Blind Hyperspectral Unmixing with Enhanced 2DTV Regularization Term
Abstract
:1. Introduction
2. Methodology
2.1. Related Work
2.2. E-2DTV Regularization Term
Algorithm 1: E-gTVMBO |
Input: The € Y; parameter , . Output: X and A. |
Initialize: Initial , , , |
1: While not converge do |
2: Update , by Equations (12) and (14), respectively. |
3: Update C, X, A by Equations (15)–(17), respectively. |
4: Update B by Equation (19). |
5: Check the convergence conditions |
6: End while |
3. Experiments
3.1. USGS Library Dataset
3.2. Urban Dataset
3.3. Samson Dataset
4. Discussion
4.1. Performance of E-gtvMBO for Parameter
4.2. Performance of E-gtvMBO for Different SNR Value
4.3. Performance of E-gtvMBO for Running Time
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Niresi, K.F.; Chi, C. Unsupervised hyperspectral denoising based on deep image prior and least favorable distribution. IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 2022, 15, 5967–5983. [Google Scholar] [CrossRef]
- Zhang, G.; Mei, S.; Xie, B.; Ma, M.; Zhang, Y.; Feng, Y.; Du, Q. Spectral Variability Augmented Sparse Unmixing of Hyperspectral Images. IEEE Trans. Geosci. Remote Sens. 2022, 60, 1–13. [Google Scholar] [CrossRef]
- Wang, P.; Wang, L.; Leung, H.; Zhang, G. Super-Resolution Mapping Based on Spatial–Spectral Correlation for Spectral Imagery. IEEE Trans. Geosci. Remote Sens. 2021, 59, 2256–2268. [Google Scholar] [CrossRef]
- Bauer, S. Hyperspectral Image Unmixing Incorporating Adjacency Information; KIT Scientific Publishing: Karlsruhe, Germany, 2018; Volume 18. [Google Scholar]
- Iordache, M.-D.; Bioucas-Dias, J.M.; Plaza, A. Sparse Unmixing of Hyperspectral Data. IEEE Trans. Geosci. Remote Sens. 2011, 49, 2014–2039. [Google Scholar] [CrossRef] [Green Version]
- Wang, P.; Yao, H.; Li, C.; Zhang, G.; Leung, H. Multiresolution Analysis Based on Dual-Scale Regression for Pansharpening. IEEE Trans. Geosci. Remote Sens. 2022, 60, 1–19. [Google Scholar] [CrossRef]
- Zhao, X.L.; Wang, F.; Huang, T.Z.; Ng, M.K.; Plemmons, R.J. Deblurring and sparse unmixing for hyperspectral images. IEEE Trans. Geosci. Remote Sens. 2013, 51, 4045–4058. [Google Scholar] [CrossRef]
- Cruz-Guerrero, I.A.; Campos-Delgado, D.U.; Mejía-Rodríguez, A.R. Extended Blind End-member and Abundance Estimation with Spatial Total Variation for Hyperspectral Imaging. IEEE Eng. Med. Biol. Mag. 2021, 2021, 1957–1960. [Google Scholar]
- Song, H.; Wu, X.; Zou, A.; Liu, Y.; Zou, Y. Weighted Total Variation Regularized Blind Unmixing for Hyperspectral Image. IEEE Geosci. Remote Sens. Lett. 2021, 19, 1–5. [Google Scholar] [CrossRef]
- Drumetz, L.; Henrot, S.; Veganzones, M.A.; Chanussot, J.; Jutten, C. Blind hyperspectral unmixing using an extended linear mixing model to address spectral variability. IEEE Trans. Image Process. 2015, 16, 1–4. [Google Scholar]
