Multi-Channel Spectral Band Adjustment Factors for Thermal Infrared Measurements of Geostationary Passive Imagers
Abstract
:1. Introduction
2. Materials and Methods
2.1. Satellite Data
2.1.1. MSG/SEVIRI
2.1.2. MTG/FCI
2.1.3. Himawari/AHI
2.1.4. MetOp/IASI
2.2. The ICON-ART Model
2.3. Satellite Retrievals
2.3.1. VACOS
2.3.2. CiPS
2.4. Spectral Band Adjustment Factors
2.4.1. Definition
2.4.2. Composition of the Training Dataset
2.4.3. Fitting of Polynomials as SBAFs
3. Results
3.1. Comparison of Different Sets of SBAFs
3.2. Comparison of Main and Rapid Scan MSG/SEVIRI Units
3.3. Applying VACOS with SBAFs to Himawari-8/AHI
3.4. Applying CiPS with SBAFs to MTG1/FCI
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AHI | Advanced Himawari Imager |
CiPS | Cirrus Properties from SEVIRI |
DLR | Deutsches Zentrum für Luft- und Raumfahrt |
DWD | Deutscher Wetterdienst |
FCI | Flexible Combined Imager |
FSS | Fraction Skill Score |
GSICS | Global Space-based Inter-Calibration System |
IASI | Infrared Atmospheric Sounding Interferometer |
ICON-ART | Icosahedral Nonhydrostatic model-Aerosols and Reactive Trace gases |
MetOp | Meteorological Operational satellite |
MSG | Meteosat Second Generation |
MTG | Meteosat Third Generation |
SBAF | Spectral Band Adjustment Factor |
SEVIRI | Spinning Enhanced Visible and InfraRed Imager |
SRF | Spectral Response Function |
VACOS | Volcanic Ash Cloud properties Obtained from SEVIRI |
References
- Schmetz, J.; Pili, P.; Tjemkes, S.; Just, D.; Kerkmann, J.; Rota, S.; Ratier, A. An Introduction to Meteosat Second Generation (MSG). Bull. Am. Meteorol. Soc. 2002, 83, 977–992. [Google Scholar] [CrossRef]
- Schmit, T.J.; Gunshor, M.M.; Menzel, W.P.; Gurka, J.J.; Li, J.; Bachmeier, A.S. Introducing the Next-Generation Advanced Baseline Imager on GOES-R. Bull. Am. Meteorol. Soc. 2005, 86, 1079–1096. [Google Scholar] [CrossRef]
- Schmit, T.J.; Griffith, P.; Gunshor, M.M.; Daniels, J.M.; Goodman, S.J.; Lebair, W.J. A Closer Look at the ABI on the GOES-R Series. Bull. Am. Meteorol. Soc. 2017, 98, 681–698. [Google Scholar] [CrossRef]
- Bessho, K.; Date, K.; Hayashi, M.; Ikeda, A.; Imai, T.; Inoue, H.; Kumagai, Y.; Miyakawa, T.; Murata, H.; Ohno, T.; et al. An Introduction to Himawari-8/9—Japan’s New-Generation Geostationary Meteorological Satellites. J. Meteorol. Soc. Jpn. 2016, 94, 151–183. [Google Scholar] [CrossRef] [Green Version]
- Yang, J.; Zhang, Z.; Wei, C.; Lu, F.; Guo, Q. Introducing the New Generation of Chinese Geostationary Weather Satellites, Fengyun-4. Bull. Am. Meteorol. Soc. 2017, 98, 1637–1658. [Google Scholar] [CrossRef]
- Durand, Y.; Hallibert, P.; Wilson, M.; Lekouara, M.; Grabarnik, S.; Aminou, D.; Blythe, P.; Napierala, B.; Canaud, J.L.; Pigouche, O.; et al. The flexible combined imager onboard MTG: From design to calibration. In Proceedings of the Sensors, Systems, and Next-Generation Satellites XIX, Toulouse, France, 21–24 September 2015; Meynart, R., Neeck, S.P., Shimoda, H., Eds.; International Society for Optics and Photonics, SPIE: Bellingham, WA, USA, 2015; Volume 9639, pp. 1–14. [Google Scholar] [CrossRef]
- Francis, P.N.; Cooke, M.C.; Saunders, R.W. Retrieval of physical properties of volcanic ash using Meteosat: A case study from the 2010 Eyjafjallajökull eruption. J. Geophys. Res. Atmos. 2012, 117. [Google Scholar] [CrossRef]
- Gouhier, M.; Deslandes, M.; Guéhenneux, Y.; Hereil, P.; Cacault, P.; Josse, B. Operational Response to Volcanic Ash Risks Using HOTVOLC Satellite-Based System and MOCAGE-Accident Model at the Toulouse VAAC. Atmosphere 2020, 11, 864. [Google Scholar] [CrossRef]
