Atmospheric Boundary Layer Height: Inter-Comparison of Different Estimation Approaches Using the Raman Lidar as Benchmark
Abstract
:1. Introduction
2. Dataset and Methodology
2.1. Raman Lidar BASIL
2.2. ABLH Estimates Obtained from the Elastic Backscatter, Pure-Rotational, and Roto-Vibrational Raman Lidar Signal Gradients
2.3. MIPA-WCT Techniques
- (1)
- A vertical resolution adjustment step to reach a (target) working spatial resolution (around 20 m).
- (2)
- A pre-processing based on mathematical morphology.
- (3)
- An edge detector i.e., a wavelet covariance transform (WCT).
- (4)
- A post-processing algorithm, which, by relying on both mathematical morphology and object-based analysis, allows us to obtain the result. It is worth noting that MIPA is a blind approach and, thus, does not exploit any prior information. Specific details about the four blocks of the MIPA framework are provided below:
- The vertical spatial resolution adjustment block starts from a matrix I: E ⊆ Z2 → V ⊆ Z, which is the daily sequence of the RCS532(z) profiles forming the columns of . The down-sampling with a factor , aimed to reduce the bins’ spatial resolution, is implemented by a low-pass filter (i.e., a moving-average filter) along each column of plus decimation with a factor . This latter is a tuning parameter selected to have a spatial resolution not finer than 20 m (implying that for data with a spatial resolution coarser than 20 m, this step is skipped). The outcome is denoted as .
- A low-pass filter based on half-gradients is used to pre-process . A line-structuring element in the horizontal direction (i.e., the time direction) is exploited, thus smoothing the lidar image along the horizontal axis (where the dynamic of the ABL is expected to be quite slow), reducing noise, and preserving vertical edges. The result of the preprocessing of is denoted as .
- Every edge detector can generally be exploited to extract a first estimation of the ABLH starting from (e.g., the WCT, Canny’s edge detector, or a gradient-based approach). In this work, we make use of a WCT to obtain a first estimate of the edge map, . The detected edges in are indicated with 1, while the rest of the map (background) is labeled as 0. All bins labeled as 1 in the edge map are potential candidates to represent the ABLH.
- The edge map, , is further analyzed through post-processing procedures. More specifically, morphological filters are exploited first to remove unrealistic edges (i.e., edges that are too fast with respect to the dynamics of the ABL). Hence, a series of directional low-pass morphological filters [46] are applied, varying the related angles and combining the outputs with a maximum operator. Finally, object-based processing is applied to the result obtained by the application of the morphological filtering. The main idea behind this latter approach is the use of the connectivity (i.e., the way in which the bins labeled as “edge”, which assume value 1, are spatially-related to their neighbors) in the edge map to form objects. An analysis of the spatial variability of these objects is then performed. Indeed, if the absolute Euclidean distance between the means of the heights for each extracted object and the related means calculated on the objects in its neighborhood exceeds a predefined threshold value, this object is removed from the solution. The estimated ABLH, denoted as , is obtained by linearly interpolating the remaining objects in the edge map (for further details, see Algorithm 1).