- Heinz, D.C. Fully constrained least squares linear spectral mixture analysis method for material quantification in hyperspectral imagery. IEEE Trans. Geosci. Remote Sens. 2001, 39, 529–545. [Google Scholar] [CrossRef] [Green Version]
- Drumetz, L.; Meyer, T.R.; Chanussot, J.; Bertozzi, A.L.; Jutten, C. Hyperspectral image unmixing with endmember bundles and group sparsity inducing mixed norms. IEEE Trans. Image Process. 2019, 28, 3435–3450. [Google Scholar] [CrossRef] [PubMed]
- Ekanayake, E.M.M.B.; Weerasooriya, H.M.H.K.; Ranasinghe, D.Y.L.; Herath, S.; Rathnayake, B.; Godaliyadda, G.M.R.I.; Ekanayake, M.P.B.; Herath, H.M.V.R. Constrained nonnegative matrix factorization for blind hyperspectral unmixing incorporating endmember independence. IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 2021, 14, 11853–11869. [Google Scholar] [CrossRef]
- Peng, J.; Sun, W.; Li, H.C.; Li, W.; Meng, X.; Ge, C.; Du, Q. Low-rank and sparse representation for hyperspectral image processing: A review. IEEE Geosci. Remote Sens. Mag. 2022, 10, 10–43. [Google Scholar] [CrossRef]
- Peng, J.; Zhou, Y.; Sun, W.; Du, Q.; Xia, L. Self-Paced Nonnegative Matrix Factorization for Hyperspectral Unmixing. IEEE Trans. Geosci. Remote Sens. 2021, 59, 1501–1515. [Google Scholar] [CrossRef]
- Zhang, S.; Li, J.; Liu, K.; Deng, C.; Liu, L.; Plaza, A. Hyperspectral Unmixing Based on Local Collaborative Sparse Regression. IEEE Geosci. Remote Sens. Lett. 2016, 13, 631–635. [Google Scholar] [CrossRef]
- Huang, J.; Huang, T.-Z.; Deng, L.-J.; Zhao, X.-L. Joint-Sparse-Blocks and Low-Rank Representation for Hyperspectral Unmixing. IEEE Trans. Geosci. Remote Sens. 2019, 57, 2419–2438. [Google Scholar] [CrossRef]
- Han, Z.; Hong, D.; Gao, L.; Roy, S.K.; Zhang, B.; Chanussot, J. Reinforcement Learning for Neural Architecture Search in Hyperspectral Unmixing. IEEE. Geosci. Remote Sens. Lett. 2022, 19, 1–5. [Google Scholar] [CrossRef]
- Xiong, F.; Zhou, J.; Tao, S.; Lu, J.; Qian, Y. SNMF-Net: Learning a Deep Alternating Neural Network for Hyperspectral Unmixing. IEEE Trans. Geosci. Remote Sens. 2022, 60, 1–16. [Google Scholar] [CrossRef]
- Qian, Y.; Xiong, F.; Qian, Q.; Zhou, J. Spectral Mixture Model Inspired Network Architectures for Hyperspectral Unmixing. IEEE Trans. Geosci. Remote Sens. 2020, 58, 7418–7434. [Google Scholar] [CrossRef]
- He, W.; Zhang, H.; Zhang, L. Total variation regularized reweighted sparse nonnegative matrix factorization for hyperspectral unmixing. IEEE Trans. Geosci. Remote Sens. 2017, 55, 3909–3921. [Google Scholar] [CrossRef]
- Qin, J.; Lee, H.; Chi, J.T.; Drumetz, L.; Chanussot, J.; Lou, Y.; Bertozzi, A.L. Blind hyperspectral unmixing based on graph total variation regularization. IEEE Trans. Geosci. Remote Sens. 2021, 59, 3338–3351. [Google Scholar] [CrossRef]
