Characterizing Coastal Wind Speed and Significant Wave Height Using Satellite Altimetry and Buoy Data
Abstract
:1. Introduction
2. Materials and Methods
2.1. Satellite Altimetry
2.2. In Situ Observations
2.3. Spatiotemporal Collocation
2.4. Variogram Modeling and Kriging Interpolation
3. Results
3.1. Diurnal Variability
3.2. Altimeter Data Validation
3.3. Altimeter Time Composites
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
WS | Wind Speed |
SWH | Significant Wave Height |
NDBC | National Data Buoy Center (NDBC) |
CDIP | Coastal Data Information Program |
SAR | Synthetic Aperture Radar |
SARAL/AltiKa | Satellite with ARgos and ALtiKa |
CNES | Centre National d’Etudes Spatiales |
EUMETSAT | European Organization for the Exploitation of Meteorological Satellites |
NOAA | National Oceanic and Atmospheric Administration |
NOS | National Ocean Service |
ESA | European Space Agency |
SRAL | Synthetic Aperture Radar Altimeter |
SARIn | SAR Interferometric Radar Altimeter |
LRM | Low Rate Mode |
PLRM | Pseudo-Low Rate Mode |
NTC | Non-Time Critical |
GDR | Geophysical Data Record |
GOP | Geophysical Ocean Product |
QAR | Quality Assessment Reports |
LISICOS | Long Island Sound Integrated Coastal Observing System |
OLS | Ordinary Least Squares |
RMSE | Root Mean Square Error |
SI | Scatter Index |
Appendix A
Appendix A.1
Appendix A.2
References
- DNVGL. Metocean Characterization Recommended Practices for U. S. Offshore Wind Energy; Technical Report August; DNV GL: Bærum, Norway, 2018. [Google Scholar]
- Abdalla, S.; Janssen, P. Monitoring Waves and Surface Winds by Satellite Altimetry. In Satellite Altimetry over Oceans and Land Surfaces, 1st ed.; CRC Press: Boca Raton, FL, USA, 2017; Chapter 12; p. 46. [Google Scholar]
- Abdalla, S.; Kolahchi, A.A.; Ablain, M.; Adusumilli, S.; Bhowmick, S.A.; Alou-Font, E.; Amarouche, L.; Andersen, O.B.; Antich, H.; Aouf, L.; et al. Altimetry for the future: Building on 25 years of progress. Adv. Space Res. 2021, 68, 319–363. [Google Scholar] [CrossRef]
- Ribal, A.; Young, I.R. 33 years of globally calibrated wave height and wind speed data based on altimeter observations. Sci. Data 2019, 6, 77. [Google Scholar] [CrossRef]
- Young, I.; Donelan, M. On the determination of global ocean wind and wave climate from satellite observations. Remote Sens. Environ. 2018, 215, 228–241. [Google Scholar] [CrossRef]
- Cavaleri, L.; Bertotti, L.; Pezzutto, P. Accuracy of altimeter data in inner and coastal seas. Ocean Sci. 2019, 15, 227–233. [Google Scholar] [CrossRef]
- Vu, P.; Frappart, F.; Darrozes, J.; Marieu, V.; Blarel, F.; Ramillien, G.; Bonnefond, P.; Birol, F. Multi-Satellite Altimeter Validation along the French Atlantic Coast in the Southern Bay of Biscay from ERS-2 to SARAL. Remote Sens. 2018, 10, 93. [Google Scholar] [CrossRef]
- Quartly, G.D.; Kurekin, A.A. Sensitivity of Altimeter Wave Height Assessment to Data Selection. Remote Sens. 2020, 12, 2608. [Google Scholar] [CrossRef]
- Zen, S.; Hart, E.; Medina-Lopez, E. The use of satellite products to assess spatial uncertainty and reduce life-time costs of offshore wind farms. Clean. Environ. Syst. 2021, 2, 100008. [Google Scholar] [CrossRef]
- Ahsbahs, T.; Maclaurin, G.; Draxl, C.; Jackson, C.R.; Monaldo, F.; Badger, M. US East Coast synthetic aperture radar wind atlas for offshore wind energy. Wind Energy Sci. 2020, 5, 1191–1210. [Google Scholar] [CrossRef]
- Sepulveda, H.H.; Queffeulou, P.; Ardhuin, F. Assessment of SARAL/AltiKa Wave Height Measurements Relative to Buoy, Jason-2, and Cryosat-2 Data. Mar. Geod. 2015, 38, 449–465. [Google Scholar] [CrossRef]