Algorithm 1 The steps of the MIPA framework |
1 Vertical spatial resolution adjustment of I by a factor to obtain ID |
2 Pre-process ID by low-pass filtering using half-gradients to obtain Ipre |
3 Detection of the edges of Ipre using the WCT to obtain the edge map E |
4 Post-process E using directional morphological filters and an object-based analysis to obtain Eout |
2.4. WIND Profiler Radar (WPR)
2.5. Temperature Gradient Method
3. Results
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Stull, R.B. An introduction to boundary layer meteorology (Volume 13). In Springer Science & Business Media; Springer: Berlin/Heidelberg, Germany, 1998; Volume 13. [Google Scholar]
- Melfi, S.H.; Spinhirne, J.D.; Chou, S.H.; Palm, S.P. Lidar observations of vertically organized convection in the planetary boundary layer over the ocean. J. Appl. Meteorol. Climatol. 1985, 24, 806–821. [Google Scholar] [CrossRef]
- Flamant, C.; Pelon, J.; Flamant, P.H.; Durand, P. Lidar determination of the entrainment zone thickness at the top of the unstable marine atmospheric boundary layer. Bound.-Layer Meteorol. 1997, 83, 247–284. [Google Scholar] [CrossRef]
- Di Girolamo, P.; Ambrico, P.F.; Amodeo, A.; Boselli, A.; Pappalardo, G.; Spinelli, N. Aerosol observations by lidar in the nocturnal boundary layer. Appl. Opt. 1997, 38, 4585–4595. [Google Scholar] [CrossRef] [PubMed]
- Summa, D.; Di Girolamo, P.; Flamant, C.; De Rosa, B.; Cacciani, M.; Stelitano, D. Water vapour inter-comparison effort in the framework of the hydrological cycle in the Mediterranean experiment—Special observation period (hymex-sop1). EPJ Web Conf. 2018, 176, 08016. [Google Scholar] [CrossRef] [Green Version]
- Russell, P.B.; Uthe, E.E.; Ludwig, F.L.; Shaw, N.A. A comparison of atmospheric structure as observed with monostatic acoustic sounder and lidar techniques. J. Geophys. Res. 1974, 79, 5555–5566. [Google Scholar] [CrossRef]
- Menut, L.; Flamant, C.; Pelon, J.; Flamant, P.H. Urban boundary-layer height determination from lidar measurements over the Paris area. Appl. Opt. 1999, 38, 945–954. [Google Scholar] [CrossRef]
- Bösenberg, J.; Linné, H. Laser remote sensing of the planetary boundary layer. Meteorol. Z. 2002, 11, 233–240. [Google Scholar] [CrossRef]
- Frioud, M.; Mitev, V.; Matthey, R.; Haoeberli, C.; Richner, H.; Werner, R.; Vogt, S. Backscatter lidar observation of the aerosol stratification over Rhine Valley during a heat wave in September 1999. In Proceedings of the Remote Sensing of Clouds and the Atmosphere VII, Honolulu, HI, USA, 24–26 September 2018; International Society for Optics and Photonics: Bellingham, DC, USA, 2003; Volume 4882, pp. 420–431. [Google Scholar]
- Matthias, V.; Balis, D.; Bösenberg, J.; Eixmann, R.; Iarlori, M.; Komguem, L.; Wang, X. Vertical aerosol distribution over Europe: Statistical analysis of Raman lidar data from 10 European Aerosol Research Lidar Network (EARLINET) stations. J. Geophys. Res. Atmos. 2004, 109, 1–5. [Google Scholar] [CrossRef]
- Pal, S.; Behrendt, A.; Wulfmeyer, V. Elastic-backscatter-lidar-based characterization of the convective boundary layer and investigation of related statistics. Ann. Geophys. 2010, 28, 825–847. [Google Scholar] [CrossRef] [Green Version]
- Hayden, K.L.; Anlauf, K.G.; Hoff, R.M.; Strapp, J.W.; Bottenheim, J.W.; Wiebe, H.A.; McKendry, I.G. The vertical chemical and meteorological structure of the boundary layer in the Lower Fraser Valley during Pacific’93. Atmos. Environ. 1997, 31, 2089–2105. [Google Scholar] [CrossRef]
