The Differences and Influence Factors in Extracting Urban Green Space from Various Resolutions of Data: The Perspective of Blocks
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Source and Preprocessing
2.3. Division of Land Units
2.4. Extraction Method of UGS
2.5. Difference Analysis of Green Space Extraction between Data with Various Resolutions
3. Results
3.1. The Differences of GR in Fishnet with Various Sizes
3.1.1. The Precision of Each GR Grades in Fishnet with Various Sizes
3.1.2. The DD in Fishnet with Various Sizes
3.2. The Differences of GR in Blocks with Different Land Use Types
3.2.1. The GR of Different Land Use Types
3.2.2. DD in Blocks with Different Land Use Types
3.2.3. Influence Factors of the Differences between Various Resolutions
4. Discussion
4.1. Differences in UGS Extraction from Different Resolutions of Data in Terms of Blocks
4.2. Factors Affecting the Differences in UGS Extraction with Different Resolutions of Data
4.3. Different Resolutions of Data Have Their Own Application Scenarios
4.4. Shortcomings and Prospects
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Holt, A.R.; Mears, M.; Maltby, L.; Warren, P. Understanding spatial patterns in the production of multiple urban ecosystem services. Ecosyst. Serv. 2015, 16, 33–46. [Google Scholar] [CrossRef] [Green Version]
- Liu, O.Y.; Russo, A. Assessing the contribution of urban green spaces in green infrastructure strategy planning for urban ecosystem conditions and services. Sustain. Cities Soc. 2021, 68, 102772. [Google Scholar] [CrossRef]
- Voogt, J.A.; Oke, T.R. Effects of urban surface geometry on remotely-sensed surface temperature. Int. J. Remote Sens. 1998, 19, 895–920. [Google Scholar] [CrossRef]
- Ng, E.; Chen, L.; Wang, Y.N.; Yuan, C. A study on the cooling effects of greening in a high-density city: An experience from Hong Kong. Build. Environ. 2012, 47, 256–271. [Google Scholar] [CrossRef]
- Huang, Q.P.; Huang, J.J.; Yang, X.N.; Fang, C.L.; Liang, Y.J. Quantifying the seasonal contribution of coupling urban land use types on Urban Heat Island using Land Contribution Index: A case study in Wuhan, China. Sustain. Cities Soc. 2019, 44, 666–675. [Google Scholar] [CrossRef]
- Jennings, V.; Gragg, R.S.; Brown, C.P.; Hartel, D.; Kuehler, E.; Sinykin, A.; Johnson, E.; Kondo, M. Structural Characteristics of Tree Cover and the Association with Cardiovascular and Respiratory Health in Tampa, FL. J. Urban Health 2019, 96, 669–681. [Google Scholar] [CrossRef] [PubMed]
- Jim, C.Y.; Chen, W.Y. Assessing the ecosystem service of air pollutant removal by urban trees in Guangzhou (China). J. Environ. Manag. 2008, 88, 665–676. [Google Scholar] [CrossRef] [PubMed]
- Bratman, G.N.; Hamilton, J.P.; Daily, G.C. The impacts of nature experience on human cognitive function and mental health. Ann. N. Y. Acad. Sci. 2012, 1249, 118–136. [Google Scholar] [CrossRef]
- Markevych, I.; Schoierer, J.; Hartig, T.; Chudnovsky, A.; Hystad, P.; Dzhambov, A.M.; de Vries, S.; Triguero-Mas, M.; Brauer, M.; Nieuwenhuijsen, M.J.; et al. Exploring pathways linking greenspace to health: Theoretical and methodological guidance. Environ. Res. 2017, 158, 301–317. [Google Scholar] [CrossRef]
