Potential of Using Night-Time Light to Proxy Social Indicators for Sustainable Development
Abstract
:1. Introduction
Satellite/Sensors | Spatial Resolution | Temporal Resolution | Overpass Time | Coverage | Data Availability | Products | Product Source |
---|---|---|---|---|---|---|---|
DMSP/OLS | 1–2.7 km (depending on the product) and 30 arc-seconds | Every 24 h | 20:00–22:00 | 65°S to 75°N | 1992–2013 | Cloud-free coverage; composite of night-time stable light; average visible data | [3] [4] [5] |
VIIRS/DNB | 742 m (one pixel) and 15 arc-seconds | Every 24 h | 01:30 (+/− 1 h depending on the latitude) | 65°S to 75°N | April 2012–present | NTL annual and monthly composites; VIIRS night fire; VIIRS gas flaring; VIIRS boat detection; standard Black Marble. | [3] [4] [5] |
CubeSat (AeroCube-4 and 5) * | 500 m and 124 m | Inconsistent | 12–4 a.m. | Different areas across the planet | 2014 and 2015 (both experimental) | High spatial resolution imagery | [16] |
International Space Station (ISS) | 5–200 m | Occasionally | 11 p.m. | Varies | 2003–present (occasionally) | Photos of Earth during the night | [8] [17] |
LJ1-01 | 130 m | 15 days | 10:30 p.m. | China, Southeast Asia, Europe, South and North America, and eastern Australia. | June 2018–March 2019 | High spatial resolution imagery | [12] |
EROS-B * | 0.7 m | 3 days (30° off-nadir) 6 days (15° off-nadir) | Varies (equatorial crossing time—12:20 a.m.) | Depends on the season and sun’s position | June 2013–present | VHR of night-time imagery with panchromatic band | [18] |
JL1-3B and JL1-07/08 * | <1 m | At least once per day | Around 10 p.m. | Images are acquired on request. | 2018–present 2019–present | VHR of night-time imagery with panchromatic band and improved multispectral (red, green, and blue) bands. | [19] |
2. Materials and Methods
2.1. Literature Acquisition and Evaluation of All NTL Satellites for Social Indicators
2.2. Case Study
2.2.1. Study Area and Data Sources
2.2.2. Data Analysis of VIIRS
2.2.3. Analysis of Variance on the Radiance Data
- SGI: 0 = SGI values less than 0 (i.e., negative values); 1 = SGI values equal to and greater than zero (i.e., positive values) (Table S5)
- Year codes: 0 for the SGI from 2010 (radiance values from 2014) and 1 for SGI from 2020 (radiance values from 2021)
- Location codes: Each of the 24 locations was given a categorical code from 1 to 24.
2.2.4. Analysis of Automatic Road Extraction
3. Results
3.1. Analysis of Published Studies on the Use of NTL Data for Social Indicators
Main Application | Research Themes | Social SDG Indicator | MMS 2.0 Score | Reference Assessed |
---|---|---|---|---|
Human and economic aspects | Poverty evaluation | 1.1.1.; 1.2.1. | 3.33 | [42] |
1.2.2. | 1.66 | [88] | ||
1.3.1. | 1.83 | [204] | ||
Inequality | 10.2.1 | 2 | [90] | |
Education inequality | 4.1.2.; 4.a.1. | 1.66 | [92] | |
4.4.1. | 1.83 | [71] | ||
Energy supply/energy consumption | 7.1.1. | 4.18 | [203] | |
7.3.1. | 1.83 | [203] | ||
Rural electrification cover | 7.1.1. | 4.18 | [95] | |
7.3.1. | 1.83 | [95] | ||
Renewable energy | 12.a.1; 7.b.1. | 2.33 | [97] | |
7.1.2. | 1.66 | [96] | ||
7.2.1. | 2.33 | [96] | ||
Socioeconomic features | Urban economic development (e.g., GDP, income, unemployment rates) | 8.5.2. | 2.33 | [205] |
8.3.1. | 1.83 | [206] | ||
Rural economic development (e.g., GDP, income, unemployment rates) | 8.5.2. | 2.33 | [205] | |
8.3.1. | 1.83 | [206] | ||
Housing vacancy | n/a | |||
“Ghost” cities | n/a | |||
Freight traffic and road density | 9.1.2. | 2.33 | [101] | |
Road lighting | 16.1.4. | 2.33 | [207] | |
Copper/steel stock | n/a | n/a | ||
Urbanisation | Long-term urbanisation | 11.3.1. | 2.33 | [208] |
Urban functional zone | 11.1.1. | 2.33 | [209] | |
Scaling city expansion | n/a | |||
Impervious surface area detection/distribution | 11.7.1. | 2.33 | [201] | |
Urban settlement | 11.3.1. | 2.33 | [208] | |
Rural settlement | 11.3.1. | 2.33 | [208] | |
9.1.1. | 3 | [124] | ||
Urban surface temperature | n/a | n/a | ||
Urban impacts on habitat/soil | n/a | n/a | ||
Dynamics of urban agglomeration | n/a | n/a | ||
Conflicts and disasters | War/political tensions | 16.1.1.; 16.1.2. | 1.83 | [133] |
Governmental favouritism | 16.5.1.;16.5.2 | 1.83 | [134] | |
People’s displacement due to disasters/wars (refugees) | 10.7.4. | 2.33 | [137] | |
Demographic and socioeconomic information | Population distribution | n/a | n/a | |
Population migration | n/a | n/a | ||
Population density | n/a | n/a | ||
“Ambient population” | n/a | n/a | ||
Environmental | Gas flares and biomass burning | n/a | n/a | |
Land use types | n/a | n/a | ||
Net primary productivity | n/a | n/a | ||
Water footprint | n/a | n/a | ||
Aerosol properties | n/a | n/a | ||
Virtual water | n/a | n/a | ||
Ecosystem services | n/a | n/a | ||
Bioluminescence in the sea | n/a | n/a | ||
Air quality | 11.6.2 | 2.88 | [159] | |
3.9.1. | 1.66 | [159] | ||
Light pollution and its effect on biodiversity and conservation | n/a | n/a | ||
Lightning flashes | n/a | n/a | ||
Marine activities | Nocturnal fishing vessel detection | 14.6.1. | 3 | [76] |
14.7.1. | 1.83 | [76] | ||
Disaster and natural hazards | Earthquake destruction | 1.5.1.; 11.5.1;13.1.1. | 2.88 | [170] |
1.5.2.; 11.5.2. | 3.66 | [170] | ||
Natural disasters | 1.5.1.; 11.5.1;13.1.1. 1.5.2.; 11.5.2. | 2.33 | [169] | |
Flood risk | 1.5.1.; 11.5.1;13.1.1. | 2.88 | [77] | |
1.5.2.; 11.5.2. | 3.66 | [77] | ||
Wildfire | 1.5.1.; 11.5.1;13.1.1. | 1.66 | [176] | |
1.5.2.; 11.5.2. | 3.66 | [176] | ||
Human health | Birth mortality | 3.1.1.; 3.2.1; 3.2.2. | 3.18 | [183] |
Prostate cancer | n/a | n/a | ||
COVID-19 outbreak | n/a | n/a | ||
Circadian rhythms, sleep disruptions | n/a | n/a | ||
Breast cancer | n/a | n/a | ||
Obesity/body mass | 3.4.1. | 1.83 | [180] | |
Other applications with social nuances | Religious/cultural festivals | n/a | n/a | |
Human lifestyle during COVID-19 lockdown | n/a | n/a | ||
Tourism/recreational opportunities | 8.9.1.; 11.4.1 | 1.88 | [188] | |
Public space lighting preferences | n/a | n/a | ||
Forced labour | 2.3.1; 8.7.1.; 8.8.2.; 10.4.1. | 1.66 | [190] | |
Voting rights | 10.6.1.; 16.8.1. | 2.66 | [191] | |
Human trafficking | 16.2.2. | 2 | [192] | |
Total | Number of indicators 49 indicators out of 192 | 1, 27, 21, 143 |
3.2. Case study: Durango, Mexico
Road Quality and Night-Time Satellite Radiance
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Croft, T.A. Burning Waste Gas in Oil Fields. Nature 1973, 245, 375–376. [Google Scholar] [CrossRef]
- Elvidge, C.D.; Baugh, K.E.; Kihn, E.A.; Kroehl, H.W.; Davis, E.R. Mapping city lights with nighttime data from the DMSP Operational Linescan System. Photogramm. Eng. Remote Sens. 1997, 63, 727–734. [Google Scholar]
- EOG. Download VIIRS and DMSP Products. Available online: https://www.ngdc.noaa.gov/eog/download.html (accessed on 9 September 2022).
- Mines, C.S.O. Download VIIRS and DMSP Products. Available online: https://payneinstitute.mines.edu/eog/ (accessed on 9 September 2022).
- GEE. Google Earth Engine: Data Catalog. Available online: https://developers.google.com/earth-engine/datasets/catalog (accessed on 9 September 2022).
- Huang, Q.; Yang, X.; Gao, B.; Yang, Y.; Zhao, Y. Application of DMSP/OLS Nighttime Light Images: A Meta-Analysis and a Systematic Literature Review. Remote Sens. 2014, 6, 6844–6866. [Google Scholar] [CrossRef] [Green Version]
- Elvidge, C.D.; Baugh, K.; Zhizhin, M.; Hsu, F.C.; Ghosh, T. VIIRS night-time lights. Int. J. Remote Sens. 2017, 38, 5860–5879. [Google Scholar] [CrossRef] [Green Version]
- ISS. Astronauts’ Photographs Taken Onboard the International Space Station (ISS). Available online: http://eol.jsc.nasa.gov (accessed on 9 September 2022).