- Prata, A.J.; Grant, I.F. Retrieval of microphysical and morphological properties of volcanic ash plumes from satellite data: Application to Mt Ruapehu, New Zealand. Q. J. R. Meteorol. Soc. 2001, 127, 2153–2179. [Google Scholar] [CrossRef]
- Prata, A.J.; Prata, A.T. Eyjafjallajökull volcanic ash concentrations determined using Spin Enhanced Visible and Infrared Imager measurements. J. Geophys. Res. Atmos. 2012, 117. [Google Scholar] [CrossRef] [Green Version]
- Gray, T.M.; Bennartz, R. Automatic volcanic ash detection from MODIS observations using a back-propagation neural network. Atmos. Meas. Tech. 2015, 8, 5089–5097. [Google Scholar] [CrossRef] [Green Version]
- Piscini, A.; Picchiani, M.; Chini, M.; Corradini, S.; Merucci, L.; Del Frate, F.; Stramondo, S. A neural network approach for the simultaneous retrieval of volcanic ash parameters and SO2 using MODIS data. Atmos. Meas. Tech. 2014, 7, 4023–4047. [Google Scholar] [CrossRef] [Green Version]
- Kox, S.; Bugliaro, L.; Ostler, A. Retrieval of cirrus cloud optical thickness and top altitude from geostationary remote sensing. Atmos. Meas. Tech. 2014, 7, 3233–3246. [Google Scholar] [CrossRef] [Green Version]
- Bugliaro, L.; Piontek, D.; Kox, S.; Schmidl, M.; Mayer, B.; Müller, R.; Vázquez-Navarro, M.; Peters, D.M.; Grainger, R.G.; Gasteiger, J.; et al. VADUGS: A neural network for the remote sensing of volcanic ash with MSG/SEVIRI trained with synthetic thermal satellite observations simulated with a radiative transfer model. Nat. Hazards Earth Syst. Sci. 2022, 22, 1029–1054. [Google Scholar] [CrossRef]
- Strandgren, J.; Bugliaro, L.; Sehnke, F.; Schröder, L. Cirrus cloud retrieval with MSG/SEVIRI using artificial neural networks. Atmos. Meas. Tech. 2017, 10, 3547–3573. [Google Scholar] [CrossRef] [Green Version]
- Zhu, W.; Zhu, L.; Li, J.; Sun, H. Retrieving volcanic ash top height through combined polar orbit active and geostationary passive remote sensing data. Remote Sens. 2020, 12, 953. [Google Scholar] [CrossRef] [Green Version]
- Chander, G.; Mishra, N.; Helder, D.L.; Aaron, D.B.; Angal, A.; Choi, T.; Xiong, X.; Doelling, D.R. Applications of Spectral Band Adjustment Factors (SBAF) for Cross-Calibration. IEEE Trans. Geosci. Remote Sens. 2013, 51, 1267–1281. [Google Scholar] [CrossRef]
- Doelling, D.R.; Lukashin, C.; Minnis, P.; Scarino, B.; Morstad, D. Spectral Reflectance Corrections for Satellite Intercalibrations Using SCIAMACHY Data. IEEE Geosci. Remote Sens. Lett. 2012, 9, 119–123. [Google Scholar] [CrossRef]
- Scarino, B.R.; Doelling, D.R.; Minnis, P.; Gopalan, A.; Chee, T.; Bhatt, R.; Lukashin, C.; Haney, C. A Web-Based Tool for Calculating Spectral Band Difference Adjustment Factors Derived From SCIAMACHY Hyperspectral Data. IEEE Trans. Geosci. Remote Sens. 2016, 54, 2529–2542. [Google Scholar] [CrossRef]
- Scarino, B.; Doelling, D.R.; Gopalan, A.; Chee, T.; Bhatt, R.; Haney, C. Enhancements to the open access spectral band adjustment factor online calculation tool for visible channels. In Proceedings of the Earth Observing Systems XXIII, San Diego, CA, USA, 19–23 August 2018; Butler, J.J., Xiong, X.J., Gu, X., Eds.; International Society for Optics and Photonics, SPIE: Bellingham, WA, USA, 2018; Volume 10764, pp. 383–396. [Google Scholar] [CrossRef]
- Bhatt, R.; Doelling, D.R.; Scarino, B.; Gopalan, A.; Chee, T.; Haney, C. NASA LaRC Spectral Band Adjustement Factor (SBAF) Online Calculation Tool Update. In Proceedings of the Presentation at the GSICS Annual Meeting 2019, Frascati, Italy, 4–8 March 2019; Available online: http://gsics.atmos.umd.edu/pub/Development/AnnualMeeting2019/4q_SBAF_Update_GSICS_2019_Bhatt.pdf (accessed on 23 January 2023).