- van den Berg, A.E.; Maas, J.; Verheij, R.A.; Groenewegen, P.P. Green space as a buffer between stressful life events and health. Soc. Sci. Med. 2010, 70, 1203–1210. [Google Scholar] [CrossRef] [Green Version]
- Haaland, C.; van den Bosch, C.K. Challenges and strategies for urban green-space planning in cities undergoing densification: A review. Urban For. Urban Green. 2015, 14, 760–771. [Google Scholar] [CrossRef]
- Alonzo, M.; Bookhagen, B.; Roberts, D.A. Urban tree species mapping using hyperspectral and lidar data fusion. Remote Sens. Environ. 2014, 148, 70–83. [Google Scholar] [CrossRef]
- Brell, M.; Segl, K.; Guanter, L.; Bookhagen, B. 3D hyperspectral point cloud generation: Fusing airborne laser scanning and hyperspectral imaging sensors for improved object-based information extraction. ISPRS J. Photogramm. Remote Sens. 2019, 149, 200–214. [Google Scholar] [CrossRef]
- Burr, A.; Schaeg, N.; Hall, D.M. Assessing residential front yards using Google Street View and geospatial video: A virtual survey approach for urban pollinator conservation. Appl. Geogr. 2018, 92, 12–20. [Google Scholar] [CrossRef]
- Chance, C.M.; Coops, N.C.; Plowright, A.A.; Tooke, T.R.; Christen, A.; Aven, N. Invasive Shrub Mapping in an Urban Environment from Hyperspectral and LiDAR-Derived Attributes. Front. Plant Sci. 2016, 7, 1528. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mathieu, R.; Freeman, C.; Aryal, J. Mapping private gardens in urban areas using object-oriented techniques and very high-resolution satellite imagery. Landsc. Urban Plan. 2007, 81, 179–192. [Google Scholar] [CrossRef]
- Neyns, R.; Canters, F. Mapping of Urban Vegetation with High-Resolution Remote Sensing: A Review. Remote Sens. 2022, 14, 1031. [Google Scholar] [CrossRef]
- Zhang, C.H.; Kovacs, J.M. The application of small unmanned aerial systems for precision agriculture: A review. Precis. Agric. 2012, 13, 693–712. [Google Scholar] [CrossRef]
- Jiang, L.L.; Jiapaer, G.; Bao, A.M.; Guo, H.; Ndayisaba, F. Vegetation dynamics and responses to climate change and human activities in Central Asia. Sci. Total Environ. 2017, 599, 967–980. [Google Scholar] [CrossRef] [PubMed]
- Blanco, S.R.; Heras, D.B.; Arguello, F. Texture Extraction Techniques for the Classification of Vegetation Species in Hyperspectral Imagery: Bag of Words Approach Based on Superpixels. Remote Sens. 2020, 12, 2633. [Google Scholar] [CrossRef]
- Li, C.K.; Dong, X.J.; Zhang, Q. Multi-scale Object-oriented Building Extraction Method of Tai’an City from High Resolution Image. In Proceedings of the 3rd International Workshop on Earth Observation and Remote Sensing Applications (EORSA), Changsha, China, 11–14 June 2014. [Google Scholar]
- Liu, C.; Zhang, J.; Yu, S.; Yang, A.M. Extraction of Urban Green Space Information Based on ZY-3 Remote Sensing Images. In Proceedings of the International Conference on Information Technology and Management Engineering (ITME), Hong Kong, China, 26–27 April 2014. [Google Scholar]