- Gommenginger, C.; Thibaut, P.; Fenoglio-Marc, L.; Quartly, G.; Deng, X.; Gómez-Enri, J.; Challenor, P.; Gao, Y. Retracking Altimeter Waveforms Near the Coasts. In Coastal Altimetry; Vignudelli, S., Kostianoy, A.G., Cipollini, P., Benveniste, J., Eds.; Springer: Berlin/Heidelberg, Germany, 2011; pp. 61–101. [Google Scholar] [CrossRef]
- Verron, J.; Sengenes, P.; Lambin, J.; Noubel, J.; Steunou, N.; Guillot, A.; Picot, N.; Coutin-Faye, S.; Sharma, R.; Gairola, R.M.; et al. The SARAL/AltiKa Altimetry Satellite Mission. Mar. Geod. 2015, 38, 2–21. [Google Scholar] [CrossRef]
- Bonnefond, P.; Verron, J.; Aublanc, J.; Babu, K.N.; Bergé-Nguyen, M.; Cancet, M.; Chaudhary, A.; Crétaux, J.F.; Frappart, F.; Haines, B.J.; et al. The benefits of the Ka-band as evidenced from the SARAL/AltiKa altimetric mission: Quality assessment and unique characteristics of AltiKa data. Remote Sens. 2018, 10, 83. [Google Scholar] [CrossRef]
- Tournadre, J.; Lambin-Artru, J.; Steunou, N. Cloud and rain effects on AltiKa/SARAL ka-band radar altimeter-part I: Modeling and mean annual data availability. IEEE Trans. Geosci. Remote Sens. 2009, 47, 1806–1817. [Google Scholar] [CrossRef]
- Picot, N.; Marechal, C.; Couhert, A.; Desai, S.; Scharroo, R.; Egido, A. Jason-3 Products Handbook; Technical Report; CNES: Ramonville-St-Agne, France, 2018. [Google Scholar]
- Raney, K.R. The delay/doppler radar altimeter. IEEE Trans. Geosci. Remote Sens. 1998, 36, 1578–1588. [Google Scholar] [CrossRef]
- Nencioli, F.; Quartly, G.D. Evaluation of Sentinel-3A wave height observations near the coast of southwest England. Remote Sens. 2019, 11, 2998. [Google Scholar] [CrossRef]
- Bronner, E.; Guillot, A.; Picot, N. SARAL/AltiKa Products Handbook; Technical Report; SARAL: Maharashtra, India, 2013. [Google Scholar]
- ESA. CryoSat-2 Product Handbook; Technical Report; European Space Agency: Paris, France, 2019. [Google Scholar]
- EUMETSAT. Sentinel-3 SRAL Marine User Handbook; Technical Report; EUMETSAT: Darmstadt, Germany, 2017. [Google Scholar]
- Mertz, F.; Dumont, J.P.; Urien, S. Baseline-C CryoSat Ocean Processor; Technical Report; ESRIN: Frascati, Italy, 2017. [Google Scholar]
- Council, N.R. The Meteorological Buoy and Coastal Marine Automated Network for the United States; National Academies Press: Washington, DC, USA, 1998. [Google Scholar] [CrossRef]
- National Data Buoy Center. Handbook of Automated Data Quality Control Checks and Procedures; Technical Report August; National Data Buoy Center: Stennis Space Center, MS, USA, 2009. [Google Scholar]
- Andreas, E.L.; Mahrt, L.; Vickers, D. A New Drag Relation for Aerodynamically Rough Flow over the Ocean. J. Atmos. Sci. 2012, 69, 2520–2537. [Google Scholar] [CrossRef]
- Hwang, P.A.; Teague, W.J.; Jacobs, G.A.; Wang, D.W. A statistical comparison of wind speed, wave height, and wave period derived from satellite altimeters and ocean buoys in the Gulf of Mexico region. J. Geophys. Res. Ocean. 1998, 103, 10451–10468. [Google Scholar] [CrossRef]
- Monaldo, F. Expected differences between buoy and radar altimeter estimates of wind speed and significant wave height and their implications on buoy-altimeter comparisons. J. Geophys. Res. 1988, 93, 2285–2302. [Google Scholar] [CrossRef]
- Durrant, T.H.; Greenslade, D.J.; Simmonds, I. Validation of Jason-1 and Envisat remotely sensed wave heights. J. Atmos. Ocean. Technol. 2009, 26, 123–134. [Google Scholar] [CrossRef]
- Queffeulou, P. Long-term validation of wave height measurements from altimeters. Mar. Geod. 2004, 27, 495–510. [Google Scholar] [CrossRef]
- Yang, J.; Zhang, J. Validation of Sentinel-3A/3B satellite altimetry wave heights with buoy and Jason-3 data. Sensors 2019, 19, 2914. [Google Scholar] [CrossRef]
- Murphy, B.; Yurchak, R.; Müller, S. GeoStat-Framework/PyKrige v1.7.0. 2022. Available online: https://zenodo.org/record/7008206 (accessed on 2 February 2023).