- Steyn, D.G.; Baldi, M.; Hoff, R.M. The detection of mixed layer depth and entrainment zone thickness from lidar backscatter profiles. J. Atmos. Ocean. Technol. 1999, 16, 953–959. [Google Scholar] [CrossRef]
- Hoff, R.M.; Harwood, M.; Sheppard, A.; Froude, F.; Martin, J.B.; Strapp, W. Use of airborne lidar to determine aerosol sources and movement in the Lower Fraser Valley (LFV), BC. Atmos. Environ. 1997, 31, 2123–2134. [Google Scholar] [CrossRef]
- Hägeli, P.; Steyn, D.G.; Strawbridge, K.B. Spatial and temporal variability of mixed-layer depth and entrainment zone thickness. Bound. Layer Meteorol. 2000, 97, 47–71. [Google Scholar] [CrossRef]
- Cohn, S.A.; Angevine, W.M. Boundary layer height and entrainment zone thickness measured by lidars and wind-profiling radars. J. Appl. Meteorol. 2000, 39, 1233–1247. [Google Scholar] [CrossRef]
- Brooks, I.M. Finding boundary layer top: Application of a wavelet covariance transform to lidar backscatter profiles. J. Atmos. Ocean. Technol. 2003, 20, 1092–1105. [Google Scholar] [CrossRef]
- Morille, Y.; Haeffelin, M.; Drobinski, P.; Pelon, J. STRAT: An automated algorithm to retrieve the vertical structure of the atmosphere from single channel lidar data. J. Atmos. Ocean. Technol. 2007, 24, 761–775. [Google Scholar] [CrossRef] [Green Version]
- Di Girolamo, P.; De Rosa, B.; Summa, D.; Franco, N.; Veselovskii, I. Measurements of aerosol size and microphysical properties: A comparison between Raman lidar and airborne sensors. J. Geophys. Res. Atmos. 2022, 127, e2021JD036086. [Google Scholar] [CrossRef]
- Behrendt, A.; Pal, S.; Aoshima, F.; Bender, M.; Blyth, A.; Corsmeier, U.; Wulfmeyer, V. Observation of convection initiation processes with a suite of state-of-the-art research instruments during COPS IOP 8b. Q. J. R. Meteorol. Soc. 2011, 137, 81–100. [Google Scholar] [CrossRef] [Green Version]
- Haeffelin, M.; Angelini, F.; Morille, Y.; Martucci, G.; Frey, S.; Gobbi, G.P.; Feist, D.G. Evaluation of mixing-height retrievals from automatic profiling lidars and ceilometers in view of future integrated networks in Europe. Bound. Layer Meteorol. 2012, 143, 49–75. [Google Scholar] [CrossRef]
- Dang, R.; Yang, Y.; Li, H.; Hu, X.-M.; Wang, Z.; Huang, Z.; Zhou, T.; Zhang, T. Atmosphere Boundary Layer Height (ABLH) Determination under Multiple-Layer Conditions Using Micro-Pulse Lidar. Remote Sens. 2019, 11, 263. [Google Scholar] [CrossRef] [Green Version]
- Liu, Z.; Chang, J.; Li, H.; Chen, S.; Dai, T. Estimating Boundary Layer Height from LiDAR Dataunder Complex Atmospheric Conditions Using Machine Learning. Remote Sens. 2022, 14, 418. [Google Scholar] [CrossRef]
- Dang, R.; Yang, Y.; Hu, X.-M.; Wang, Z.; Zhang, S.A. Review of Techniques for Diagnosing the Atmospheric Boundary Layer Height (ABLH) Using Aerosol Lidar Data. Remote Sens. 2019, 11, 1590. [Google Scholar] [CrossRef] [Green Version]
- Joffre, S.M.; Kangas, M.; Heikinheimo, M.; Kitaigorodskii, S.A. Variability of the stable and unstable atmospheric boundary layer height and its scales over a boreal forest. Bound. Lay. Meteorol. 2001, 99, 429–450. [Google Scholar] [CrossRef]
- Bianco, L.; Wilczak, J.M. Convective boundary layer depth: Improved measurement by Doppler radar wind profiler using fuzzy logic methods. J. Atmos. Ocean. Technol. 2002, 19, 1745–1758. [Google Scholar] [CrossRef]
- Whiteman, D.N.; Melfi, S.H.; Ferrare, R.A. Raman lidar system for the measurement of water vapor and aerosols in the Earth’s atmosphere. Appl. Opt. 1992, 31, 3068–3082. [Google Scholar] [CrossRef] [PubMed]