- Qin, Y.; McVicar, T.R. Spectral band unification and inter-calibration of Himawari AHI with MODIS and VIIRS: Constructing virtual dual-view remote sensors from geostationary and low-Earth-orbiting sensors. Remote Sens. Environ. 2018, 209, 540–550. [Google Scholar] [CrossRef]
- Gunshor, M.M.; Schmit, T.J.; Menzel, W.P.; Tobin, D.C. Intercalibration of Broadband Geostationary Imagers Using AIRS. J. Atmos. Ocean. Technol. 2009, 26, 746–758. [Google Scholar] [CrossRef] [Green Version]
- Hewison, T.J.; Wu, X.; Yu, F.; Tahara, Y.; Hu, X.; Kim, D.; Koenig, M. GSICS Inter-Calibration of Infrared Channels of Geostationary Imagers Using Metop/IASI. IEEE Trans. Geosci. Remote Sens. 2013, 51, 1160–1170. [Google Scholar] [CrossRef]
- Minnis, P.; Gambheer, A.V.; Doelling, D.R. Azimuthal anisotropy of longwave and infrared window radiances from the Clouds and the Earth’s Radiant Energy System on the Tropical Rainfall Measuring Mission and Terra satellites. J. Geophys. Res. Atmos. 2004, 109, 1–13. [Google Scholar] [CrossRef]
- Chander, G.; Hewison, T.J.; Fox, N.; Wu, X.; Xiong, X.; Blackwell, W.J. Overview of Intercalibration of Satellite Instruments. IEEE Trans. Geosci. Remote Sens. 2013, 51, 1056–1080. [Google Scholar] [CrossRef]
- Jiang, G.; Li, Z. Cross-calibration of MSG1-SEVIRI infrared channels with Terra-MODIS channels. Int. J. Remote Sens. 2009, 30, 753–769. [Google Scholar] [CrossRef]
- Gunshor, M.M.; Schmit, T.J.; Menzel, W.P. Intercalibration of the Infrared Window and Water Vapor Channels on Operational Geostationary Environmental Satellites Using a Single Polar-Orbiting Satellite. J. Atmos. Ocean. Technol. 2004, 21, 61–68. [Google Scholar] [CrossRef]
- Doelling, D.R.; Haney, C.O.; Scarino, B.R.; Gopalan, A.; Bhatt, R. Improvements to the Geostationary Visible Imager Ray-Matching Calibration Algorithm for CERES Edition 4. J. Atmos. Ocean. Technol. 2016, 33, 2679–2698. [Google Scholar] [CrossRef]
- Rublev, A.N.; Gorbarenko, E.V.; Golomolzin, V.V.; Borisov, E.Y.; Kiseleva, J.V.; Gektin, Y.M.; Zaitsev, A.A. Inter-calibration of Infrared Channels of Geostationary Meteorological Satellite Imagers. Front. Environ. Sci. 2018, 6, 142. [Google Scholar] [CrossRef] [Green Version]
- Govaerts, Y.M.; Rüthrich, F.; John, V.O.; Quast, R. Climate Data Records from Meteosat First Generation Part I: Simulation of Accurate Top-of-Atmosphere Spectral Radiance over Pseudo-Invariant Calibration Sites for the Retrieval of the In-Flight Visible Spectral Response. Remote Sens. 2018, 10, 1959. [Google Scholar] [CrossRef] [Green Version]
- Quast, R.; Giering, R.; Govaerts, Y.; Rüthrich, F.; Roebeling, R. Climate Data Records from Meteosat First Generation Part II: Retrieval of the In-Flight Visible Spectral Response. Remote Sens. 2019, 11, 480. [Google Scholar] [CrossRef] [Green Version]
- Xu, N.; Wu, P.; Ma, G.; Hu, Q.; Hu, X.; Wu, R.; Wang, Y.; Xu, H.; Chen, L.; Zhang, P. In-Flight Spectral Response Function Retrieval of a Multispectral Radiometer Based on the Functional Data Analysis Technique. IEEE Trans. Geosci. Remote Sens. 2021, 60, 1–10. [Google Scholar] [CrossRef]
- Piontek, D.; Bugliaro, L.; Schmidl, M.; Zhou, D.K.; Voigt, C. The New Volcanic Ash Satellite Retrieval VACOS Using MSG/SEVIRI and Artificial Neural Networks: 1. Development. Remote Sens. 2021, 13, 3112. [Google Scholar] [CrossRef]
- The Conversion from Effective Radiances to Equivalent Brightness Temperatures. European Organisation for the Exploitation of Meteorological Satellites. 2012. Available online: https://www-cdn.eumetsat.int/files/2020-04/pdf_effect_rad_to_brightness.pdf (accessed on 17 November 2021).