- Liu, Z.J.; Yang, L.; Liu, Z.H.; Duan, L.L.; Qiao, X.X.; Gong, J.J. Method of Vegetation Extraction Based on Deep Belief Network and Optimal Scale. Laser Optoelectron. Prog. 2018, 55, 021001. [Google Scholar] [CrossRef]
- Zhang, K.; Hu, B. Individual Urban Tree Species Classification Using Very High Spatial Resolution Airborne Multi-Spectral Imagery Using Longitudinal Profiles. Remote Sens. 2012, 4, 1741–1757. [Google Scholar] [CrossRef] [Green Version]
- Richards, D.R.; Edwards, P.J. Quantifying street tree regulating ecosystem services using Google Street View. Ecol. Indic. 2017, 77, 31–40. [Google Scholar] [CrossRef]
- Hoang, N.D.; Tran, X.L. Remote Sensing-Based Urban Green Space Detection Using Marine Predators Algorithm Optimized Machine Learning Approach. Math. Probl. Eng. 2021, 2021, 5586913. [Google Scholar] [CrossRef]
- Kuang, W.H.; Zhang, S.; Li, X.Y.; Lu, D.S. A 30 m resolution dataset of China’s urban impervious surface area and green space, 2000-2018. Earth Syst. Sci. Data 2021, 13, 63–82. [Google Scholar] [CrossRef]
- Zhou, X.S.; Li, L.; Chen, L.Q.; Liu, Y.Q.; Cui, Y.F.; Zhang, Y.; Zhang, T. Discriminating Urban Forest Types from Sentinel-2A Image Data through Linear Spectral Mixture Analysis: A Case Study of Xuzhou, East China. Forests 2019, 10, 478. [Google Scholar] [CrossRef] [Green Version]
- An, C.C.; Dong, Z.; Li, H.L.; Zhao, W.T.; Chen, H.L. Assessment of Vegetation Phenological Extractions Derived From Three Satellite-Derived Vegetation Indices Based on Different Extraction Algorithms Over the Tibetan Plateau. Front. Environ. Sci. 2021, 9, 794189. [Google Scholar] [CrossRef]
- Xu, Z.Y.; Zhou, Y.; Wang, S.X.; Wang, L.T.; Li, F.; Wang, S.C.; Wang, Z.Q. A Novel Intelligent Classification Method for Urban Green Space Based on High-Resolution Remote Sensing Images. Remote Sens. 2020, 12, 3845. [Google Scholar] [CrossRef]
- Yan, J.; Chen, Y.Y.; Zheng, J.Z.; Guo, L.; Zheng, S.Q.; Zhang, R.C. Multi-Source Time Series Remote Sensing Feature Selection and Urban Forest Extraction Based on Improved Artificial Bee Colony. Remote Sens. 2022, 14, 4859. [Google Scholar] [CrossRef]
- Qian, Y.; Zhou, W.; Yu, W.; Pickett, S.T.A. Quantifying spatiotemporal pattern of urban greenspace: New insights from high resolution data. Landsc. Ecol. 2015, 30, 1165–1173. [Google Scholar] [CrossRef]
- Rioux, J.-F.; Cimon-Morin, J.; Pellerin, S.; Alard, D.; Poulin, M. How Land Cover Spatial Resolution Affects Mapping of Urban Ecosystem Service Flows. Front. Environ. Sci. 2019, 7, 93. [Google Scholar] [CrossRef] [Green Version]
- Yan, J.; Zhou, W.; Jenerette, G.D. Testing an energy exchange and microclimate cooling hypothesis for the effect of vegetation configuration on urban heat. Agric. For. Meteorol. 2019, 279, 107666. [Google Scholar] [CrossRef]
- Zhou, W.; Wang, J.; Cadenasso, M.L. Effects of the spatial configuration of trees on urban heat mitigation: A comparative study. Remote Sens. Environ. 2017, 195, 1–12. [Google Scholar] [CrossRef]
- Li, X.; Zhou, W.; Ouyang, Z. Relationship between land surface temperature and spatial pattern of greenspace: What are the effects of spatial resolution? Landsc. Urban Plan. 2013, 114, 1–8. [Google Scholar] [CrossRef]