- De Miguel, S.; Zamorano, J.; Pascual, S.; López Cayuela, M.; Ocaña, F.; Challupner, P.; Gómez Castaño, J.; Fernández-Renau, A.; Gómez, J.; de Miguel, E. ISS nocturnal images as a scientific tool against light pollution: Flux calibration and colors. Highlights Span. Astrophys. VII Springer Berl. Ger. 2013, 1, 916–919. [Google Scholar]
- ISS. NightPod Images bring Earth to Light from Space Station. Available online: https://www.nasa.gov/mission_pages/station/research/news/nightpod.html (accessed on 29 September 2022).
- Zhang, G.; Wang, J.; Jiang, Y.; Zhou, P.; Zhao, Y.; Xu, Y. On-Orbit Geometric Calibration and Validation of Luojia 1-01 Night-Light Satellite. Remote Sens. 2019, 11, 264. [Google Scholar] [CrossRef] [Green Version]
- Wuhan, U.O. Luojia No. 1 01 Star Data. Available online: http://59.175.109.173:8888/app/login.html (accessed on 15 September 2022).
- Ou, J.; Liu, X.; Liu, P.; Liu, X. Evaluation of Luojia 1-01 nighttime light imagery for impervious surface detection: A comparison with NPP-VIIRS nighttime light data. Int. J. Appl. Earth Obs. Geoinf. 2019, 81, 1–12. [Google Scholar] [CrossRef]
- Liu, H.; Luo, N.; Hu, C. Detection of County Economic Development Using LJ1-01 Nighttime Light Imagery: A Comparison with NPP-VIIRS Data. Sensors 2020, 20, 6633. [Google Scholar] [CrossRef]
- Li, X.; Zhao, L.; Li, D.; Xu, H. Mapping Urban Extent Using Luojia 1-01 Nighttime Light Imagery. Sensors 2018, 18, 3665. [Google Scholar] [CrossRef] [Green Version]
- Pack, D.; Hardy, B.; Longcore, T. Studying the Earth at Night from CubeSats. Available online: https://digitalcommons.usu.edu/smallsat/2017/all2017/41/ (accessed on 1 October 2022).
- FECYT. Cities at Night. Available online: https://citiesatnight.org/ (accessed on 15 September 2022).
- Imagesat International. Eros-B. Available online: https://www.imagesatintl.com/wp-content/brochure/EROS-B_Satellite_Brochure.pdf (accessed on 9 September 2022).
- Chang Guang Satellite Technology. Available online: http://www.jl1.cn/ (accessed on 15 September 2022).
- Levin, N.; Johansen, K.; Hacker, J.M.; Phinn, S. A new source for high spatial resolution night time images—The EROS-B commercial satellite. Remote Sens. Environ. 2014, 149, 1–12. [Google Scholar] [CrossRef]
- Böhringer, C.; Jochem, P.E. Measuring the immeasurable—A survey of sustainability indices. Ecol. Econ. 2007, 63, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Estes, R.J. Index of Social Progress (ISP). In Encyclopedia of Quality of Life and Well-Being Research; Michalos, A.C., Ed.; Springer: Dordrecht, The Netherlands, 2014; pp. 3174–3183. [Google Scholar]
- Morris, M.D. Measuring the conditions of the world’s poor: The physical quality of life. In Measuring the Conditions of the World’s Poor: The Physical Quality of Life; Pergamon Press: New York, NY, USA, 1979; p. 176. [Google Scholar]
- Drewnowski, J.; Scott, W. The Level of Living Index, United Nations Research Institute for Social Development; Report; United Nations Research Institute for Social Development: Geneva, Switzerland, 1966. [Google Scholar]
- Sagar, A.D.; Najam, A. The human development index: A critical review. Ecol. Econ. 1998, 25, 249–264. [Google Scholar] [CrossRef]
- Henderson, J.V.; Storeygard, A.; Weil, D.N. A Bright Idea for Measuring Economic Growth. Am. Econ. Rev. 2011, 101, 194–199. [Google Scholar] [CrossRef] [Green Version]
- He, C.; Ma, Q.; Liu, Z.; Zhang, Q. Modeling the spatiotemporal dynamics of electric power consumption in Mainland China using saturation-corrected DMSP/OLS nighttime stable light data. Int. J. Digit. Earth 2013, 7, 993–1014. [Google Scholar] [CrossRef]
- Shi, K.; Yu, B.; Huang, Y.; Hu, Y.; Yin, B.; Chen, Z.; Chen, L.; Wu, J. Evaluating the Ability of NPP-VIIRS Nighttime Light Data to Estimate the Gross Domestic Product and the Electric Power Consumption of China at Multiple Scales: A Comparison with DMSP-OLS Data. Remote Sens. 2014, 6, 1705–1724. [Google Scholar] [CrossRef] [Green Version]
- Zhou, Y.; Ma, T.; Zhou, C.; Xu, T. Nighttime Light Derived Assessment of Regional Inequality of Socioeconomic Development in China. Remote Sens. 2015, 7, 1242–1262. [Google Scholar] [CrossRef] [Green Version]
- Falchetta, G.; Pachauri, S.; Parkinson, S.; Byers, E. A high-resolution gridded dataset to assess electrification in sub-Saharan Africa. Sci. Data 2019, 6, 110. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhuo, L.; Ichinose, T.; Zheng, J.; Chen, J.; Shi, P.J.; Li, X. Modelling the population density of China at the pixel level based on DMSP/OLS non-radiance-calibrated night-time light images. Int. J. Remote Sens. 2009, 30, 1003–1018. [Google Scholar] [CrossRef]
- Kong, W.; Cheng, J.; Liu, X.; Zhang, F.; Fei, T. Incorporating nocturnal UAV side-view images with VIIRS data for accurate population estimation: A test at the urban administrative district scale. Int. J. Remote Sens. 2019, 40, 8528–8546. [Google Scholar] [CrossRef]
- Anderson, S.J.; Tuttle, B.T.; Powell, R.L.; Sutton, P.C. Characterizing relationships between population density and nighttime imagery for Denver, Colorado: Issues of scale and representation. Int. J. Remote Sens. 2010, 31, 5733–5746. [Google Scholar] [CrossRef]
- Sutton, P.; Roberts, D.; Elvidge, C.; Baugh, K. Census from Heaven: An estimate of the global human population using night-time satellite imagery. Int. J. Remote Sens. 2010, 22, 3061–3076. [Google Scholar] [CrossRef]
- Huang, X.; Schneider, A.; Friedl, M.A. Mapping sub-pixel urban expansion in China using MODIS and DMSP/OLS nighttime lights. Remote Sens. Environ. 2016, 175, 92–108. [Google Scholar] [CrossRef]
- Bhandari, L.; Roychowdhury, K. Night lights and economic activity in India: A study using DMSP-OLS night time images. Proc. Asia-Pac. Adv. Netw. 2011, 32, 218. [Google Scholar] [CrossRef] [Green Version]
- Pérez-Sindín, X.S.; Chen, T.-H.K.; Prishchepov, A.V. Are night-time lights a good proxy of economic activity in rural areas in middle and low-income countries? Examining the empirical evidence from Colombia. Remote Sens. Appl. Soc. Environ. 2021, 24, 100647. [Google Scholar] [CrossRef]
- Ivan, K.; Holobâcă, I.-H.; Benedek, J.; Török, I. VIIRS nighttime light data for income estimation at local level. Remote Sens. 2020, 12, 2950. [Google Scholar] [CrossRef]
- Shah, Z.; Klugman, N.; Cadamuro, G.; Hsu, F.-C.; Elvidge, C.D.; Taneja, J. The electricity scene from above: Exploring power grid inconsistencies using satellite data in Accra, Ghana. Appl. Energy 2022, 319, 119237. [Google Scholar] [CrossRef]
- Ivan, K.; Holobâcă, I.-H.; Benedek, J.; Török, I. Potential of Night-Time Lights to Measure Regional Inequality. Remote Sens. 2019, 12, 33. [Google Scholar] [CrossRef] [Green Version]
- Elvidge, C.D.; Sutton, P.C.; Ghosh, T.; Tuttle, B.T.; Baugh, K.E.; Bhaduri, B.; Bright, E. A global poverty map derived from satellite data. Comput. Geosci. 2009, 35, 1652–1660. [Google Scholar] [CrossRef]
- Jean, N.; Burke, M.; Xie, M.; Davis, W.M.; Lobell, D.B.; Ermon, S. Combining satellite imagery and machine learning to predict poverty. Science 2016, 353, 790–794. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Waluda, C. Quantifying light-fishing for Dosidicus gigas in the eastern Pacific using satellite remote sensing. Remote Sens. Environ. 2004, 91, 129–133. [Google Scholar] [CrossRef]
- Straka, W.; Seaman, C.; Baugh, K.; Cole, K.; Stevens, E.; Miller, S. Utilization of the Suomi National Polar-Orbiting Partnership (NPP) Visible Infrared Imaging Radiometer Suite (VIIRS) Day/Night Band for Arctic Ship Tracking and Fisheries Management. Remote Sens. 2015, 7, 971–989. [Google Scholar] [CrossRef] [Green Version]
- Lavers, C.; Bishop, C.; Hawkins, O.; Grealey, E.; Cox, C.; Thomas, D.; Trimel, S. Application of satellite imagery to monitoring human rights abuse of vulnerable communities, with minimal risk to relief staff. J. Phys. Conf. Ser. 2009, 178, 012039. [Google Scholar] [CrossRef]
- Pauley, S.M. Lighting for the human circadian clock: Recent research indicates that lighting has become a public health issue. Med. Hypotheses 2004, 63, 588–596. [Google Scholar] [CrossRef] [Green Version]
- Rybnikova, N.; Portnov, B.A. Population-level study links short-wavelength nighttime illumination with breast cancer incidence in a major metropolitan area. Chronobiol. Int. 2018, 35, 1198–1208. [Google Scholar] [CrossRef]
- Rybnikova, N.A.; Portnov, B.A. Outdoor light and breast cancer incidence: A comparative analysis of DMSP and VIIRS-DNB satellite data. Int. J. Remote Sens. 2016, 38, 5952–5961. [Google Scholar] [CrossRef]
- Agnew, J.; Gillespie, T.W.; Gonzalez, J.; Min, B. Baghdad nights: Evaluating the US military ‘surge’using nighttime light signatures. Environ. Plan. A 2008, 40, 2285–2295. [Google Scholar] [CrossRef]
- Wang, W.; Cheng, H.; Zhang, L. Poverty assessment using DMSP/OLS night-time light satellite imagery at a provincial scale in China. Adv. Space Res. 2012, 49, 1253–1264. [Google Scholar] [CrossRef]
- Sutton, P.; Roberts, D.; Elvidge, C.; Meij, H. A comparison of nighttime satellite imagery and population density for the continental United States. Photogramm. Eng. Remote Sens. 1997, 63, 1303–1313. [Google Scholar]
- Levin, N.; Kyba, C.C.M.; Zhang, Q.; Sánchez de Miguel, A.; Román, M.O.; Li, X.; Portnov, B.A.; Molthan, A.L.; Jechow, A.; Miller, S.D.; et al. Remote sensing of night lights: A review and an outlook for the future. Remote Sens. Environ. 2020, 237, 111443. [Google Scholar] [CrossRef]
- Andries, A.; Morse, S.; Murphy, R.J.; Lynch, J.; Woolliams, E.R. Using Data from Earth Observation to Support Sustainable Development Indicators: An Analysis of the Literature and Challenges for the Future. Sustainability 2022, 14, 1191. [Google Scholar] [CrossRef]
- Andries, A.; Morse, S.; Murphy, R.; Lynch, J.; Woolliams, E. Seeing Sustainability from Space: Using Earth Observation Data to Populate the UN Sustainable Development Goal Indicators. Sustainability 2019, 11, 5062. [Google Scholar] [CrossRef] [Green Version]
- INEGI. Census of Population and Housing. Available online: https://en.www.inegi.org.mx/programas/ccpv/2020/ (accessed on 10 June 2022).