- Di Girolamo, P.; Flamant, C.; Cacciani, M.; Richard, E.; Ducrocq, V.; Summa, D.; Saïd, F. Observation of low-level wind reversals in the Gulf of Lion area and their impact on the water vapour variability. Q. J. R. Meteorol. Soc. 2016, 142, 153–172. [Google Scholar] [CrossRef]
- Di Girolamo, P.; Scoccione, A.; Cacciani, M.; Summa, D.; Rosa, B.D.; Schween, J.H. Clear-air lidar dark band. Atmos. Chem. Phys. 2018, 18, 4885–4896. [Google Scholar] [CrossRef] [Green Version]
- Behrendt, A.; Reichardt, J. Atmospheric temperature profiling in the presence of clouds with a pure rotational Raman lidar by use of an interference-filter-based polychromator. Appl. Opt. 2000, 39, 1372–1378. [Google Scholar] [CrossRef]
- Di Girolamo, P.; Marchese, R.; Whiteman, D.N.; Demoz, B.B. Rotational Raman Lidar measurements of atmospheric temperature in the UV. Geophys. Res. Lett. 2004, 31, 1–5. [Google Scholar] [CrossRef]
- Di Girolamo, P.; Summa, D.; Ferretti, R. Multiparameter Raman lidar measurements for the characterization of a dry stratospheric intrusion event. J. Atmos. Ocean. Technol. 2009, 26, 1742–1762. [Google Scholar] [CrossRef]
- Di Girolamo, P.D.; Summa, D.; Lin, R.F.; Maestri, T.; Rizzi, R.; Masiello, G. UV Raman lidar measurements of relative humidity for the characterization of cirrus cloud microphysical properties. Atmos. Chem. Phys. 2009, 9, 8799–8811. [Google Scholar] [CrossRef] [Green Version]
- Di Girolamo, P.D.; Cacciani, M.; Summa, D.; Scoccione, A.; Rosa, B.D.; Behrendt, A.; Wulfmeyer, V. Characterisation of boundary layer turbulent processes by the Raman lidar BASIL in the frame of HD (CP) 2 Observational Prototype Experiment. Atmos. Chem. Phys. 2017, 17, 745–767. [Google Scholar] [CrossRef] [Green Version]
- De Rosa, B.D.; Girolamo, P.D.; Summa, D. Temperature and water vapour measurements in the framework of the Network for the Detection of Atmospheric Composition Change (NDACC). Atmos. Meas. Tech. 2020, 13, 405–427. [Google Scholar] [CrossRef] [Green Version]
- Di Girolamo, P.; Summa, D.; Bhawar, R.; Di Iorio, T.; Cacciani, M.; Veselovskii, I.; Kolgotin, A. Raman lidar observations of a Saharan dust outbreak event: Characterization of the dust optical properties and determination of particle size and microphysical parameters. Atmos. Environ. 2012, 50, 66–78. [Google Scholar] [CrossRef]
- Di Girolamo, P.; Summa, D.; Cacciani, M.; Norton, E.G.; Peters, G.; Dufournet, Y. Lidar and radar measurements of the melting layer: Observations of dark and bright band phenomena. Atmos. Chem. Phys. 2012, 12, 4143–4157. [Google Scholar] [CrossRef] [Green Version]
- Di Girolamo, P.; De Rosa, B.; Flamant, C.; Summa, D.; Bousquet, O.; Chasette, P.; Totems, J.; Cacciani, M. Water vapor mixing ratio and temperature inter-comparison results in framework of the Hydrological Cycle in the Mediterranean Experiment Special Observation Period 1. Bull. Atmos. Sci. Technol. 2020, 1, 113–153. [Google Scholar] [CrossRef]
- Martucci, G.; Matthey, R.; Mitev, V.; Richner, H. Frequency of boundary-layer-top fluctuations in convective and stable conditions using laser remote sensing. Bound. Layer Meteorol. 2010, 135, 313–331. [Google Scholar] [CrossRef]
- Summa, D.; Di Girolamo, P.; Stelitano, D.; Cacciani, M. Characterization of the planetary boundary layer height and structure by Raman lidar: Comparison of different approaches. Atmos. Meas. Tech. 2013, 6, 3515–3525. [Google Scholar] [CrossRef] [Green Version]
- Summa, D.; Madonna, F.; Franco, N.; De Rosa, B.; Di Girolamo, P. Inter-comparison of atmospheric boundary layer (ABL) height estimates from different profiling sensors and models in the framework of HyMeX-SOP1. Atmos. Meas. Tech. 2022, 15, 4153–4170. [Google Scholar] [CrossRef]