- Iordache, M.-D.; Bioucas-Dias, J.M.; Plaza, A. Total Variation Spatial Regularization for Sparse Hyperspectral Unmixing. IEEE Trans. Geosci. Remote Sens. 2012, 50, 4484–4502. [Google Scholar] [CrossRef] [Green Version]
- Yang, Y.; Chen, S.; Zheng, J. Moreau-Enhanced Total Variation and Subspace Factorization for Hyperspectral Denoising. Remote Sens. 2020, 2, 212. [Google Scholar] [CrossRef] [Green Version]
- Wang, M.; Wang, Q.; Chanussot, J.; Hong, D. L0-l1 hybrid total variation regularization and its applications on hyperspectral image mixed noise removal and compressed sensing. IEEE Trans. Geosci. Remote Sens. 2021, 59, 7695–7710. [Google Scholar] [CrossRef]
- Sun, L.; Zhan, T.; Wu, Z.; Jeon, B. A novel 3d anisotropic total variation regularized low rank method for hyperspectral image mixed denoising. ISPRS Int. J. Geo-Inf. 2018, 7, 412. [Google Scholar] [CrossRef] [Green Version]
- Rui, W.; Wang, G. Medical X-ray image enhancement method based on TV-homomorphic filter. In Proceedings of the 2017 2nd International Conference on Image, Vision and Computing (ICIVC), Chengdu, China, 2–4 June 2017; pp. 315–318. [Google Scholar]
- Lee, H. Better Inference with Graph Regularization. Ph.D. Thesis, Carnegie Mellon University, Pittsburgh, PA, USA, 2021. [Google Scholar]
- Sun, B.; Chang, H. Proximal Gradient Methods for General Smooth Graph Total Variation Model in Unsupervised Learning. J. Sci. Comput. 2022, 93, 2. [Google Scholar] [CrossRef]
- Cai, D.; He, X.; Han, J.; Huang, T.S. Graph Regularized Nonnegative Matrix Factorization for Data Representation. IEEE Trans. Pattern Anal. Machine Intell. 2011, 33, 1548–1560. [Google Scholar]
- Zhu, F.; Wang, Y.; Xiang, S.; Fan, B.; Pan, C. Structured sparse method for hyperspectral unmixing. ISPRS J. Photogramm. Remote Sens. 2014, 88, 101–118. [Google Scholar] [CrossRef] [Green Version]
- Li, M.; Zhu, F.; Guo, A.J.X.; Chen, J. A graph regularized multilinear mixing model for nonlinear hyperspectral unmixing. Remote Sens. 2019, 11, 2188. [Google Scholar] [CrossRef] [Green Version]
- Lu, X.; Wu, H.; Yuan, Y.; Yan, P.; Li, X. Manifold regularized sparse NMF for hyperspectral unmixing. IEEE Trans. Geosci. Remote Sens. 2013, 51, 2815–2826. [Google Scholar] [CrossRef]
- Ammanouil, R.; Ferrari, A.; Richard, C. Hyperspectral data unmixing with graph-based regularization. In Proceedings of the 2015 7th Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing (WHISPERS), Tokyo, Japan, 2–5 June 2015; pp. 1–4. [Google Scholar]
- Belongie, C.F.S.; Chung, F.; Malik, J. Spectral grouping using the Nyström method. IEEE Trans. Pattern Anal. Mach. Intell. 2004, 26, 214–225. [Google Scholar]
- Meng, Z.; Merkurjev, E.; Koniges, A.; Bertozzi, A.L. Hyperspectral image classifification using graph clustering methods. Image Process. Line 2017, 7, 218–245. [Google Scholar] [CrossRef] [Green Version]
- Merriman, B.; Bence, J.K.; Osher, S.J. Motion of multiple junctions: A level set approach. J. Comput. Phys. 1994, 112, 334–363. [Google Scholar] [CrossRef]