- CONEVAL. Indice Regazo Social. Available online: https://www.coneval.org.mx/Medicion/IRS/Paginas/Indice_Rezago_Social_2020.aspx (accessed on 10 June 2022).
- GEE. Google Earth Engine. Available online: https://developers.google.com/earth-engine/datasets/catalog/NOAA_VIIRS_DNB_MONTHLY_V1_VCMCFG (accessed on 10 June 2022).
- Google Earth Pro. Available online: https://earth.google.com/web/ (accessed on 31 January 2023).
- Wu, Q. geemap: A Python package for interactive mapping with Google Earth Engine. J. Open Source Softw. 2020, 5, 2305. [Google Scholar] [CrossRef]
- GEE. Statistics of an Image Region. Available online: https://developers.google.com/earth-engine/guides/reducers_reduce_region (accessed on 16 June 2022).
- Chang, A.Y.; Parrales, M.E.; Jimenez, J.; Sobieszczyk, M.E.; Hammer, S.M.; Copenhaver, D.J.; Kulkarni, R.P. Combining Google Earth and GIS mapping technologies in a dengue surveillance system for developing countries. Int. J. Health Geogr. 2009, 8, 49. [Google Scholar] [CrossRef] [Green Version]
- Mena, J.B.; Malpica, J.A. An automatic method for road extraction in rural and semi-urban areas starting from high resolution satellite imagery. Pattern Recognit. Lett. 2005, 26, 1201–1220. [Google Scholar] [CrossRef]
- ENVI. ENVI User Guide. Available online: https://www.l3harrisgeospatial.com/portals/0/pdfs/envi/envi_zoom_user_guide.pdf (accessed on 31 January 2023).
- Cadamuro, G.; Muhebwa, A.; Taneja, J. Assigning a grade: Accurate measurement of road quality using satellite imagery. arXiv 2018, arXiv:1812.01699. [Google Scholar]
- Mansourmoghaddam, M.; Ghafarian Malamiri, H.R.; Arabi Aliabad, F.; Fallah Tafti, M.; Haghani, M.; Shojaei, S. The Separation of the Unpaved Roads and Prioritization of Paving These Roads Using UAV Images. Air Soil Water Res. 2022, 15, 1–10. [Google Scholar] [CrossRef]
- Medhi, A.; Saha, A.K. Rural Road Extraction using Object Based Image Analysis (OBIA): A case study from Assam, India. Adv. Cartogr. GIScience ICA 2019, 1, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Myint, S.W.; Gober, P.; Brazel, A.; Grossman-Clarke, S.; Weng, Q. Per-pixel vs. object-based classification of urban land cover extraction using high spatial resolution imagery. Remote Sens. Environ. 2011, 115, 1145–1161. [Google Scholar] [CrossRef]
- Li, X.; Liu, Z.; Chen, X.; Sun, J. Assessing the Ability of Luojia 1-01 Imagery to Detect Feeble Nighttime Lights. Sensors 2019, 19, 3708. [Google Scholar] [CrossRef] [Green Version]
- Yu, B.; Shi, K.; Hu, Y.; Huang, C.; Chen, Z.; Wu, J. Poverty Evaluation Using NPP-VIIRS Nighttime Light Composite Data at the County Level in China. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2015, 8, 1217–1229. [Google Scholar] [CrossRef]
- Kuffer, M.; Pfeffer, K.; Sliuzas, R.; Taubenböck, H.; Baud, I.; Maarseveen, M.V. Capturing the Urban Divide in Nighttime Light Images from the International Space Station. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2018, 11, 2578–2586. [Google Scholar] [CrossRef]
- Ru, Y.; Li, X.; Belay, W.A. Tracking Spatiotemporal Patterns of Rwanda’s Electrification Using Multi-Temporal VIIRS Nighttime Light Imagery. Remote Sens. 2022, 14, 4397. [Google Scholar] [CrossRef]
- Zhang, G.; Guo, X.; Li, D.; Jiang, B. Evaluating the Potential of LJ1-01 Nighttime Light Data for Modeling Socio-Economic Parameters. Sensors 2019, 19, 1465. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, M.; Zhou, Y.; Li, X.; Cheng, W.; Zhou, C.; Ma, T.; Li, M.; Huang, K. Mapping urban dynamics (1992–2018) in Southeast Asia using consistent nighttime light data from DMSP and VIIRS. Remote Sens. Environ. 2020, 248, 111980. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, Z.; He, C.; Xia, P.; Liu, Z.; Liu, H. Quantifying urbanization levels on the Tibetan Plateau with high-resolution nighttime light data. Geogr. Sustain. 2020, 1, 233–244. [Google Scholar] [CrossRef]
- Sarangi, R.K.; Nagendra Jaiganesh, S.N. VIIRS boat detection (VBD) product-based night time fishing vessels observation in the Arabian Sea and Bay of Bengal Sub-regions. Geocarto Int. 2022, 37, 3504–3519. [Google Scholar] [CrossRef]
- Zhong, L.; Liu, X.; Yang, P.; Lin, R. Explore the application of high-resolution nighttime light remote sensing images in nighttime marine ship detection: A case study of LJ1-01 data. Open Geosci. 2020, 12, 1169–1184. [Google Scholar] [CrossRef]
- Levin, N.; Phinn, S. Assessing the 2022 Flood Impacts in Queensland Combining Daytime and Nighttime Optical and Imaging Radar Data. Remote Sens. 2022, 14, 5009. [Google Scholar] [CrossRef]
- Ye, C.; Xu, Z.; Lei, X.; Liao, W.; Ding, X.; Liang, Y. Assessment of urban flood risk based on data-driven models: A case study in Fuzhou City, China. Int. J. Disaster Risk Reduct. 2022, 82, 103318. [Google Scholar] [CrossRef]
- Zhang, C.; Pei, Y.; Li, J.; Qin, Q.; Yue, J. Application of luojia 1-01 nighttime images for detecting the light changes for the 2019 spring festival in western cities, China. Remote Sens. 2020, 12, 1416. [Google Scholar] [CrossRef]
- Tan, Z.; Wei, D.; Yin, Z. Housing Vacancy Rate in Major Cities in China: Perspectives from Nighttime Light Data. Complexity 2020, 2020, 5104578. [Google Scholar] [CrossRef]
- Shi, L.; Wurm, M.; Huang, X.; Zhong, T.; Leichtle, T.; Taubenböck, H. Urbanization that hides in the dark—Spotting China’s “ghost neighborhoods” from space. Landsc. Urban Plan. 2020, 200, 103822. [Google Scholar] [CrossRef]
- Wang, L.; Zhang, H.; Xu, H.; Zhu, A.; Fan, H.; Wang, Y. Extraction of City Roads Using Luojia 1-01 Nighttime Light Data. Appl. Sci. 2021, 11, 10113. [Google Scholar] [CrossRef]
- Katz, Y.; Levin, N. Quantifying urban light pollution—A comparison between field measurements and EROS-B imagery. Remote Sens. Environ. 2016, 177, 65–77. [Google Scholar] [CrossRef]
- Huang, X.; Yang, J.; Li, J.; Wen, D. Urban functional zone mapping by integrating high spatial resolution nighttime light and daytime multi-view imagery. ISPRS J. Photogramm. Remote Sens. 2021, 175, 403–415. [Google Scholar] [CrossRef]
- Fryskowska, A.; Wojtkowska, M.; Delis, P.; Grochala, A. Some aspects of satellite imagery integration from Eros b and Landsat 8. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2016, 41, 647–652. [Google Scholar] [CrossRef] [Green Version]
- Xu, N.; Xu, Y.; Yan, Y.; Guo, Z.; Wang, B.; Zhou, X. Evaluating Road Lighting Quality Using High-Resolution JL1-3B Nighttime Light Remote Sensing Data: A Case Study in Nanjing, China. Remote Sens. 2022, 14, 4497. [Google Scholar] [CrossRef]
- Wang, F.; Zhou, K.; Wang, M.; Wang, Q. The Impact Analysis of Land Features to JL1-3B Nighttime Light Data at Parcel Level: Illustrated by the Case of Changchun, China. Sensors 2020, 20, 5447. [Google Scholar] [CrossRef] [PubMed]