- Wood, L.; Hooper, P.; Foster, S.; Bull, F. Public green spaces and positive mental health—Investigating the relationship between access, quantity and types of parks and mental wellbeing. Health Place 2017, 48, 63–71. [Google Scholar] [CrossRef]
- Reid, C.E.; Kubzansky, L.D.; Li, J.Y.; Shmool, J.L.; Clougherty, J.E. It’s not easy assessing greenness: A comparison of NDVI datasets and neighborhood types and their associations with self-rated health in New York City. Health Place 2018, 54, 92–101. [Google Scholar] [CrossRef] [PubMed]
- Browning, M.H.E.M.; Locke, D.H. The greenspace-academic performance link varies by remote sensing measure and urbanicity around Maryland public schools. Landsc. Urban Plan. 2020, 195, 103706. [Google Scholar] [CrossRef]
- Mozgeris, G.; Juodkiene, V.; Jonikavicius, D.; Straigyte, L.; Gadal, S.; Ouerghemmi, W. Ultra-Light Aircraft-Based Hyperspectral and Colour-Infrared Imaging to Identify Deciduous Tree Species in an Urban Environment. Remote Sens. 2018, 10, 1668. [Google Scholar] [CrossRef] [Green Version]
- Degerickx, J.; Hermy, M.; Somers, B. Mapping Functional Urban Green Types Using High Resolution Remote Sensing Data. Sustainability 2020, 12, 2144. [Google Scholar] [CrossRef] [Green Version]
- Pu, R.; Landry, S. A comparative analysis of high spatial resolution IKONOS and WorldView-2 imagery for mapping urban tree species. Remote Sens. Environ. 2012, 124, 516–533. [Google Scholar] [CrossRef]
- Jensen, R.R.; Hardin, P.J.; Hardin, A.J. Classification of urban tree species using hyperspectral imagery. Geocarto Int. 2012, 27, 443–458. [Google Scholar] [CrossRef]
- Lin, Y.; An, W.Z.; Gan, M.Y.; Shahtahmassebi, A.; Ye, Z.R.; Huang, L.Y.; Zhu, C.M.; Huang, L.; Zhang, J.; Wang, K. Spatial Grain Effects of Urban Green Space Cover Maps on Assessing Habitat Fragmentation and Connectivity. Land 2021, 10, 1065. [Google Scholar] [CrossRef]
- Chang, Q.; Liu, X.W.; Wu, J.S.; He, P. MSPA-Based Urban Green Infrastructure Planning and Management Approach for Urban Sustainability: Case Study of Longgang in China. J. Urban Plan. Dev 2015, 141, A5014006. [Google Scholar] [CrossRef]
- Weber, C.; Petropoulou, C.; Hirsch, J. Urban development in the Athens metropolitan area using remote sensing data with supervised analysis and GIS. Int. J. Remote Sens. 2005, 26, 785–796. [Google Scholar] [CrossRef]
- Freeman, C.; Buck, O. Development of an ecological mapping methodology for urban areas in New Zealand. Landsc. Urban Plan. 2003, 63, 161–173. [Google Scholar] [CrossRef]
- Liu, B.H.; Deng, Y.B.; Li, M.; Yang, J.; Liu, T. Classification Schemes and Identification Methods for Urban Functional Zone: A Review of Recent Papers. Appl. Sci. 2021, 11, 9968. [Google Scholar] [CrossRef]
- Chen, H.; Ooka, R.; Huang, H.; Tsuchiya, T. Study on mitigation measures for outdoor thermal environment on present urban blocks in Tokyo using coupled simulation. Build. Environ. 2009, 44, 2290–2299. [Google Scholar] [CrossRef]
- Agapiou, A. Vegetation Extraction Using Visible-Bands from Openly Licensed Unmanned Aerial Vehicle Imagery. Drones 2020, 4, 27. [Google Scholar] [CrossRef]