- Zhang, H.; He, W.; Zhang, L.; Shen, H.; Yuan, Q. Hyperspectral image restoration using low-rank matrix recovery. IEEE Trans. Geosci. Remote Sens. 2014, 52, 4729–4743. [Google Scholar] [CrossRef]
- Xie, Y.; Qu, Y.; Tao, D.; Wu, W.; Yuan, Q.; Zhang, W. Hyperspectral image restoration via iteratively regularized weighted schatten p-norm minimization. IEEE Trans. Geosci. Remote Sens. 2016, 54, 4642–4659. [Google Scholar] [CrossRef]
- Elad, M.; Aharon, M. Image denoising via sparse and redundant representations over learned dictionaries. IEEE Trans. Image Process. 2006, 15, 3736–3745. [Google Scholar] [CrossRef] [PubMed]
- Zhuang, L.; Lin, C.-H.; Figueiredo, M.A.; Bioucas-Dias, J.M. Regularization parameter selection in minimum volume hyperspectral unmixing. IEEE Trans. Geosci. Remote Sens. 2019, 57, 9858–9877. [Google Scholar] [CrossRef]
- Qin, J.; Lee, H.; Chi, J.T.; Lou, Y.; Chanussot, J.; Bertozzi, A.L. Fast blind hyperspectral unmixing based on graph laplacian. In Proceedings of the 2019 10th Workshop on Hyperspectral Imaging and Signal Processing: Evolution in Remote Sensing (WHISPERS), Amsterdam, The Netherlands, 24–26 September 2019; pp. 1–5. [Google Scholar]
- Nascimento, J.M.P.; Dias, J.M.B. Vertex component analysis: A fast algorithm to unmix hyperspectral data. IEEE Trans. Geosci. Remote Sens. 2005, 43, 898–910. [Google Scholar] [CrossRef] [Green Version]
- Themelis, K.E.; Rontogiannis, A.A.; Koutroumbas, K.D. A Novel Hierarchical Bayesian Approach for Sparse Semisupervised Hyperspectral Unmixing. IEEE Trans. Signal. Process. 2012, 60, 585–599. [Google Scholar] [CrossRef]
- Donoho, D.L. De-noising by soft-thresholding. IEEE Trans. Inf. Theory 1995, 41, 613–627. [Google Scholar] [CrossRef] [Green Version]
- Xie, Q.; Zhao, Q.; Meng, D.; Xu, Z.; Gu, S.; Zuo, W.; Zhang, L. Multispectral images denoising by intrinsic tensor sparsity regularization. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 1692–1700. [Google Scholar]
Methods | FCLSU | FRAC | STV | GLNMF | NMF-QMV | GraphL | gtvMBO | E-gtvMBO | |
---|---|---|---|---|---|---|---|---|---|
Indicators | |||||||||
RMSE(X) | 0.057 | inf | inf | 0.073 | 0.049 | 0.082 | 0.071 | 0.052 | |
nMSE(X) | 0.089 | inf | inf | 0.091 | 0.072 | 0.092 | 0.084 | 0.079 | |
SAM(X) | 2.75 | inf | inf | 3.27 | 2.91 | 2.82 | 3.94 | 2.47 | |
RMSE(A) | 0.2591 | 0.2568 | 0.2672 | 0.4425 | 0.2579 | 0.2501 | 0.2439 | 0.2215 | |
nMSE(A) | 0.8682 | 0.8981 | 0.8519 | 1.3728 | 0.8966 | 0.8182 | 0.7938 | 0.7492 |
Indicators | FCLSU | FRAC | STV | GLNMF | NMF-QMV | GraphL | gtvMBO | E-gtvMBO |
---|---|---|---|---|---|---|---|---|
RMSE(X) | 0.109 | inf | inf | 0.188 | 0.211 | 0.099 | 0.099 | 0.082 |
nMSE(X) | 0.635 | inf | inf | 1350 | 1200 | 0.636 | 0.639 | 0.617 |
SAM(X) | 2.39 | inf | inf | 3.58 | 2.09 | 3.89 | 3.93 | 2.56 |