- Yong, Z.; Li, K.; Xiong, J.; Cheng, W.; Wang, Z.; Sun, H.; Ye, C. Integrating DMSP-OLS and NPP-VIIRS Nighttime Light Data to Evaluate Poverty in Southwestern China. Remote Sens. 2022, 14, 600. [Google Scholar] [CrossRef]
- Lin, J.; Luo, S.; Huang, Y. Poverty estimation at the county level by combining LuoJia1-01 nighttime light data and points of interest. Geocarto Int. 2022, 37, 3590–3606. [Google Scholar] [CrossRef]
- Elvidge, C.D.; Baugh, K.E.; Anderson, S.J.; Sutton, P.C.; Ghosh, T. The Night Light Development Index (NLDI): A spatially explicit measure of human development from satellite data. Soc. Geogr. 2012, 7, 23–35. [Google Scholar] [CrossRef]
- Wu, R.; Yang, D.; Dong, J.; Zhang, L.; Xia, F. Regional Inequality in China Based on NPP-VIIRS Night-Time Light Imagery. Remote Sens. 2018, 10, 240. [Google Scholar] [CrossRef] [Green Version]
- Qi, B.; Wang, X.; Sutton, P. Can Nighttime Satellite Imagery Inform Our Understanding of Education Inequality? Remote Sens. 2021, 13, 843. [Google Scholar] [CrossRef]
- Amaral, S.; Câmara, G.; Monteiro, A.M.V.; Quintanilha, J.A.; Elvidge, C.D. Estimating population and energy consumption in Brazilian Amazonia using DMSP night-time satellite data. Comput. Environ. Urban Syst. 2005, 29, 179–195. [Google Scholar] [CrossRef]
- Cheng, B.; Chen, Z.; Yu, B.; Li, Q.; Wang, C.; Li, B.; Wu, B.; Li, Y.; Wu, J. Automated Extraction of Street Lights From JL1-3B Nighttime Light Data and Assessment of Their Solar Energy Potential. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2020, 13, 675–684. [Google Scholar] [CrossRef]
- Dugoua, E.; Kennedy, R.; Urpelainen, J. Satellite data for the social sciences: Measuring rural electrification with night-time lights. Int. J. Remote Sens. 2018, 39, 2690–2701. [Google Scholar] [CrossRef] [Green Version]
- Coscieme, L.; Pulselli, F.M.; Bastianoni, S.; Elvidge, C.D.; Anderson, S.; Sutton, P.C. A thermodynamic geography: Night-time satellite imagery as a proxy measure of emergy. Ambio 2014, 43, 969–979. [Google Scholar] [CrossRef] [Green Version]
- Lopez-Ruiz, H.G.; Blazquez, J.; Vittorio, M. Assessing residential solar rooftop potential in Saudi Arabia using nighttime satellite images: A study for the city of Riyadh. Energy Policy 2020, 140, 111399. [Google Scholar] [CrossRef]
- Hartojo, N.; Ikhsan, M.; Dartanto, T.; Sumarto, S. A Growing Light in the Lagging Region in Indonesia: The Impact of Village Fund on Rural Economic Growth. Economies 2022, 10, 217. [Google Scholar] [CrossRef]
- Zou, S.; Wang, L. Mapping individual abandoned houses across cities by integrating VHR remote sensing and street view imagery. Int. J. Appl. Earth Obs. Geoinf. 2022, 113, 103018. [Google Scholar] [CrossRef]
- Lu, H.; Zhang, C.; Liu, G.; Ye, X.; Miao, C. Mapping China’s Ghost Cities through the Combination of Nighttime Satellite Data and Daytime Satellite Data. Remote Sens. 2018, 10, 1037. [Google Scholar] [CrossRef] [Green Version]
- Tian, J.; Zhao, N.; Samson, E.L.; Wang, S. Brightness of Nighttime Lights as a Proxy for Freight Traffic: A Case Study of China. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2014, 7, 206–212. [Google Scholar] [CrossRef]
- Shi, K.; Yu, B.; Hu, Y.; Huang, C.; Chen, Y.; Huang, Y.; Chen, Z.; Wu, J. Modeling and mapping total freight traffic in China using NPP-VIIRS nighttime light composite data. GIScience Remote Sens. 2015, 52, 274–289. [Google Scholar] [CrossRef]
- Levin, N.; Duke, Y. High spatial resolution night-time light images for demographic and socio-economic studies. Remote Sens. Environ. 2012, 119, 1–10. [Google Scholar] [CrossRef]
- Min, B.; Gaba, K. Tracking Electrification in Vietnam Using Nighttime Lights. Remote Sens. 2014, 6, 9511–9529. [Google Scholar] [CrossRef] [Green Version]
- Ma, T.; Zhou, C.; Pei, T.; Haynie, S.; Fan, J. Responses of Suomi-NPP VIIRS-derived nighttime lights to socioeconomic activity in China’s cities. Remote Sens. Lett. 2014, 5, 165–174. [Google Scholar] [CrossRef]
- Kuffer, M.; Sliuzas, R.; Maarseveen, M.v.; Pfeffer, K.; Baud, I. City nighttime light variations using ISS images. In Proceedings of the 2017 Joint Urban Remote Sensing Event (JURSE), Dubai, United Arab Emirates, 6–8 March 2017; pp. 1–4. [Google Scholar]
- Takahashi, K.I.; Terakado, R.; Nakamura, J.; Daigo, I.; Matsuno, Y.; Adachi, Y. In-Use Stock of Copper Analysis Using Satellite Nighttime Light Observation Data. Mater. Trans. 2009, 50, 1871–1874. [Google Scholar] [CrossRef] [Green Version]
- Hattori, R.; Horie, S.; Hsu, F.-C.; Elvidge, C.D.; Matsuno, Y. Estimation of in-use steel stock for civil engineering and building using nighttime light images. Resour. Conserv. Recycl. 2014, 83, 1–5. [Google Scholar] [CrossRef]
- Xu, P.; Lin, M.; Jin, P. Spatio-temporal dynamics of urbanization in China Using DMSP/OLS nighttime light data from 1992–2013. Chin. Geogr. Sci. 2021, 31, 70–80. [Google Scholar]
- Feng, Z.; Peng, J.; Wu, J. Using DMSP/OLS nighttime light data and K–means method to identify urban–rural fringe of megacities. Habitat Int. 2020, 103, 102227. [Google Scholar] [CrossRef]
- Song, J.; Tong, X.; Wang, L.; Zhao, C.; Prishchepov, A.V. Monitoring finer-scale population density in urban functional zones: A remote sensing data fusion approach. Landsc. Urban Plan. 2019, 190, 103580. [Google Scholar] [CrossRef]
- Li, K.; Chen, Y.; Li, Y. The Random Forest-Based Method of Fine-Resolution Population Spatialization by Using the International Space Station Nighttime Photography and Social Sensing Data. Remote Sens. 2018, 10, 1650. [Google Scholar] [CrossRef] [Green Version]
- Zhou, Q.; Zhang, Y.; Gao, D.; Sun, B. Recognition of Urban Functional Regions at Street Scale Based on LJ1-01 Night-Time Light Remote Sensing and Mobile Big Data. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 2019, 4, 119–124. [Google Scholar] [CrossRef] [Green Version]
- Huang, Q.; He, C.; Gao, B.; Yang, Y.; Liu, Z.; Zhao, Y.; Dou, Y. Detecting the 20 year city-size dynamics in China with a rank clock approach and DMSP/OLS nighttime data. Landsc. Urban Plan. 2015, 137, 138–148. [Google Scholar] [CrossRef]
- Liu, X.; de Sherbinin, A.; Zhan, Y. Mapping Urban Extent at Large Spatial Scales Using Machine Learning Methods with VIIRS Nighttime Light and MODIS Daytime NDVI Data. Remote Sens. 2019, 11, 1247. [Google Scholar] [CrossRef] [Green Version]
- Wicht, M.; Kuffer, M. The continuous built-up area extracted from ISS night-time lights to compare the amount of urban green areas across European cities. Eur. J. Remote Sens. 2019, 52, 58–73. [Google Scholar] [CrossRef]