- Typical Radiometric Noise, Calibration Bias and Stability for Meteosat-8, -9, -10 and -11 SEVIRI. European Organisation for the Exploitation of Meteorological Satellites. 2019. Available online: https://www-cdn.eumetsat.int/files/2020-04/pdf_typ_radiomet_acc_msg-1-2.pdf (accessed on 17 November 2021).
- Spectral Response Functions (SRFs) and MW Passbands. European Organisation for the Exploitation of Meteorological Satellites, Numerical Weather Prediction Satellite Application Facility. Available online: https://nwp-saf.eumetsat.int/site/software/rttov/download/coefficients/spectral-response-functions (accessed on 17 November 2021).
- Meteosat Series. European Organisation for the Exploitation of Meteorological Satellites. Available online: https://www.eumetsat.int/our-satellites/meteosat-series (accessed on 3 November 2022).
- List of All Satellites. World Meteorological Organization, Observing Systems Capability Analysis and Review Tool. Available online: https://www.wmo-sat.info/oscar/satellites/ (accessed on 16 November 2021).
- Holmlund, K.; Grandell, J.; Schmetz, J.; Stuhlmann, R.; Bojkov, B.; Munro, R.; Lekouara, M.; Coppens, D.; Viticchie, B.; August, T.; et al. Meteosat Third Generation (MTG): Continuation and Innovation of Observations from Geostationary Orbit. Bull. Am. Meteorol. Soc. 2021, 102, E990–E1015. [Google Scholar] [CrossRef]
- MTGTD-360 Spectrally Representative FCI L1C Test Products - Package Description. European Organisation for the Exploitation of Meteorological Satellites. 2022. Available online: https://sftp.eumetsat.int/public/folder/UsCVknVOOkSyCdgpMimJNQ/User-Materials/Test-Data/MTG/MTG_FCI_L1C_SpectrallyRepresentative_TD-360_May2022/MTGTD-360%20Spectrally%20Representative%20FCI%20L1C%20Test%20Products%20-%20Package%20Description%20(1290888%20V1).pdf (accessed on 9 September 2022).
- GEO-KOMPSAT-2A User Readiness Planning. Korea Meteorological Administration, National Meteorological Satellite Center. Available online: https://nmsc.kma.go.kr/enhome/html/base/cmm/selectPage.do?page=satellite.gk2a.userReadinessInformation (accessed on 16 November 2021).
- Advanced Baseline Imager Solutions. L3Harris. Available online: https://www.l3harris.com/all-capabilities/advanced-baseline-imager-solutions (accessed on 17 November 2021).
- Switchover of the Operational Satellite. Japan Meteorological Agency, Meteorological Satellite Center. Available online: https://www.data.jma.go.jp/mscweb/en/oper/switchover.html (accessed on 3 January 2023).