- Liu, F.; Wang, R.; Yi, F.; Huang, W.; Ban, C.; Pan, W.; Wang, Z.; Hu, H. Pure rotational lidar for full-day troposphere temperature measurement at Zhongshan Station (69.37°S, 76.37°E), Antarctica. Optics Express. 2021, 29, 10059–10076. [Google Scholar] [CrossRef] [PubMed]
- Althausen, D.; Müller, D.; Ansmann, A.; Wandinger, U.; Hube, H.; Clauder, E.; Zörner, S. Scanning 6-wavelength 11-channel aerosol lidar. J. Atmos. Ocean. Technol. 2000, 17, 1469–1482. [Google Scholar] [CrossRef]
- Whiteman, D.N.; Demoz, B.; Rush, K.; Schwemmer, G.; Gentry, B.; Di Girolamo, P.; Van Hove, T. Raman lidar measurements during the International H2O Project. Part I: Instrumentation and analysis techniques. J. Atmos. Ocean. Technol. 2006, 23, 157–169. [Google Scholar] [CrossRef] [Green Version]
- Vivone, G.; D’Amico, G.; Summa, D.; Lolli, S.; Amodeo, A.; Bortoli, D.; Pappalardo, G. Atmospheric boundary layer height estimation from aerosol lidar: A new approach based on morphological image processing techniques. Atmos. Chem. Phys. 2021, 21, 4249–4265. [Google Scholar] [CrossRef]
- Soille, P. Morphological Image Analysis: Principles and Applications; Springer: Berlin/Heidelberg, Germany, 2003. [Google Scholar]
- Gage, K.S.; Balsley, B.B.; Ecklund, W.L.; Woodman, R.F.; Avery, S.K. Wind-profiling Doppler radars for tropical atmospheric research. Eos Trans. AGU 1990, 71, 1851–1854. [Google Scholar] [CrossRef]
- Saïd, F.; Campistron, B.; Delbarre, H.; Canut, G.; Doerenbecher, A.; Durand, P.; Legain, D. Offshore winds obtained from a network of wind-profiler radars during HyMeX. Q. J. R. Meteorol. Soc. 2016, 142, 23–42. [Google Scholar] [CrossRef]
- Madonna, F.; Summa, D.; Di Girolamo, P.D.; Marra, F.; Wang, Y.; Rosoldi, M. Assessment of Trends and Uncertainties in the Atmospheric Boundary Layer Height Estimated Using Radiosounding Observations over Europe. Atmosphere 2021, 12, 301. [Google Scholar] [CrossRef]
- Dirksen, R.J.; Sommer, M.; Immler, F.J.; Hurst, D.F.; Kivi, R.; Vömel, H. Reference quality upper-air measurements: GRUAN data processing for the Vaisala RS92 radiosonde. Atmos. Meas. Tech. 2014, 7, 4463–4490. [Google Scholar] [CrossRef] [Green Version]
- Ducrocq, V.; Davolio, S.; Ferretti, R.; Flamant, C.; Santaner, V.H.; Kalthoff, N.; Richardh, E.; Heini Wernli, H. Introduction to the Hymex special issue on “Advanced in understanding and forecasting of heavy precipitation in the Mediterranean thought the Hymex SOP1 field campaign”. Q. J. R. Meteorol. Soc. 2016, 142 (Suppl. 1), 1–6. [Google Scholar] [CrossRef] [Green Version]
- De Rosa, B.; Amato, F.; Amodeo, A.; D’Amico, G.; Dema, C.; Falconieri, A.; Mona, L. Characterization of Extremely Fresh Biomass Burning Aerosol by Means of Lidar Observations. Remote Sens. 2022, 14, 4984. [Google Scholar] [CrossRef]
- Flamant, C.; Chazette, P.; Caumont, O.; Di Girolamo, P.; Behrendt, A.; Sicard, M.; Wulfmeyer, V. A network of water vapor Raman lidars for improving heavy precipitation forecasting in southern France: Introducing the WaLiNeAs initiative. Bull. Atmos. Sci. Technol. 2021, 2, 10. [Google Scholar] [CrossRef]
- Chazette, P.; Flamant, C.; Raut, J.C.; Totems, J.; Shang, X. Tropical moisture enriched storm tracks over the Mediterranean and their link with intense rainfall in the Cevennes-Vivarais area during HyMeX. Q. J. R. Meteorol. Soc. 2016, 142, 320–334. [Google Scholar] [CrossRef]
Instruments | Techniques Details | Approaches |
---|---|---|