- Guo, W.; Lu, D.; Kuang, W. Improving Fractional Impervious Surface Mapping Performance through Combination of DMSP-OLS and MODIS NDVI Data. Remote Sens. 2017, 9, 375. [Google Scholar] [CrossRef] [Green Version]
- Guo, W.; Zhang, Y.; Gao, L. Using VIIRS-DNB and landsat data for impervious surface area mapping in an arid/semiarid region. Remote Sens. Lett. 2018, 9, 587–596. [Google Scholar] [CrossRef]
- Kotarba, A.Z.; Aleksandrowicz, S. Impervious surface detection with nighttime photography from the International Space Station. Remote Sens. Environ. 2016, 176, 295–307. [Google Scholar] [CrossRef]
- Tang, P.; Du, P.; Lin, C.; Guo, S.; Qie, L. A Novel Sample Selection Method for Impervious Surface Area Mapping Using JL1-3B Nighttime Light and Sentinel-2 Imagery. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2020, 13, 3931–3941. [Google Scholar] [CrossRef]
- Li, Q.; Lu, L.; Weng, Q.; Xie, Y.; Guo, H. Monitoring Urban Dynamics in the Southeast U.S.A. Using Time-Series DMSP/OLS Nightlight Imagery. Remote Sens. 2016, 8, 578. [Google Scholar] [CrossRef] [Green Version]
- Dou, Y.; Liu, Z.; He, C.; Yue, H. Urban Land Extraction Using VIIRS Nighttime Light Data: An Evaluation of Three Popular Methods. Remote Sens. 2017, 9, 175. [Google Scholar] [CrossRef] [Green Version]
- Guk, E.; Levin, N. Analyzing spatial variability in night-time lights using a high spatial resolution color Jilin-1 image—Jerusalem as a case study. ISPRS J. Photogramm. Remote Sens. 2020, 163, 121–136. [Google Scholar] [CrossRef]
- Ji, H.; Li, X.; Wei, X.; Liu, W.; Zhang, L.; Wang, L. Mapping 10-m resolution rural settlements using multi-source remote sensing datasets with the Google Earth Engine platform. Remote Sens. 2020, 12, 2832. [Google Scholar] [CrossRef]
- Cai, D.; Fraedrich, K.; Guan, Y.; Guo, S.; Zhang, C. Urbanization and the thermal environment of Chinese and US-American cities. Sci. Total Environ. 2017, 589, 200–211. [Google Scholar] [CrossRef] [Green Version]
- Yao, R.; Wang, L.; Huang, X.; Sun, L.; Chen, R.; Wu, X.; Zhang, W.; Niu, Z. A Robust Method for Filling the Gaps in MODIS and VIIRS Land Surface Temperature Data. IEEE Trans. Geosci. Remote Sens. 2021, 59, 10738–10752. [Google Scholar] [CrossRef]
- Chang, Y.; Xiao, J.; Li, X.; Middel, A.; Zhang, Y.; Gu, Z.; Wu, Y.; He, S. Exploring diurnal thermal variations in urban local climate zones with ECOSTRESS land surface temperature data. Remote Sens. Environ. 2021, 263, 112544. [Google Scholar] [CrossRef]
- Chen, D.; Zhang, F.; Zhang, M.; Meng, Q.; Jim, C.Y.; Shi, J.; Tan, M.L.; Ma, X. Landscape and vegetation traits of urban green space can predict local surface temperature. Sci. Total Environ. 2022, 825, 154006. [Google Scholar] [CrossRef]
- Pandey, B.; Joshi, P.; Seto, K.C. Monitoring urbanization dynamics in India using DMSP/OLS night time lights and SPOT-VGT data. Int. J. Appl. Earth Obs. Geoinf. 2013, 23, 49–61. [Google Scholar] [CrossRef]
- Zhao, Y.; Qu, Z.; Zhang, Y.; Ao, Y.; Han, L.; Kang, S.; Sun, Y. Effects of human activity intensity on habitat quality based on nighttime light remote sensing: A case study of Northern Shaanxi, China. Sci. Total Environ. 2022, 851, 158037. [Google Scholar] [CrossRef]
- Li, J.; Wang, F.; Fu, Y.; Guo, B.; Zhao, Y.; Yu, H. A novel SUHI referenced estimation method for multicenters urban agglomeration using DMSP/OLS nighttime light data. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2020, 13, 1416–1425. [Google Scholar] [CrossRef]
- Li, X.; Li, D.; Xu, H.; Wu, C. Intercalibration between DMSP/OLS and VIIRS night-time light images to evaluate city light dynamics of Syria’s major human settlement during Syrian Civil War. Int. J. Remote Sens. 2017, 38, 5934–5951. [Google Scholar] [CrossRef]
- Li, X.; Liu, S.; Jendryke, M.; Li, D.; Wu, C. Night-Time Light Dynamics during the Iraqi Civil War. Remote Sens. 2018, 10, 858. [Google Scholar] [CrossRef] [Green Version]
- Hodler, R.; Raschky, P.A. Regional Favoritism. Q. J. Econ. 2014, 129, 995–1033. [Google Scholar] [CrossRef]
- Martinez, L.R. How Much Should We Trust the Dictator’s GDP Growth Estimates? J. Political Econ. 2022, 130, 2731–2769. [Google Scholar] [CrossRef]
- Li, X.; Zhang, R.; Huang, C.; Li, D. Detecting 2014 Northern Iraq Insurgency using night-time light imagery. Int. J. Remote Sens. 2015, 36, 3446–3458. [Google Scholar] [CrossRef]
- Enenkel, M.; Shrestha, R.M.; Stokes, E.; Román, M.; Wang, Z.; Espinosa, M.T.M.; Hajzmanova, I.; Ginnetti, J.; Vinck, P. Emergencies do not stop at night: Advanced analysis of displacement based on satellite-derived nighttime light observations. IBM J. Res. Dev. 2020, 64, 8:1–8:12. [Google Scholar] [CrossRef]
- Lo, C. Modeling the population of China using DMSP operational linescan system nighttime data. Photogramm. Eng. Remote Sens. 2001, 67, 1037–1047. [Google Scholar]
- Chen, X.; Nordhaus, W. A Test of the New VIIRS Lights Data Set: Population and Economic Output in Africa. Remote Sens. 2015, 7, 4937–4947. [Google Scholar] [CrossRef] [Green Version]
- Sun, L.; Wang, J.; Chang, S. Population Spatial Distribution Based on Luojia 1–01 Nighttime Light Image: A Case Study of Beijing. Chin. Geogr. Sci. 2021, 31, 966–978. [Google Scholar] [CrossRef]
- Sutton, P.C. A scale-adjusted measure of “urban sprawl” using nighttime satellite imagery. Remote Sens. Environ. 2003, 86, 353–369. [Google Scholar] [CrossRef]
- Chen, X. Nighttime Lights and Population Migration: Revisiting Classic Demographic Perspectives with an Analysis of Recent European Data. Remote Sens. 2020, 12, 169. [Google Scholar] [CrossRef] [Green Version]
- Sutton, P.C.; Elvidge, C.; Obremski, T. Building and evaluating models to estimate ambient population density. Photogramm. Eng. Remote Sens. 2003, 69, 545–553. [Google Scholar] [CrossRef]
- Cole, T.A.; Wanik, D.W.; Molthan, A.L.; Román, M.O.; Griffin, R.E. Synergistic Use of Nighttime Satellite Data, Electric Utility Infrastructure, and Ambient Population to Improve Power Outage Detections in Urban Areas. Remote Sens. 2017, 9, 286. [Google Scholar] [CrossRef] [Green Version]
- Casadio, S.; Arino, O.; Serpe, D. Gas flaring monitoring from space using the ATSR instrument series. Remote Sens. Environ. 2012, 116, 239–249. [Google Scholar] [CrossRef]
- Elvidge, C.D.; Zhizhin, M.; Hsu, F.C.; Baugh, K. What is so great about nighttime VIIRS data for the detection and characterization of combustion sources. Proc. Asia-Pac. Adv. Netw. 2013, 35, 33. [Google Scholar] [CrossRef] [Green Version]
- Pack, D.W.; Hardy, B.S. CubeSat Nighttime Lights. Available online: https://digitalcommons.usu.edu/smallsat/2016/S4LEOMis/1/ (accessed on 29 September 2022).