- Li, F.; Chen, W.; Zeng, Y.; Zhao, Q.J.; Wu, B.F. Improving Estimates of Grassland Fractional Vegetation Cover Based on a Pixel Dichotomy Model: A Case Study in Inner Mongolia, China. Remote Sens. 2014, 6, 4705–4722. [Google Scholar] [CrossRef] [Green Version]
- Gao, Y.; Liu, L.Y.; Zhang, X.; Chen, X.D.; Mi, J.; Xie, S. Consistency Analysis and Accuracy Assessment of Three Global 30-m Land-Cover Products over the European Union using the LUCAS Dataset. Remote Sens. 2020, 12, 3479. [Google Scholar] [CrossRef]
- Turner, T. Urban design: Green dimensions—Moughtin, C. Cities 1997, 14, 244–245. [Google Scholar] [CrossRef]
- Semeraro, T.; Scarano, A.; Buccolieri, R.; Santino, A.; Aarrevaara, E. Planning of Urban Green Spaces: An Ecological Perspective on Human Benefits. Land 2021, 10, 105. [Google Scholar] [CrossRef]
- Li, Y.Y.; Ren, B.T.; Chen, Y.S.; Huang, L.C.; Sun, C.G. Multiscale spatiotemporal dynamics analysis of urban green space: Implications for green space planning in the rapid urbanizing Hefei City, China. Front. Ecol. Evol. 2022, 10, 998111. [Google Scholar] [CrossRef]
- Xu, Y.Q.; Wang, L.; Fu, C.; Kosmyna, T. A fishnet-constrained land use mix index derived from remotely sensed data. Ann. GIS 2017, 23, 303–313. [Google Scholar] [CrossRef] [Green Version]
- Joshi, N.; Baumann, M.; Ehammer, A.; Fensholt, R.; Grogan, K.; Hostert, P.; Jepsen, M.R.; Kuemmerle, T.; Meyfroidt, P.; Mitchard, E.T.A.; et al. A Review of the Application of Optical and Radar Remote Sensing Data Fusion to Land Use Mapping and Monitoring. Remote Sens. 2016, 8, 70. [Google Scholar] [CrossRef] [Green Version]
- Baker, F.; Smith, C.L.; Cavan, G. A Combined Approach to Classifying Land Surface Cover of Urban Domestic Gardens Using Citizen Science Data and High Resolution Image Analysis. Remote Sens. 2018, 10, 537. [Google Scholar] [CrossRef] [Green Version]
- Li, X.J.; Li, W.D.; Meng, Q.Y.; Zhang, C.R.; Jancso, T.; Wu, K.L. Modelling building proximity to greenery in a three-dimensional perspective using multi-source remotely sensed data. J. Spat. Sci. 2016, 61, 389–403. [Google Scholar] [CrossRef]
- Yuan, B.; Zhou, L.; Dang, X.W.; Sun, D.Q.; Hu, F.N.; Mu, H.W. Separate and combined effects of 3D building features and urban green space on land surface temperature. J. Environ. Manag. 2021, 295, 113116. [Google Scholar] [CrossRef]
- Zhu, S.J.; Yang, Y.; Yan, Y.; Causone, F.; Jin, X.; Zhou, X.; Shi, X. An evidence-based framework for designing urban green infrastructure morphology to reduce urban building energy use in a hot-humid climate. Build. Environ. 2022, 219, 109181. [Google Scholar] [CrossRef]
Data Source | Date of Images | Resolution | Data Type |
---|---|---|---|
DJI M300 RTK (DJI) | 2022-8-3~5 | 0.1 m | Visible spectral, including bands of Red, Green and Blue |
Gaofen-1 (GF1) | 2022-6-15 | 2 m | Multispectral, including bands of Red, Green, Blue and Near infrared |
Sentient-2A (S2A) | 2022-8-14 | 10 m | The same as GF1 |
Code | Land Use Types | Number of Blocks | Area Ratio |
---|---|---|---|
A | Residential land | 181 | 31.38% |
B | Administration and public services | 112 | 11.65% |
C | Commercial and business facilities | 109 | 7.85% |
D | Industrial land | 4 | 0.83% |