- Mälicke, M.; Hugonnet, R.; Schneider, H.D.; Müller, S.; Möller, E.; Van de Wauw, J. mmaelicke/scikit-gstat: Version 1.0 (v1.0.0). 2022. Available online: https://zenodo.org/record/5970098 (accessed on 2 February 2023).
- Barthelmie, R.J.; Grisogono, B.; Pryor, S.C. Observations and simulations of diurnal cycles of near-surface wind speeds over land and sea. J. Geophys. Res. Atmos. 1996, 101, 21327–21337. [Google Scholar] [CrossRef]
- Li, X.; Mitsopoulos, P.; Yin, Y.; Peña, M. SARAL-AltiKa Wind and Significant Wave Height for Offshore Wind Energy Applications in the New England Region. Remote Sens. 2020, 13, 57. [Google Scholar] [CrossRef]
- Ardhuin, F.; Stopa, J.E.; Chapron, B.; Collard, F.; Husson, R.; Jensen, R.E.; Johannessen, J.; Mouche, A.; Passaro, M.; Quartly, G.D.; et al. Observing sea states. Front. Mar. Sci. 2019, 6, 1–29. [Google Scholar] [CrossRef]
- Figa-Saldaña, J.; Wilson, J.J.; Attema, E.; Gelsthorpe, R.; Drinkwater, M.R.; Stoffelen, A. The advanced scatterometer (ascat) on the meteorological operational (MetOp) platform: A follow on for european wind scatterometers. Can. J. Remote Sens. 2002, 28, 404–412. [Google Scholar] [CrossRef]
- Abdalla, S. Ku-Band Radar Altimeter Surface Wind Speed Algorithm. Mar. Geod. 2012, 35, 276–298. [Google Scholar] [CrossRef]
- Gourrion, J.; Vandemark, D.C.; Bailey, S.; Chapron, B.; Gommenginger, G.P.; Challenor, P.G.; Srokosz, M.A. A two-parameter wind speed algorithm for Ku-band altimeters. J. Atmos. Ocean. Technol. 2002, 19, 2030–2048. [Google Scholar] [CrossRef]
- Lillibridge, J.; Scharroo, R.; Abdalla, S.; Vandemark, D. One-and two-dimensional wind speed models for ka-band altimetry. J. Atmos. Ocean. Technol. 2014, 31, 630–638. [Google Scholar] [CrossRef]
- Zieger, S.; Vinoth, J.; Young, I.R. Joint calibration of multiplatform altimeter measurements of wind speed and wave height over the past 20 Years. J. Atmos. Ocean. Technol. 2009, 26, 2549–2564. [Google Scholar] [CrossRef]
- Vose, R.S.; Applequist, S.; Bourassa, M.A.; Pryor, S.C.; Barthelmie, R.J.; Blanton, B.; Bromirski, P.D.; Brooks, H.E.; DeGaetano, A.T.; Dole, R.M.; et al. Monitoring and Understanding Changes in Extremes: Extratropical Storms, Winds, and Waves. Bull. Am. Meteorol. Soc. 2014, 95, 377–386. [Google Scholar] [CrossRef]
- Nielsen, J.W. The Formation of New England Coastal Fronts. Mon. Weather Rev. 1989, 117, 1380–1401. [Google Scholar] [CrossRef]
- Barthelmie, R.J.; Pryor, S.C. Can satellite sampling of offshore wind speeds realistically represent wind speed distributions? J. Appl. Meteorol. 2003, 42, 83–94. [Google Scholar] [CrossRef]
- Young, I.R.; Sanina, E.; Babanin, A.V. Calibration and cross validation of a global wind and wave database of altimeter, radiometer, and scatterometer measurements. J. Atmos. Ocean. Technol. 2017, 34, 1285–1306. [Google Scholar] [CrossRef]