- Zheng, Q.; Weng, Q.; Huang, L.; Wang, K.; Deng, J.; Jiang, R.; Ye, Z.; Gan, M. A new source of multi-spectral high spatial resolution night-time light imagery—JL1-3B. Remote Sens. Environ. 2018, 215, 300–312. [Google Scholar] [CrossRef]
- Gu, Y.; Qiao, X.; Xu, M.; Zou, C.; Liu, D.; Wu, D.; Wang, Y. Assessing the Impacts of Urban Expansion on Bundles of Ecosystem Services by Dmsp-Ols Nighttime Light Data. Sustainability 2019, 11, 5888. [Google Scholar] [CrossRef] [Green Version]
- Zhao, N.; Ghosh, T.; Currit, N.A.; Elvidge, C.D. Relationships between satellite observed lit area and water footprints. Water Resour. Manag. 2011, 25, 2241–2250. [Google Scholar] [CrossRef]
- Cinzano, P.; Falchi, F.; Elvidge, C.; Baugh, K. The artificial sky brightness in Europe derived from DMSP satellite data. In Proceedings of the Symposium-International Astronomical Union, Pucón, Chile, 12–16 March 2001; pp. 95–102. [Google Scholar]
- Johnson, R.S.; Zhang, J.; Hyer, E.J.; Miller, S.D.; Reid, J.S. Preliminary investigations toward nighttime aerosol optical depth retrievals from the VIIRS Day/Night Band. Atmos. Meas. Tech. 2013, 6, 1245–1255. [Google Scholar] [CrossRef] [Green Version]
- Zhao, N.; Samson, E.L. Estimation of virtual water contained in international trade products using nighttime imagery. Int. J. Appl. Earth Obs. Geoinf. 2012, 18, 243–250. [Google Scholar] [CrossRef]
- Zhang, L.; Peng, J.; Liu, Y.; Wu, J. Coupling ecosystem services supply and human ecological demand to identify landscape ecological security pattern: A case study in Beijing–Tianjin–Hebei region, China. Urban Ecosyst. 2017, 20, 701–714. [Google Scholar] [CrossRef]
- Wang, W.; Wu, T.; Li, Y.; Xie, S.; Han, B.; Zheng, H.; Ouyang, Z. Urbanization Impacts on Natural Habitat and Ecosystem Services in the Guangdong-Hong Kong-Macao “Megacity”. Sustainability 2020, 12, 6675. [Google Scholar] [CrossRef]
- Caruana, A.M.; Malin, G. The variability in DMSP content and DMSP lyase activity in marine dinoflagellates. Prog. Oceanogr. 2014, 120, 410–424. [Google Scholar] [CrossRef]
- Miller, S.D.; Haddock, S.H.D.; Straka, W.C.; Seaman, C.J.; Combs, C.L.; Wang, M.; Shi, W.; Nam, S. Honing in on bioluminescent milky seas from space. Sci. Rep. 2021, 11, 15443. [Google Scholar] [CrossRef] [PubMed]
- Oda, T.; Maksyutov, S.; Elvidge, C.D. Disaggregation of national fossil fuel CO2 emissions using a global power plant database and DMSP nightlight data. In Proceedings of the 30th Asia-Pacific Advanced Network Meeting, Sydney, Australia, 7–11 February 2010; pp. 220–229. [Google Scholar]
- Wang, J.; Aegerter, C.; Xu, X.; Szykman, J.J. Potential application of VIIRS Day/Night Band for monitoring nighttime surface PM2.5 air quality from space. Atmos. Environ. 2016, 124, 55–63. [Google Scholar] [CrossRef] [Green Version]
- Zhang, G.; Shi, Y.; Xu, M. Evaluation of LJ1-01 Nighttime Light Imagery for Estimating Monthly PM2.5 Concentration: A Comparison With NPP-VIIRS Nighttime Light Data. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2020, 13, 3618–3632. [Google Scholar] [CrossRef]
- Mu, H.; Li, X.; Du, X.; Huang, J.; Su, W.; Hu, T.; Wen, Y.; Yin, P.; Han, Y.; Xue, F. Evaluation of light pollution in global protected areas from 1992 to 2018. Remote Sens. 2021, 13, 1849. [Google Scholar] [CrossRef]
- Levin, N.; Kark, S.; Crandall, D. Where have all the people gone? Enhancing global conservation using night lights and social media. Ecol. Appl. 2015, 25, 2153–2167. [Google Scholar] [CrossRef] [Green Version]
- Mazor, T.; Levin, N.; Possingham, H.P.; Levy, Y.; Rocchini, D.; Richardson, A.J.; Kark, S. Can satellite-based night lights be used for conservation? The case of nesting sea turtles in the Mediterranean. Biol. Conserv. 2013, 159, 63–72. [Google Scholar] [CrossRef] [Green Version]
- Xue, X.; Lin, Y.; Zheng, Q.; Wang, K.; Zhang, J.; Deng, J.; Abubakar, G.A.; Gan, M. Mapping the fine-scale spatial pattern of artificial light pollution at night in urban environments from the perspective of bird habitats. Sci. Total Environ. 2020, 702, 134725. [Google Scholar] [CrossRef]
- Bankert, R.L.; Solbrig, J.E.; Lee, T.F.; Miller, S.D. Automated lightning flash detection in nighttime visible satellite data. Weather Forecast. 2011, 26, 399–408. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.-R.; Huang, Y.-X.; Yan, W.; Ma, S.; Jiang, J. Study on a lightning flash detection algorithm based on VIIRS/DNB. In Materials, Manufacturing Technology, Electronics and Information Science; Word Scientific: Singapore, 2016; pp. 295–306. [Google Scholar]
- Blakeslee, R.J.; Lang, T.J.; Koshak, W.J.; Buechler, D.; Gatlin, P.; Mach, D.M.; Stano, G.T.; Virts, K.S.; Walker, T.D.; Cecil, D.J.; et al. Three Years of the Lightning Imaging Sensor Onboard the International Space Station: Expanded Global Coverage and Enhanced Applications. J. Geophys. Res. Atmos. 2020, 125, e2020JD032918. [Google Scholar] [CrossRef]
- Huang, R.; Wu, W.; Yu, K. Building consistent time series night-time light data from average DMSP/OLS images for indicating human activities in a large-scale oceanic area. Int. J. Appl. Earth Obs. Geoinf. 2022, 114, 103023. [Google Scholar] [CrossRef]
- Kohiyama, M.; Hayashi, H.; Maki, N.; Higashida, M.; Kroehl, H.W.; Elvidge, C.D.; Hobson, V.R. Early damaged area estimation system using DMSP-OLS night-time imagery. Int. J. Remote Sens. 2004, 25, 2015–2036. [Google Scholar] [CrossRef]
- Fan, X.; Nie, G.; Deng, Y.; An, J.; Zhou, J.; Li, H. Rapid detection of earthquake damage areas using VIIRS nearly constant contrast night-time light data. Int. J. Remote Sens. 2019, 40, 2386–2409. [Google Scholar] [CrossRef]
- Gillespie, T.W.; Frankenberg, E.; Fung Chum, K.; Thomas, D. Night-time lights time series of tsunami damage, recovery, and economic metrics in Sumatra, Indonesia. Remote Sens. Lett. 2014, 5, 286–294. [Google Scholar] [CrossRef] [Green Version]
- Cao, C.; Shao, X.; Uprety, S. Detecting Light Outages After Severe Storms Using the S-NPP/VIIRS Day/Night Band Radiances. IEEE Geosci. Remote Sens. Lett. 2013, 10, 1582–1586. [Google Scholar] [CrossRef]
- Fang, J.; Zhang, C.; Fang, J.; Liu, M.; Luan, Y. Increasing exposure to floods in China revealed by nighttime light data and flood susceptibility mapping. Environ. Res. Lett. 2021, 16, 104044. [Google Scholar] [CrossRef]
- Aubrecht, C.; Elvidge, C.; Baugh, K.; Hahn, S.; Jorge, N. Identification of wildfire precursor conditions: Linking satellite based fire and soil moisture data. Comput. Vis. Med. Image Process. VipIMAGE 2011, 347–353. Available online: https://books.google.co.uk/books?hl=en&lr=&id=rr7LBQAAQBAJ&oi=fnd&pg=PA347&dq=Identification+of+wildfire+precur-sor+conditions:+Linking+satellite+based+fire+and+soil+moisture+data&ots=wtwEQyzy_9&sig=aEGZhEya8FS93dboJMY4ummJ-ew&redir_esc=y#v=onepage&q=Identification%20of%20wildfire%20precursor%20conditions%3A%20Linking%20satellite%20based%20fire%20and%20soil%20moisture%20data&f=false (accessed on 10 June 2022).
- Polivka, T.N.; Wang, J.; Ellison, L.T.; Hyer, E.J.; Ichoku, C.M. Improving Nocturnal Fire Detection With the VIIRS Day–Night Band. IEEE Trans. Geosci. Remote Sens. 2016, 54, 5503–5519. [Google Scholar] [CrossRef] [Green Version]
- Feng, Y.; Liu, S.; Tang, L. Automatic extraction and change monitoring of fire disaster event based on high-resolution nighttime light remote sensing images. In Proceedings of the Image and Signal Processing for Remote Sensing XXVI, Online, 21–25 September 2020; pp. 57–65. [Google Scholar]
- Kloog, I.; Haim, A.; Stevens, R.G.; Barchana, M.; Portnov, B.A. Light at night co-distributes with incident breast but not lung cancer in the female population of Israel. Chronobiol. Int. 2008, 25, 65–81. [Google Scholar] [CrossRef]
- Rybnikova, N.A.; Haim, A.; Portnov, B.A. Is prostate cancer incidence worldwide linked to artificial light at night exposures? Review of earlier findings and analysis of current trends. Arch. Environ. Occup. Health 2017, 72, 111–122. [Google Scholar] [CrossRef]
- Khan, Z.A.; Yumnamcha, T.; Mondal, G.; Devi, S.D.; Rajiv, C.; Labala, R.K.; Sanjita Devi, H.; Chattoraj, A. Artificial light at night (ALAN): A potential anthropogenic component for the COVID-19 and HCoVs outbreak. Front. Endocrinol. 2020, 11, 622. [Google Scholar] [CrossRef] [PubMed]
- Koo, Y.S.; Song, J.-Y.; Joo, E.-Y.; Lee, H.-J.; Lee, E.; Lee, S.-K.; Jung, K.-Y. Outdoor artificial light at night, obesity, and sleep health: Cross-sectional analysis in the KoGES study. Chronobiol. Int. 2016, 33, 301–314. [Google Scholar] [CrossRef]
- Hu, K.; Li, W.; Zhang, Y.; Chen, H.; Bai, C.; Yang, Z.; Lorenz, T.; Liu, K.; Shirai, K.; Song, J.; et al. Association between outdoor artificial light at night and sleep duration among older adults in China: A cross-sectional study. Environ. Res. 2022, 212, 113343. [Google Scholar] [CrossRef]
- Lin, G. Urban Forms, Physical Activity and Body Mass Index: A Cross-City Examination Using ISS Earth Observation Photographs; NASA Summer Faculty Fellowship Program 2004, Volumes 1 and 2: 2005. Available online: https://ntrs.nasa.gov/api/citations/20050202018/downloads/20050202018.pdf (accessed on 10 June 2022).