RMSE(A) | 0.145 | 0.153 | 0.288 | 0.175 | 0.245 | 0.184 | 0.180 | 0.142 |
nMSE(A) | 0.437 | 0.450 | 0.788 | 0.554 | 0.655 | 0.520 | 0.512 | 0.395 |
Methods | FCLSU | FRAC | STV | GLNMF | NMF-QMV | GraphL | gtvMBO | E-gtvMBO | |
---|---|---|---|---|---|---|---|---|---|
Indicators | |||||||||
RMSE(X) | 0.044 | inf | inf | 0.036 | 0.073 | 0.055 | 0.058 | 0.052 | |
nMSE(X) | 0.169 | inf | inf | 0.153 | 0.302 | 0.221 | 0.249 | 0.189 | |
SAM(X) | 3.64 | inf | inf | 4.49 | 12.82 | 8.43 | 8.54 | 9.36 | |
RMSE(A) | 0.180 | 0.165 | 0.164 | 0.187 | 0.148 | 0.139 | 0.128 | 0.119 | |
nMSE(A) | 0.455 | 0.429 | 0.375 | 0.502 | 0.428 | 0.302 | 0.299 | 0.276 |
Methods | FCLSU | FRAC | STV | GLNMF | NMF-QMV | GraphL | gtvMBO | E-gtvMBO | |
---|---|---|---|---|---|---|---|---|---|
Indicators | |||||||||
RMSE(X) | 0.153 | inf | inf | 0.233 | 0.196 | 0.183 | 0.172 | 0.164 | |
nMSE(X) | 0.227 | inf | inf | 0.358 | 0.728 | 0.248 | 0.245 | 0.239 | |
SAM(X) | 11.91 | inf | inf | 16.24 | 24.73 | 10.65 | 8.82 | 9.64 | |
RMSE(A) | 0.435 | 0.432 | 0.389 | 0.433 | 0.254 | 0.314 | 0.388 | 0.232 | |
nMSE(A) | 1757 | 1751 | 1642 | 1558 | 1393 | 1015 | 1371 | 1101 |
Methods | FCLSU | FRAC | STV | GLNMF | NMF-QMV | GraphL | gtvMBO | E-gtvMBO | |
---|---|---|---|---|---|---|---|---|---|
Indicators | |||||||||
RMSE(X) | 0.244 | inf | inf | 0.271 | 0.225 | 0.205 | 0.261 | 0.211 | |
nMSE(X) | 0.591 | inf | inf | 0.729 | 0.686 | 0.523 | 0.682 | 0.9137 | |
SAM(X) | 4.92 | inf | inf | 4.81 | 6.09 | 4.53 | 4.86 | 4.73 | |
RMSE(A) | 0.369 | 0.352 | 0.367 | 0.386 | 0.244 | 0.227 | 0.307 | 0.214 | |
nMSE(A) | 0.954 | 0.928 | 0.938 | 1278 | 0.956 | 0.978 | 0.905 | 0.914 |
Time(s) | FCLSU | FRAC | STV | GLNMF | NMF-QMV | GraphL | gtvMBO | E-gtvMBO |
---|---|---|---|---|---|---|---|---|
Simulated data | 1221 | 0.069 | 2318 | 1241 | 1519 | 0.083 | 0.412 | 0.787 |
Urban data | 34,804 | 7539 | 81,717 | 107,56 | 126,79 | 18,392 | 26,893 | 31,247 |
Cuprite data | 550,032 | 154,130 | 1051.7 | 579,835 | 534,221 | 478,03 | 488,062 | 512,372 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, P.; Shen, X.; Kong, Y.; Zhang, X.; Wang, L. Blind Hyperspectral Unmixing with Enhanced 2DTV Regularization Term. Remote Sens. 2023, 15, 1397. https://doi.org/10.3390/rs15051397
Wang P, Shen X, Kong Y, Zhang X, Wang L. Blind Hyperspectral Unmixing with Enhanced 2DTV Regularization Term. Remote Sensing. 2023; 15(5):1397. https://doi.org/10.3390/rs15051397
Chicago/Turabian StyleWang, Peng, Xun Shen, Yingying Kong, Xiwang Zhang, and Liguo Wang. 2023. "Blind Hyperspectral Unmixing with Enhanced 2DTV Regularization Term" Remote Sensing 15, no. 5: 1397. https://doi.org/10.3390/rs15051397
APA StyleWang, P., Shen, X., Kong, Y., Zhang, X., & Wang, L. (2023). Blind Hyperspectral Unmixing with Enhanced 2DTV Regularization Term. Remote Sensing, 15(5), 1397. https://doi.org/10.3390/rs15051397