- Hilton, F.; Armante, R.; August, T.; Barnet, C.; Bouchard, A.; Camy-Peyret, C.; Capelle, V.; Clarisse, L.; Clerbaux, C.; Coheur, P.F.; et al. Hyperspectral Earth Observation from IASI: Five Years of Accomplishments. Bull. Am. Meteorol. Soc. 2012, 93, 347–370. [Google Scholar] [CrossRef]
- Zängl, G.; Reinert, D.; Rípodas, P.; Baldauf, M. The ICON (ICOsahedral Non-hydrostatic) modelling framework of DWD and MPI-M: Description of the non-hydrostatic dynamical core. Q. J. Roy. Meteor. Soc. 2015, 141, 563–579. [Google Scholar] [CrossRef]
- Rieger, D.; Bangert, M.; Bischoff-Gauss, I.; Förstner, J.; Lundgren, K.; Reinert, D.; Schröter, J.; Vogel, H.; Zängl, G.; Ruhnke, R.; et al. ICON–ART 1.0 – a new online-coupled model system from the global to regional scale. Geosci. Model Dev. 2015, 8, 1659–1676. [Google Scholar] [CrossRef] [Green Version]
- Weimer, M.; Schröter, J.; Eckstein, J.; Deetz, K.; Neumaier, M.; Fischbeck, G.; Hu, L.; Millet, D.B.; Rieger, D.; Vogel, H.; et al. An emission module for ICON-ART 2.0: Implementation and simulations of acetone. Geosci. Model Dev. 2017, 10, 2471–2494. [Google Scholar] [CrossRef] [Green Version]
- Schröter, J.; Rieger, D.; Stassen, C.; Vogel, H.; Weimer, M.; Werchner, S.; Förstner, J.; Prill, F.; Reinert, D.; Zängl, G.; et al. ICON-ART 2.1: A flexible tracer framework and its application for composition studies in numerical weather forecasting and climate simulations. Geosci. Model Dev. 2018, 11, 4043–4068. [Google Scholar] [CrossRef] [Green Version]
- Muser, L.O.; Hoshyaripour, G.A.; Bruckert, J.; Horváth, A.; Malinina, E.; Wallis, S.; Prata, F.J.; Rozanov, A.; von Savigny, C.; Vogel, H.; et al. Particle aging and aerosol–radiation interaction affect volcanic plume dispersion: Evidence from the Raikoke 2019 eruption. Atmos. Chem. Phys. 2020, 20, 15015–15036. [Google Scholar] [CrossRef]
- Giorgetta, M.A.; Brokopf, R.; Crueger, T.; Esch, M.; Fiedler, S.; Helmert, J.; Hohenegger, C.; Kornblueh, L.; Köhler, M.; Manzini, E.; et al. ICON-A, the Atmosphere Component of the ICON Earth System Model: I. Model Description. J. Adv. Model. Earth Syst. 2018, 10, 1613–1637. [Google Scholar] [CrossRef]
- Heinze, R.; Dipankar, A.; Henken, C.C.; Moseley, C.; Sourdeval, O.; Trömel, S.; Xie, X.; Adamidis, P.; Ament, F.; Baars, H.; et al. Large-eddy simulations over Germany using ICON: A comprehensive evaluation. Quaterly J. R. Meteorol. Soc. 2017, 143, 69–100. [Google Scholar] [CrossRef] [Green Version]
- Reed, B.E.; Peters, D.M.; McPheat, R.; Grainger, R.G. The Complex Refractive Index of Volcanic Ash Aerosol Retrieved From Spectral Mass Extinction. J. Geophys. Res. Atmos. 2018, 123, 1339–1350. [Google Scholar] [CrossRef] [Green Version]
- Deguine, A.; Petitprez, D.; Clarisse, L.; Guđmundsson, S.; Outes, V.; Villarosa, G.; Herbin, H. Complex refractive index of volcanic ash aerosol in the infrared, visible, and ultraviolet. Appl. Opt. 2020, 59, 884–895. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Piontek, D.; Hornby, A.; Voigt, C.; Bugliaro, L.; Gasteiger, J. Determination of complex refractive indices and optical properties of volcanic ashes in the thermal infrared based on generic petrological compositions. J. Volcanol. Geotherm. Res. 2021, 411, 107174. [Google Scholar] [CrossRef]