- Bhowmick, S.A.; Sharma, R.; Babu, K.N.; Shukla, A.K.; Kumar, R.; Venkatesan, R.; Gairola, R.M.; Bonnefond, P.; Picot, N. Validation of SWH and SSHA from SARAL/AltiKa Using Jason-2 and In-Situ Observations. Mar. Geod. 2015, 38, 193–205. [Google Scholar] [CrossRef]
- Li, X.; Liu, B.; Zheng, G.; Ren, Y.; Zhang, S.; Liu, Y.; Gao, L.; Liu, Y.; Zhang, B.; Wang, F. Deep-learning-based information mining from ocean remote-sensing imagery. Natl. Sci. Rev. 2020, 7, 1584–1605. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, H.; Wang, S.; Liu, Y.; Yu, W.; Wang, J.; Xu, Q.; Li, X. Oceanic internal wave amplitude retrieval from satellite images based on a data-driven transfer learning model. Remote Sens. Environ. 2022, 272, 112940. [Google Scholar] [CrossRef]
SARAL | Jason 3 | Sentinel 3A | Sentinel 3B | Cryosat 2 | |
---|---|---|---|---|---|
Repeat Cycle | 35 | 10 | 27 | 27 | 369 |
Frequency Band | Ka/C | Ku/C | Ku/C | Ku/C | Ku/C |
Data Availability | 03/2013- | 09/2016- | 03/2016- | 05/2018- | 07/2010- |
Instrument | AltiKa | Poseidon-3B | SRAL | SRAL | SIRAL |
Operation Mode | LRM | LRM | SAR | SAR | LRM/SAR |
Product Type | GDR | GDR | NTC | NTC | GOP |
Buoy # | Location | Lon. (deg. W) | Lat. (deg. N) | Anem. Height (m) | Water Depth (m) | Dist. to Coast (km) |
---|---|---|---|---|---|---|
44097 | Block Island, RI | 71.127 | 40.969 | - | 48.16 | 41 |
44020 | Nantucket Sound | 70.279 | 41.493 | 4.1 | 14.30 | 13 |
44025 | Long Island | 73.164 | 40.251 | 4.1 | 36.30 | 42 |
44017 | Montauk Point | 72.049 | 40.693 | 4.1 | 48.00 | 30 |
44065 | New York Harbor Entrance | 73.703 | 40.369 | 4.1 | 25.00 | 23 |
44039 | Central Long Island Sound | 72.655 | 41.138 | 3.5 | 27.00 | 13 |
44008 | Southeast of Nantucket | 69.248 | 40.504 | 4.1 | 74.70 | 103 |
44066 | East of Long Beach, NJ | 72.644 | 39.618 | 4.1 | 78.00 | 121 |
44091 | Barnegat, NJ | 73.769 | 39.778 | - | 25.60 | 27.5 |
44013 | Boston | 70.651 | 42.346 | 3.2 | 64.6 | 14 |
44090 | Cape Cod Bay | 70.329 | 41.84 | - | 25.9 | 11 |
44018 | Cape Cod | 70.143 | 42.206 | 4.1 | 41.5 | 13.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mitsopoulos, P.; Peña, M. Characterizing Coastal Wind Speed and Significant Wave Height Using Satellite Altimetry and Buoy Data. Remote Sens. 2023, 15, 987. https://doi.org/10.3390/rs15040987
Mitsopoulos P, Peña M. Characterizing Coastal Wind Speed and Significant Wave Height Using Satellite Altimetry and Buoy Data. Remote Sensing. 2023; 15(4):987. https://doi.org/10.3390/rs15040987
Chicago/Turabian StyleMitsopoulos, Panagiotis, and Malaquias Peña. 2023. "Characterizing Coastal Wind Speed and Significant Wave Height Using Satellite Altimetry and Buoy Data" Remote Sensing 15, no. 4: 987. https://doi.org/10.3390/rs15040987
APA StyleMitsopoulos, P., & Peña, M. (2023). Characterizing Coastal Wind Speed and Significant Wave Height Using Satellite Altimetry and Buoy Data. Remote Sensing, 15(4), 987. https://doi.org/10.3390/rs15040987