.7 | −11.3 | −4.1 | −6.1 | −10.0 | −10.3 | |
−135 | −8.1 | −7.0 | −10.1 | −9.0 | −7.8 | −9.7 | −10.4 | −10.6 | |
−90 | −6.4 | −6.3 | −10.2 | −10.4 | −6.6 | −9.4 | −11.1 | −11.2 | |
−45 | −7.8 | −8.2 | −10.2 | −9.5 | −7.5 | −9.1 | −11.4 | −11.3 | |
Average | −7.9 | −7.8 | −11.3 | −11.1 | −6.5 | −8.3 | −10.3 | −10.3 |
Incidence Angle (°) | SCT (dB) | SAR (dB) | ||||||
---|---|---|---|---|---|---|---|---|
HH | VV | HV | VH | HH | VV | HV | VH | |
10 | −6.8 | −6.7 | −10.2 | −10.2 | −6.1 | −5.7 | −10.1 | −9.8 |
20 | −8.1 | −9.2 | −11.0 | −10.9 | −8.8 | −9.1 | −9.6 | −9.6 |
30 | −7.8 | −9.0 | −11.0 | −11.0 | −9.3 | −10.3 | −10.3 | −10.4 |
40 | −7.9 | −7.8 | −11.3 | −11.1 | −6.5 | −8.3 | −10.3 | −10.3 |
50 | −10.0 | −10.1 | −11.8 | −11.6 | −8.2 | −10.2 | −12.0 | −12.1 |
60 | −8.3 | −8.5 | −12.4 | −12.2 | −7.5 | −9.6 | −12.3 | −12.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, X.; Shao, Y.; Li, K.; Liu, Z.; Liu, L.; Xiao, X. Backscattering Statistics of Indoor Full-Polarization Scatterometric and Synthetic Aperture Radar Measurements of a Rice Field. Remote Sens. 2023, 15, 965. https://doi.org/10.3390/rs15040965
Liu X, Shao Y, Li K, Liu Z, Liu L, Xiao X. Backscattering Statistics of Indoor Full-Polarization Scatterometric and Synthetic Aperture Radar Measurements of a Rice Field. Remote Sensing. 2023; 15(4):965. https://doi.org/10.3390/rs15040965
Chicago/Turabian StyleLiu, Xiangchen, Yun Shao, Kun Li, Zhiqu Liu, Long Liu, and Xiulai Xiao. 2023. "Backscattering Statistics of Indoor Full-Polarization Scatterometric and Synthetic Aperture Radar Measurements of a Rice Field" Remote Sensing 15, no. 4: 965. https://doi.org/10.3390/rs15040965
APA StyleLiu, X., Shao, Y., Li, K., Liu, Z., Liu, L., & Xiao, X. (2023). Backscattering Statistics of Indoor Full-Polarization Scatterometric and Synthetic Aperture Radar Measurements of a Rice Field. Remote Sensing, 15(4), 965. https://doi.org/10.3390/rs15040965