- Piontek, D.; Bugliaro, L.; Kar, J.; Schumann, U.; Marenco, F.; Plu, M.; Voigt, C. The New Volcanic Ash Satellite Retrieval VACOS Using MSG/SEVIRI and Artificial Neural Networks: 2. Validation. Remote Sens. 2021, 13, 3128. [Google Scholar] [CrossRef]
- Plu, M.; Bigeard, G.; Sič, B.; Emili, E.; Bugliaro, L.; El Amraoui, L.; Guth, J.; Josse, B.; Mona, L.; Piontek, D. Modelling the volcanic ash plume from Eyjafjallajökull eruption (May 2010) over Europe: Evaluation of the benefit of source term improvements and of the assimilation of aerosol measurements. Nat. Hazards Earth Syst. Sci. 2021, 21, 3731–3747. [Google Scholar] [CrossRef]
- Plu, M.; Scherllin-Pirscher, B.; Arnold Arias, D.; Baro, R.; Bigeard, G.; Bugliaro, L.; Carvalho, A.; El Amraoui, L.; Eschbacher, K.; Hirtl, M.; et al. An ensemble of state-of-the-art ash dispersion models: Towards probabilistic forecasts to increase the resilience of air traffic against volcanic eruptions. Nat. Hazards Earth Syst. Sci. 2021, 21, 2973–2992. [Google Scholar] [CrossRef]
- Strandgren, J.; Fricker, J.; Bugliaro, L. Characterisation of the artificial neural network CiPS for cirrus cloud remote sensing with MSG/SEVIRI. Atmos. Meas. Tech. 2017, 10, 4317–4339. [Google Scholar] [CrossRef] [Green Version]
- Rybka, H.; Burkhardt, U.; Köhler, M.; Arka, I.; Bugliaro, L.; Görsdorf, U.; Horváth, A.; Meyer, C.I.; Reichardt, J.; Seifert, A.; et al. The behavior of high-CAPE (convective available potential energy) summer convection in large-domain large-eddy simulations with ICON. Atmos. Chem. Phys. 2021, 21, 4285–4318. [Google Scholar] [CrossRef]
- Schumann, U.; Bugliaro, L.; Dörnbrack, A.; Baumann, R.; Voigt, C. Aviation Contrail Cirrus and Radiative Forcing Over Europe During 6 Months of COVID-19. Geophys. Res. Lett. 2021, 48, e2021GL092771. [Google Scholar] [CrossRef]
- Wang, Z.; Bugliaro, L.; Jurkat-Witschas, T.; Heller, R.; Burkhardt, U.; Ziereis, H.; Dekoutsidis, G.; Wirth, M.; Groß, S.; Kirschler, S.; et al. Observations of microphysical properties and radiative effects of a contrail cirrus outbreak over the North Atlantic. Atmos. Chem. Phys. 2023, 23, 1941–1961. [Google Scholar] [CrossRef]
- The SEVIRI Instrument. European Organisation for the Exploitation of Meteorological Satellites. 2000. Available online: https://www.eumetsat.int/media/8161 (accessed on 3 November 2022).
- Schmetz, J.; Pili, P.; Tjemkes, S.; Just, D.; Kerkmann, J.; Rota, S.; Ratier, A. SEVIRI Calibration. Bull. Am. Meteorol. Soc. 2002, 83, ES52–ES53. [Google Scholar] [CrossRef]
- Effective Radiance and Brightness Temperature Relation Tables for Meteosat Second Generation. Available online: https://www.eumetsat.int/media/38301 (accessed on 8 September 2022).
- Himawari-8 HRIT Data Calibration Table. Available online: http://ds.data.jma.go.jp/mscweb/en/himawari89/space_segment/fig/Himawari-8_HRIT_table.xlsx (accessed on 8 September 2022).
- numpy.linalg.lstsq. NumPy documentation. Available online: https://numpy.org/doc/stable/reference/generated/numpy.linalg.lstsq.html (accessed on 14 February 2023).
- User Guide for EUMETSAT GSICS Corrections for inter-calibration of Meteosat-SEVIRI with Metop-IASI. European Organisation for the Exploitation of Meteorological Satellites. 2020. Available online: https://www.eumetsat.int/media/45742 (accessed on 3 November 2022).