- Roychowdhury, K.; Jones, S. Nexus of health and development: Modelling crude birth rate and maternal mortality ratio using nighttime satellite images. ISPRS Int. J. Geo-Inf. 2014, 3, 693–712. [Google Scholar] [CrossRef] [Green Version]
- Singhania, S.; Tupakula, S.; Manocha, P.; Susarla, R.; Kapur, P. Evolution of Cognitive Connectivity in India: Evidence from Internal Religious Tourism. 2021. Available online: https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3905179 (accessed on 9 September 2022).
- Liu, S.; Li, X.; Levin, N.; Jendryke, M. Tracing cultural festival patterns using time-series of VIIRS monthly products. Remote Sens. Lett. 2019, 10, 1172–1181. [Google Scholar] [CrossRef]
- Alahmadi, M.; Mansour, S.; Dasgupta, N.; Abulibdeh, A.; Atkinson, P.M.; Martin, D.J. Using Daily Nighttime Lights to Monitor Spatiotemporal Patterns of Human Lifestyle under COVID-19: The Case of Saudi Arabia. Remote Sens. 2021, 13, 4633. [Google Scholar] [CrossRef]
- Liu, J.; Deng, Y.; Wang, Y.; Huang, H.; Du, Q.; Ren, F. Urban Nighttime Leisure Space Mapping with Nighttime Light Images and POI Data. Remote Sens. 2020, 12, 541. [Google Scholar] [CrossRef] [Green Version]
- Zeng, W.; Zhong, Y.; Li, D.; Deng, J. Classification of Recreation Opportunity Spectrum Using Night Lights for Evidence of Humans and POI Data for Social Setting. Sustainability 2021, 13, 7782. [Google Scholar] [CrossRef]
- Wei, S.; Jiao, W.; Liu, H.; Long, T.; Liu, Y.; Ji, P.; Hou, R.; Zhang, N.; Xiao, Y. Research on Comfort Evaluation Model of Urban Residents’ Public Space Lighting Integrating Public Perception and Nighttime Light Remote Sensing Data. Remote Sens. 2022, 14, 655. [Google Scholar]
- McDonald, G.G.; Costello, C.; Bone, J.; Cabral, R.B.; Farabee, V.; Hochberg, T.; Kroodsma, D.; Mangin, T.; Meng, K.C.; Zahn, O. Satellites can reveal global extent of forced labor in the world’s fishing fleet. Proc. Natl. Acad. Sci. USA 2021, 118, e2016238117. [Google Scholar] [CrossRef] [PubMed]
- Kitschelt, H. Brian Min, Power and the vote: Elections and electricity in the developing world. Camb. Rev. Int. Aff. 2016, 29, 786–791. [Google Scholar] [CrossRef]
- Ernst, M. Satellite Data, Women Defectors and Black Markets in North Korea: A Quantitative Study of the North Korean Informal Sector Using Night-Time Lights Satellite Imagery; McFarland: Jefferson, NC, USA, 2016. [Google Scholar]
- Elvidge, C.D.; Safran, J.; Tuttle, B.; Sutton, P.; Cinzano, P.; Pettit, D.; Arvesen, J.; Small, C. Potential for global mapping of development via a nightsat mission. GeoJournal 2007, 69, 45–53. [Google Scholar] [CrossRef]
- Bruederle, A.; Hodler, R. Nighttime lights as a proxy for human development at the local level. PLoS ONE 2018, 13, e0202231. [Google Scholar] [CrossRef] [Green Version]
- Watmough, G.R.; Atkinson, P.M.; Saikia, A.; Hutton, C.W. Understanding the Evidence Base for Poverty–Environment Relationships using Remotely Sensed Satellite Data: An Example from Assam, India. World Dev. 2016, 78, 188–203. [Google Scholar] [CrossRef]
- Engstrom, R.; Hersh, J.; Newhouse, D. Poverty from Space: Using High Resolution Satellite Imagery for Estimating Economic Well-being. World Bank Econ. Rev. 2022, 36, 382–412. [Google Scholar] [CrossRef]
- Watmough, G.R.; Marcinko, C.L.J.; Sullivan, C.; Tschirhart, K.; Mutuo, P.K.; Palm, C.A.; Svenning, J.C. Socioecologically informed use of remote sensing data to predict rural household poverty. Proc. Natl. Acad. Sci. USA 2019, 116, 1213–1218. [Google Scholar] [CrossRef] [Green Version]
- SDG. SDG Indicator 4.4.1. Available online: https://unstats.un.org/sdgs/metadata/files/Metadata-04-04-01.pdf (accessed on 20 September 2022).
- Kuek, S.C.; Paradi-Guilford, C.; Fayomi, T.; Imaizumi, S.; Ipeirotis, P.; Pina, P.; Singh, M. The Global Opportunity in Online Outsourcing. 2015. Available online: http://hdl.handle.net/10986/22284 (accessed on 15 September 2022).
- Rey-Moreno, C.; Sabiescu, A.G.; Siya, M.J. Towards self-sustaining community networks in rural areas of developing countries: Understanding local ownership. In Proceedings of the 8th International Development Informatics Association Conference, Port Elizabeth, South Africa, 3–4 November 2014; pp. 63–77. Available online: https://www.researchgate.net/publication/267869600_Towards_self-sustaining_community_networks_in_rural_areas_of_developing_countries_Understanding_local_ownership (accessed on 15 September 2022).
- Liu, X.; Hu, G.; Chen, Y.; Li, X.; Xu, X.; Li, S.; Pei, F.; Wang, S. High-resolution multi-temporal mapping of global urban land using Landsat images based on the Google Earth Engine Platform. Remote Sens. Environ. 2018, 209, 227–239. [Google Scholar] [CrossRef]
- Esch, T.; Heldens, W.; Hirner, A.; Keil, M.; Marconcini, M.; Roth, A.; Zeidler, J.; Dech, S.; Strano, E. Breaking new ground in mapping human settlements from space—The Global Urban Footprint. ISPRS J. Photogramm. Remote Sens. 2017, 134, 30–42. [Google Scholar] [CrossRef] [Green Version]
- Falchetta, G.; Pachauri, S.; Byers, E.; Danylo, O.; Parkinson, S.C. Satellite Observations Reveal Inequalities in the Progress and Effectiveness of Recent Electrification in Sub-Saharan Africa. One Earth 2020, 2, 364–379. [Google Scholar] [CrossRef]
- Ghosh, T.; Anderson, S.; Elvidge, C.; Sutton, P. Using Nighttime Satellite Imagery as a Proxy Measure of Human Well-Being. Sustainability 2013, 5, 4988–5019. [Google Scholar] [CrossRef] [Green Version]
- Gibson, J.; Olivia, S.; Boe-Gibson, G.; Li, C. Which night lights data should we use in economics, and where? J. Dev. Econ. 2021, 149, 102602. [Google Scholar] [CrossRef]
- Guo, F.; Huang, Y.; Wang, J.; Wang, X. The informal economy at times of COVID-19 pandemic. China Econ. Rev. 2022, 71, 101722. [Google Scholar] [CrossRef]
- Svechkina, A.; Trop, T.; Portnov, B.A. How Much Lighting is Required to Feel Safe When Walking Through the Streets at Night? Sustainability 2020, 12, 3133. [Google Scholar] [CrossRef] [Green Version]
- Goldblatt, R.; Stuhlmacher, M.F.; Tellman, B.; Clinton, N.; Hanson, G.; Georgescu, M.; Wang, C.; Serrano-Candela, F.; Khandelwal, A.K.; Cheng, W.-H.; et al. Using Landsat and nighttime lights for supervised pixel-based image classification of urban land cover. Remote Sens. Environ. 2018, 205, 253–275. [Google Scholar] [CrossRef]
- McCallum, I.; Kyba, C.C.M.; Bayas, J.C.L.; Moltchanova, E.; Cooper, M.; Cuaresma, J.C.; Pachauri, S.; See, L.; Danylo, O.; Moorthy, I. Estimating global economic well-being with unlit settlements. Nat. Commun. 2022, 13, 2459. [Google Scholar] [CrossRef]
- Moallemi, E.A.; Malekpour, S.; Hadjikakou, M.; Raven, R.; Szetey, K.; Ningrum, D.; Dhiaulhaq, A.; Bryan, B.A. Achieving the sustainable development goals requires transdisciplinary innovation at the local scale. One Earth 2020, 3, 300–313. [Google Scholar] [CrossRef]
- Bell, W.D.; Visser, V.; Kirsten, T.; Hoffman, M.T. An evaluation of different approaches which use Google Street View imagery to ground truth land degradation assessments. Environ. Monit. Assess. 2022, 194, 732. [Google Scholar] [CrossRef]
- Avendano, R.; Jütting, J.; Kuhm, M. Counting the Invisible: The Challenges and Opportunities of the SDG Indicator Framework for Statistical Capacity Development. In The Palgrave Handbook of Development Cooperation for Achieving the 2030 Agenda: Contested Collaboration; Chaturvedi, S., Janus, H., Klingebiel, S., Li, X., Mello e Souza, A.D., Sidiropoulos, E., Wehrmann, D., Eds.; Springer International Publishing: Cham, Switzerland, 2021; pp. 329–345. [Google Scholar]
- López, G.A.G. Scaling Up from the Top Down and the Bottom Up: The Impacts and Governance of Inter-Community Forest Associations in Durango, Mexico. Ph.D. Thesis, Indiana University, Indianapolis, IN, USA, 2012. [Google Scholar]