Radiosondes RS | Pros: Input: Potential temperature profile obtained by measured atmospheric pressure and temperature. High accuracy and high spatial resolution of the data. Launch time was generally every 6 h (starting from 16 October at 00:00) on the 16–21 October dataset. Cons: Low time resolution; expensive. | Gradient method applied on These values are used as reference |
Lidar | Pros: High spatial and temporal resolution of pure rotational Raman profiles Cons: In some cases, low signal-to-noise ratio (SNR) may reduce sensitivity; require smoothing; no measurement with rain. | Rotational (Rot) Derivative of Ratio [] |
Pros: High spatial and temporal resolution of roto-vibrational Raman profiles (water vapour, nitrogen) Cons: In some cases, low signal-to-noise ratio (SNR) may reduce sensitivity; require smoothing; no measurement with rain. Not accurate in dry conditions. | Water Vapor (WV) Derivative of Ratio [] | |
Pros: High resolution time series (in both space and time) of elastic lidar RCS 532 nm Cons: No measurement with rain. | MIPA ABLH determination by using WCT edge detection | |
WPR | Pros: High temporal sampling, all weather condition measurements Cons: UHF signals sensitivity to birds and clutter, reducing the detectability of atmospheric signals on one or more of the off-vertical beams; multiple peaks in SNR with a consequent attribution problem; precipitations can influence the accuracy of wind measurements depending on intensity and duration of precipitation. | UHF band with a primary frequency at 1.274 GHz ABLH determination relies on the identification of a distinctive strong peak in the WPR time-height reflectivity plot |
Approaches | MIPA (%) | Rot (%) | WPR (%) | WV(%) | Mean of Approaches (%) | |
---|---|---|---|---|---|---|
Average | −2.28 | −7.99 | −4.57 | −4.60 | −4.79 | |
Max | 39.10 | 23.08 | 21.29 | 30.23 | 13.74 | |
Min | −38.06 | −38.60 | −31.94 | −38.09 | −25.57 | |
σ | 15.98 | 14.05 | 12.73 | 12.29 | 9.66 | |
Linear Fitting () | ||||||
A | 0.87 | 0.90 | 0.85 | 0.90 | 0.89 | |
s(A) | 0.036 | 0.032 | 0.04 | 0.032 | 0.024 | |
R2 | 0.94 | 0.95 | 0.92 | 0.95 | 0.97 | |
Days | Weather Conditions | |||||
16–17 Oct | −11.24 | −6.70 | −8.06 | −7.24 | −4.31 | Unstable |
18 Oct | −7.86 | −8.09 | −7.76 | −3.71 | −6.61 | Stable |
19 Oct | 4.08 | 3.70 | −4.55 | 2.30 | −1.35 | Stable |
20–21 Oct | 12.89 | 7.72 | −9.98 | 4.52 | 1.42 | Unstable |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Summa, D.; Vivone, G.; Franco, N.; D’Amico, G.; De Rosa, B.; Di Girolamo, P. Atmospheric Boundary Layer Height: Inter-Comparison of Different Estimation Approaches Using the Raman Lidar as Benchmark. Remote Sens. 2023, 15, 1381. https://doi.org/10.3390/rs15051381
Summa D, Vivone G, Franco N, D’Amico G, De Rosa B, Di Girolamo P. Atmospheric Boundary Layer Height: Inter-Comparison of Different Estimation Approaches Using the Raman Lidar as Benchmark. Remote Sensing. 2023; 15(5):1381. https://doi.org/10.3390/rs15051381
Chicago/Turabian StyleSumma, Donato, Gemine Vivone, Noemi Franco, Giuseppe D’Amico, Benedetto De Rosa, and Paolo Di Girolamo. 2023. "Atmospheric Boundary Layer Height: Inter-Comparison of Different Estimation Approaches Using the Raman Lidar as Benchmark" Remote Sensing 15, no. 5: 1381. https://doi.org/10.3390/rs15051381
APA StyleSumma, D., Vivone, G., Franco, N., D’Amico, G., De Rosa, B., & Di Girolamo, P. (2023). Atmospheric Boundary Layer Height: Inter-Comparison of Different Estimation Approaches Using the Raman Lidar as Benchmark. Remote Sensing, 15(5), 1381. https://doi.org/10.3390/rs15051381