- Smirnov, S.; Nizametdinov, I.; Timina, T.; Kotov, A.; Sekisova, V.; Kuzmin, D.; Kalacheva, E.; Rashidov, V.; Rybin, A.; Lavrenchuk, A.; et al. High explosivity of the June 21, 2019 eruption of Raikoke volcano (Central Kuril Islands); mineralogical and petrological constraints on the pyroclastic materials. J. Volcanol. Geotherm. Res. 2021, 418, 107346. [Google Scholar] [CrossRef]
- McKee, K.; Smith, C.M.; Reath, K.; Snee, E.; Maher, S.; Matoza, R.S.; Carn, S.; Mastin, L.; Anderson, K.; Damby, D.; et al. Evaluating the state-of-the-art in remote volcanic eruption characterization Part I: Raikoke volcano, Kuril Islands. J. Volcanol. Geotherm. Res. 2021, 419, 107354. [Google Scholar] [CrossRef]
- Prata, A.T.; Grainger, R.G.; Taylor, I.A.; Povey, A.C.; Proud, S.R.; Poulsen, C.A. Uncertainty-bounded estimates of ash cloud properties using the ORAC algorithm: Application to the 2019 Raikoke eruption. Atmos. Meas. Tech. 2022, 15, 5985–6010. [Google Scholar] [CrossRef]
- Muser, L.O. Combining Aerosol Aging and Data Assimilation for Improving Volcanic Aerosol Forecast. Ph.D. Thesis, Karlsruher Institut für Technologie (KIT), Karlsruhe, Germany, 2022. [Google Scholar] [CrossRef]
- Bruckert, J.; Hoshyaripour, G.A.; Horváth, A.; Muser, L.O.; Prata, F.J.; Hoose, C.; Vogel, B. Online treatment of eruption dynamics improves the volcanic ash and SO2 dispersion forecast: Case of the 2019 Raikoke eruption. Atmos. Chem. Phys. 2022, 22, 3535–3552. [Google Scholar] [CrossRef]
- Harvey, N.J.; Dacre, H.F. Spatial evaluation of volcanic ash forecasts using satellite observations. Atmos. Chem. Phys. 2016, 16, 861–872. [Google Scholar] [CrossRef] [Green Version]
- Pulkkinen, S.; Nerini, D.; Pérez Hortal, A.A.; Velasco-Forero, C.; Seed, A.; Germann, U.; Foresti, L. Pysteps: An open-source Python library for probabilistic precipitation nowcasting (v1.0). Geosci. Model Dev. 2019, 12, 4185–4219. [Google Scholar] [CrossRef] [Green Version]
- Dacre, H.F.; Harvey, N.J.; Webley, P.W.; Morton, D. How accurate are volcanic ash simulations of the 2010 Eyjafjallajökull eruption? J. Geophys. Res. Atmos. 2016, 121, 3534–3547. [Google Scholar] [CrossRef] [Green Version]
- Inoue, T. On the Temperature and Effective Emissivity Determination of Semi-Transparent Cirrus Clouds by Bi-Spectral Measurements in the 10 μm Window Region. J. Meteorol. Soc. Jpn. 1985, 63, 88–99. [Google Scholar] [CrossRef] [Green Version]
- Watkin, S.C. The application of AVHRR data for the detection of volcanic ash in a Volcanic Ash Advisory Centre. Meteorol. Appl. 2003, 10, 301–311. [Google Scholar] [CrossRef]
- Závody, A.M.; Birks, A.R. Sun Glint Contamination in ATSR-2 Data: Comparison of Observations and Values Calculated from the Measured 1.6-μm Reflectivities. J. Atmos. Ocean. Technol. 2004, 21, 787–798. [Google Scholar] [CrossRef]
Himawari-8 to MSG2 | MTG1 to MSG2 | MSG3 to MSG2 | MSG4 to MSG2 | MSG4 to MSG3 | |||||
---|---|---|---|---|---|---|---|---|---|
N | D | N | D | N | D | N | D | N | D |
using one thermal effective radiance as input | |||||||||
1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
1 | 5 | 1 | 5 | 1 | 5 | 1 | 5 | 1 | 5 |
using one thermal effective radiance and the latitude as input | |||||||||
2 | 5 | 2 | 5 | 2 | 5 | 2 | 5 | 2 | 5 |
using all thermal effective radiances as input | |||||||||
9 | 1 | 7 | 1 | 7 | 1 | 7 | 1 | 7 | 1 |
9 | 2 | 7 | 2 | 7 | 2 | 7 | 2 | 7 | 2 |
9 | 3 | 7 | 3 | 7 | 3 | 7 | 3 | 7 | 3 |