Data | Data Acquisition | Data Product | Resolution | Source |
---|---|---|---|---|
Night-time satellite imagery | 2014 and 2021 VIIRS | Average of radiance | ~750 m | [3,4,5] |
Very high resolution (VHR) satellite data from Google Earth Pro | 2012 Maxar Technologies (e.g., WorldView, GeoEye) | Road extraction via object-based classification | Vary (0.35 m and 1 m) | [58] |
Google Street View (GSV) | N/A | Streets view and 360° loops for validating the road type | N/A | [58] |
Social deprivation gap index | 2010 CONEVAL | 5 levels (very low, low, medium, high, very high) | N/A | [56] |
Main Application | Research Themes | Spatial Resolution | ||||||
---|---|---|---|---|---|---|---|---|
DMSP | VIIRS | CubeSat | ISS | LJ1-01 | EROS-B | JL1-3B & JL1-07/08 | ||
Human and economic aspects | Poverty evaluation | [88] (R) | [69] (CT) | — | [70] (C) | [89] (L) | — | [87] (L) |
Inequality | [90] (G) | [91] (CT) | — | — | — | — | — | |
Education inequality | [92] (CT) | — | — | — | — | — | — | |
Energy supply/energy consumption | [93] (R) | [71] (CT) | — | — | [72] (R) | — | [94] (L) | |
Rural electrification coverage | [95] (L) | [71] (CT) | — | — | — | — | — | |
Renewable energy | [96] (G) | [97] (L) | — | — | — | — | — | |
Socioeconomic features | Urban economic development (e.g., GDP, income, unemployment rates) | [36] (CT) | [38] (L) | — | — | [14] (C) | — | — |
Rural economic development (e.g., GDP, income, unemployment rates) | [37] (L) | [98] (L) | — | — | [14] (C) | — | — | |
Housing vacancy | — | — | — | — | [80] (C) | — | [99] (L) | |
“Ghost” cities | [100] (C) | — | — | — | [81] (L) | — | — | |
Freight traffic and road density | [101] (CT) | [102] (CT) | — | [103] (C) | [82] (C) | [20] (L) | [86] (C) | |
Road lighting | [104] (L) | [105] (C) | — | [106] (C) | — | [86] (C) | [87] (L) | |
Copper/steel stock | [107] (G) | [108] (G) | — | — | — | — | — | |
Urbanisation | Long-term urbanisation | [109] (CT) | — | — | — | [14] (C) | — | — |
Urban functional zones | [110] (C) | [111] (C) | — | [112] (L) | [113] (L) | — | [84] (L) | |
Scaling city expansion | [114] (C) | [115] (R) | — | [116] (C) | [15] (C) | — | — | |
Impervious surface area detection/distribution | [117] (R) | [118] (R) | — | [119] (C) | [13] (C) | — | [120] (C) | |
Urban settlement | [121] (R) | [122] (R) | — | [70] (C) | [72] (R) | [85] (L) | [123] (L) | |
Rural settlement | [35] (L) | [124] (R) | — | — | [68] (R) | — | — | |
Urban surface temperature | [125] (C) | [126] (R) | — | [127] (C) | [128] (C) | — | — | |
Urban impacts on habitat/soil | [129] (CT) | [130] (R) | — | — | — | — | — | |
Dynamics of urban agglomeration | [131] (C) | [73] (R) | — | — | [74] (R) | — | — | |
Conflicts and disasters | War/political tensions | [132] (C) | [133] (C) | — | — | — | — | — |
Governmental favouritism | [134] (G) | [135] (G) | — | — | — | — | — | |
People’s displacement due to disasters/wars (refugees) | [136] (CT) | [137] (CT) | — | — | — | — | — | |
Demographic and socioeconomic information | Population distribution | [138] (C) | [139] (R) | — | [112] (L) | [140] (C) | — | — |
Population migration | [141] (R) | [142] (L) | — | — | — | — | — | |
Population density | [31] (CT) | [32] (C) | — | [33] (C) | [14] (C) | — | — | |
“Ambient population” | [143] (C) | [144] (C) | — | — | — | — | — | |
Environmental | Gas flares and biomass burning | [145] (G) | [146] (G) | [147] (C) | — | — | — | — |
Land use types | — | — | — | — | [87] (L) | — | [148] (L) | |
Net primary productivity | [149] (C) | — | — | — | — | — | — | |
Water footprint | [150] (G) | — | — | — | — | — | — | |
Aerosol properties | [151] (R) | [152] (G) | — | — | — | — | — | |
Virtual water | [153] (R) | — | — | — | — | — | — | |
Ecosystem services | [154] (R) | [155] (R) | — | — | — | — | — | |
Bioluminescence in the sea | [156] (R) | [157] (R) | — | — | — | — | — | |
Air quality | [158] (G) | [159] (C) | — | — | [160] (R) | — | — | |
Light pollution and its effect on biodiversity and conservation | [161] (G) | [162] (G) | — | [163] (L) | — | [83] (C) | [164] (C) | |
Lightning flashes | [165] (G) | [166] (G) | [147] (C) | [167] (G) | — | — | — | |
Marine activities | Nocturnal fishing vessel detection | [168] (G) | [75] (R) | [147] (C) | — | [76] (R) | — | — |
Disaster and natural hazards | Earthquake destruction | [169] (CT) | [170] (CT) | — | — | — | — | — |
Natural disasters | [171] (R) | [172] (C) | — | — | — | — | — | |
Flood risk | [173] (CT) | [77] (C) | — | — | [78] (C) | — | — | |
Wildfire | [174] (R) | [175] (R) | — | — | [176] (R) | — | — | |
Human health | Breast cancer | [177] (CT) | [48] (C) | — | [47] (C) | — | — | — |
Prostate cancer | [178] (G) | — | — | [47] (C) | — | — | — | |
COVID-19 outbreak | [179] (R) | — | — | — | — | — | — | |
Circadian rhythms, sleep disruptions | [180] (CT) | [181] (CT) | — | — | — | — | — | |
Obesity/body mass | [180] (CT) | — | — | [182] (C) | — | — | — | |
Birth mortality | [183] (L) | [183] (L) | — | — | — | — | — | |
Other applications with social nuances | Religious/cultural festivals | [184] (CT) | [185] (CT) | — | — | [79] (C) | — | [123] (L) |
Human lifestyle during COVID-19 lockdown | — | [186] (CT) | — | — | — | — | — | |
Tourism/recreational opportunities | [187] (C) | [188] (C) | — | — | — | — | — | |
Public space lighting preferences | — | — | — | — | — | — | [189] (L) | |
Forced labour | — | [190] (R) | — | — | — | — | — | |
Voting rights | [191] (G) | — | — | — | — | — | — | |
Human trafficking | [192] (CT) | — | — | — | — | — | — | |
Total articles reviewed | G = 12 R = 12 CT = 14 C = 10 L = 5 Total = 53 | G = 7 R = 12 CT = 10 C = 20 L = 5 Total = 54 | G = 0 R = 0 CT = 0 C = 3 L = 0 Total = 3 | G = 1 R = 0 CT = 0 C = 11 L = 3 Total = 15 | G = 0 R = 8 CT = 0 C = 12 L = 3 Total = 23 | G = 0 R = 0 CT = 0 C = 2 L = 2 Total = 4 | G = 0 R = 0 CT = 0 C = 3 L = 9 Total = 12 |
Categories (a) Social Gap Index | Count | Mean Radiance | Median Radiance | Standard Error of Radiance |
---|---|---|---|---|
0 (Low SGI) | 32 | 0.998 | 0.131 | 0.560 |
1 (High SGI) | 16 | 0.046 | 0 | 0.029 |
(b) Year | ||||
0 (SGI year 2010; radiance year 2014) | 24 | 0.677 | 0.030 | 0.539 |
1 (SGI year 2020; radiance year 2021) | 24 | 0.685 | 0.104 | 0.539 |
Source | DF | Seq SS | Adjusted SS | Adjusted MS | F |
---|---|---|---|---|---|
Location (24 codes) | 23 | 13.39846 | 12.60764 | 0.54816 | 178.91 *** |
Year (2 year codes) | 1 | 0.00067 | 0.00032 | 0.00032 | 0.1 ns |
Social Gap Index (2 SDGI codes) | 1 | 0.02169 | 0.02169 | 0.02169 | 7.08 * |
Error | 22 | 0.06741 | 0.06741 | 0.00306 | |
Total | 47 | 13.48823 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Andries, A.; Morse, S.; Murphy, R.J.; Sadhukhan, J.; Martinez-Hernandez, E.; Amezcua-Allieri, M.A.; Aburto, J. Potential of Using Night-Time Light to Proxy Social Indicators for Sustainable Development. Remote Sens. 2023, 15, 1209. https://doi.org/10.3390/rs15051209
Andries A, Morse S, Murphy RJ, Sadhukhan J, Martinez-Hernandez E, Amezcua-Allieri MA, Aburto J. Potential of Using Night-Time Light to Proxy Social Indicators for Sustainable Development. Remote Sensing. 2023; 15(5):1209. https://doi.org/10.3390/rs15051209
Chicago/Turabian StyleAndries, Ana, Stephen Morse, Richard J. Murphy, Jhuma Sadhukhan, Elias Martinez-Hernandez, Myriam A. Amezcua-Allieri, and Jorge Aburto. 2023. "Potential of Using Night-Time Light to Proxy Social Indicators for Sustainable Development" Remote Sensing 15, no. 5: 1209. https://doi.org/10.3390/rs15051209
APA StyleAndries, A., Morse, S., Murphy, R. J., Sadhukhan, J., Martinez-Hernandez, E., Amezcua-Allieri, M. A., & Aburto, J. (2023). Potential of Using Night-Time Light to Proxy Social Indicators for Sustainable Development. Remote Sensing, 15(5), 1209. https://doi.org/10.3390/rs15051209