E | Logistics and warehouse | 4 | 0.38% |
F | Road, street and transportation | 154 | 18.29% |
G | Municipal utilities | 23 | 1.94% |
H | Park, green space and square | 82 | 15.51% |
I | Other types, including land that are abandoned and under construction | 70 | 6.74% |
J | Water | 37 | 5.62% |
Name of the Grades | Abbreviation | GR |
---|---|---|
Low GR | L_GR | 0–20% |
Sub-low GR | SL_GR | 20–40% |
Medium GR | M_GR | 40–60% |
Sub-high GR | SH_GR | 60–80% |
High GR | H_GR | 80–100% |
Influence Factors | Calculation Methods |
---|---|
L_Area | Area of the land unit |
L_SI | Shape index of the land unit, L_SI = 0.25P/, in which P is the perimeter of the land unit, and A is the area of the land unit |
G_PD | Patch density of the green space inside each land unit, G_PD = Ng/A, in which Ng is the number of the green space patches and A is the area of the land unit |
G_AI | Aggregation index of the green space inside each land unit, G_AI = (gii /max → gii), gii is the number of like adjacencies involving the corresponding class, max → gii is the maximum possible number of like adjacencies involving the corresponding class. |
Data Source | Mean GR of Each Land Use Type | Pearson Chi-Square | p Value | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
A | B | C | D | E | F | G | H | I | J | |||
DJI | 0.22 | 0.27 | 0.16 | 0.29 | 0.20 | 0.22 | 0.22 | 0.63 | 0.14 | 0.24 | 213.712 | <0.001 |
GF1 | 0.10 | 0.22 | 0.09 | 0.22 | 0.04 | 0.14 | 0.16 | 0.63 | 0.08 | 0.54 | 488.558 | <0.001 |
S2A | 0.14 | 0.22 | 0.11 | 0.23 | 0.04 | 0.16 | 0.17 | 0.58 | 0.09 | 0.49 | 446.377 | <0.001 |
AREA ≤ 1 ha | 1 ha < AREA ≤ 4 ha | 4 ha < AREA ≤ 9 ha | AREA > 9 ha | |||||
---|---|---|---|---|---|---|---|---|
D_GF1_ DJI | D_GF1_ S2A | D_GF1_ DJI | D_GF1_ S2A | D_GF1_ DJI | D_GF1_ S2A | D_GF1_ DJI | D_GF1_ S2A | |
L_ AREA | −0.124 ** | −0.041 | −0.046 | −0.012 | 0.181 | 0.231 | 0.304 | −0.143. |
L_SI | 0.105 * | 0.020 | 0.254 ** | 0.019 | 0.163 | −0.131 | 0.250 | 0.128 |
G_PD | 0.177 ** | 0.231 ** | 0.182 * | 0.099 | 0.056 | 0.113 | −0.241 | 0.445 * |
G_AI | 0.288 ** | 0.137 ** | 0.053 | 0.113 | 0.247 | 0.105 | −0.542 * | −0.230 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wei, X.; Hu, M.; Wang, X.-J. The Differences and Influence Factors in Extracting Urban Green Space from Various Resolutions of Data: The Perspective of Blocks. Remote Sens. 2023, 15, 1261. https://doi.org/10.3390/rs15051261
Wei X, Hu M, Wang X-J. The Differences and Influence Factors in Extracting Urban Green Space from Various Resolutions of Data: The Perspective of Blocks. Remote Sensing. 2023; 15(5):1261. https://doi.org/10.3390/rs15051261
Chicago/Turabian StyleWei, Xiao, Mengjun Hu, and Xiao-Jun Wang. 2023. "The Differences and Influence Factors in Extracting Urban Green Space from Various Resolutions of Data: The Perspective of Blocks" Remote Sensing 15, no. 5: 1261. https://doi.org/10.3390/rs15051261
APA StyleWei, X., Hu, M., & Wang, X. -J. (2023). The Differences and Influence Factors in Extracting Urban Green Space from Various Resolutions of Data: The Perspective of Blocks. Remote Sensing, 15(5), 1261. https://doi.org/10.3390/rs15051261