using all thermal effective radiances and the latitude as input | |||||||||
10 | 1 | 8 | 1 | 8 | 1 | 8 | 1 | 8 | 1 |
10 | 2 | 8 | 2 | 8 | 2 | 8 | 2 | 8 | 2 |
Channel | Himawari-8 vs. MSG2 | MTG1 vs. MSG2 | MSG3 vs. MSG2 | MSG4 vs. MSG2 | MSG4 vs. MSG3 | |||||
---|---|---|---|---|---|---|---|---|---|---|
/μm | Mean | St.dev. | Mean | St.dev. | Mean | St.dev. | Mean | St.dev. | Mean | St.dev. |
6.2 | −0.28 | 0.09 | 1.16 | 0.38 | 0.13 | 0.05 | 0.12 | 0.04 | −0.01 | 0.01 |
7.3 | 0.09 | 0.25 | 0.18 | 0.39 | 0.08 | 0.03 | −0.05 | 0.04 | −0.13 | 0.07 |
8.7 | −0.18 | 0.28 | 0.04 | 0.07 | 0.00 | 0.01 | 0.02 | 0.03 | 0.02 | 0.02 |
9.7 | −0.77 | 0.36 | −0.09 | 0.06 | −0.05 | 0.03 | 0.03 | 0.02 | 0.08 | 0.03 |
10.8 | / | / | 0.19 | 0.26 | −0.01 | 0.02 | −0.02 | 0.01 | 0.00 | 0.02 |
12.0 | −0.88 | 0.66 | −0.74 | 0.59 | 0.07 | 0.05 | 0.08 | 0.07 | 0.02 | 0.02 |
13.4 | 2.94 | 1.17 | 2.56 | 0.99 | −0.36 | 0.16 | −1.40 | 0.61 | −1.04 | 0.46 |
MSG3 at 0°E, MSG2 at 9.5°E | MSG4 at 0°E, MSG3 at 9.5°E | |||||
---|---|---|---|---|---|---|
Channel/μm | No corr. | GSICS | GSICS+SBAFs | No corr. | GSICS | GSICS+SBAFs |
Median of difference/K | ||||||
6.2 | 0.03 | 0.10 | −0.05↘ | 0.11 | −0.07 | −0.06↘ |
7.3 | 0.01 | 0.05 | −0.06↗ | 0.03 | −0.16 | 0.03↘ |
8.7 | 0.04 | 0.15 | 0.15→ | 0.11 | 0.22 | 0.22→ |
9.7 | 0.03 | 0.01 | 0.06↗ | 0.29 | 0.21 | 0.12↘ |
10.8 | 0.04 | 0.08 | 0.06↘ | 0.09 | 0.08 | 0.10↗ |
12.0 | 0.07 | 0.09 | 0.03↘ | 0.04 | 0.08 | 0.06↘ |
13.4 | −0.35 | −0.51 | 0.00↘ | −0.58 | −1.35 | 0.05↘ |
Mean of difference/K | ||||||
6.2 | 0.04 | 0.10 | −0.04↘ | 0.11 | −0.06 | −0.05↘ |
7.3 | 0.00 | 0.06 | −0.05↘ | 0.04 | −0.11 | 0.06↘ |
8.7 | 0.03 | 0.16 | 0.15↘ | 0.14 | 0.39 | 0.39→ |
9.7 | 0.04 | 0.08 | 0.14↗ | 0.28 | 0.31 | 0.22↘ |
10.8 | 0.01 | 0.10 | 0.09↘ | 0.10 | 0.14 | 0.15↗ |
12.0 | 0.05 | 0.12 | 0.06↘ | 0.09 | 0.11 | 0.09↘ |
13.4 | −0.36 | −0.40 | 0.07↘ | −0.51 | −1.09 | 0.15↘ |
Standard deviation of difference/K | ||||||
6.2 | 0.27 | 0.28 | 0.28→ | 0.33 | 0.34 | 0.34→ |
7.3 | 0.52 | 0.58 | 0.58→ | 0.58 | 0.64 | 0.63↘ |
8.7 | 1.08 | 1.11 | 1.11→ | 1.15 | 1.26 | 1.25↘ |
9.7 | 0.58 | 0.67 | 0.67→ | 0.65 | 0.73 | 0.74↗ |
10.8 | 1.23 | 1.25 | 1.25→ | 1.21 | 1.24 | 1.24→ |
12.0 | 1.18 | 1.19 | 1.19→ | 1.20 | 1.22 | 1.22→ |
13.4 | 0.69 | 0.76 | 0.74↘ | 0.82 | 1.03 | 0.84↘ |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Piontek, D.; Bugliaro, L.; Müller, R.; Muser, L.; Jerg, M. Multi-Channel Spectral Band Adjustment Factors for Thermal Infrared Measurements of Geostationary Passive Imagers. Remote Sens. 2023, 15, 1247. https://doi.org/10.3390/rs15051247
Piontek D, Bugliaro L, Müller R, Muser L, Jerg M. Multi-Channel Spectral Band Adjustment Factors for Thermal Infrared Measurements of Geostationary Passive Imagers. Remote Sensing. 2023; 15(5):1247. https://doi.org/10.3390/rs15051247
Chicago/Turabian StylePiontek, Dennis, Luca Bugliaro, Richard Müller, Lukas Muser, and Matthias Jerg. 2023. "Multi-Channel Spectral Band Adjustment Factors for Thermal Infrared Measurements of Geostationary Passive Imagers" Remote Sensing 15, no. 5: 1247. https://doi.org/10.3390/rs15051247
APA StylePiontek, D., Bugliaro, L., Müller, R., Muser, L., & Jerg, M. (2023). Multi-Channel Spectral Band Adjustment Factors for Thermal Infrared Measurements of Geostationary Passive Imagers. Remote Sensing, 15(5), 1247. https://doi.org/10.3390/rs15051247