Modeling Soil CO2 Efflux in a Subtropical Forest by Combining Fused Remote Sensing Images with Linear Mixed Effect Models
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Basin
2.2. Data Processing
2.2.1. Earth Observation Data Sets and Preprocessing
2.2.2. Field-Observed Data and Preprocessing
2.3. Methods
2.3.1. Landsat 8 LST Calculation
- (1)
- The calculation of top-of-atmosphere radiance (TOA): The digital number (DN) of each pixel in the original Landsat 8 images was used to calculate the TOA radiance of the corresponding pixel according to the following formula provided by USGS:
- (2)
- The conversion of TOA to brightness temperature (BT): The TOA radiance was converted to BT by Equation (2):
- (3)
- The NDVI calculation: The calculation of NDVI is important because the vegetation proportion () is highly related to NDVI and the emissivity (ε) that is related to can be calculated.
- (4)
- The vegetation proportion calculation:
- (5)
- Emissivity calculation:
- (6)
- LST estimation:
2.3.2. Field Measurements and Validation
2.3.3. STI-FM Fusion Model and Validation
2.3.4. FSCO2 Estimation and Validation
3. Results
3.1. Field-Measured FSCO2 and Related Environmental Variables Analysis
3.2. Multisource Remote Sensing LST Fusion
3.2.1. Fusion LST Datasets and Accuracy Assessment
3.2.2. The Spatiotemporal Variations of LST in Landsat 8 LST, MODIS LST and Fusion LST
3.3. FSCO2 Simulation
3.3.1. The Construction of the Linear Mixed Based FSCO2 Inversion Model
3.3.2. Model Validations
4. Discussion
4.1. Spatial Heterogeneity of FSCO2 Variations and Relationship between the Abiotic Factors
4.2. Spatiotemporal Dynamics of Soil CO2 Efflux of Subtropical Forest in Dry Seasons
4.3. Remote Sensing Based Soil CO2 Efflux Inversion
4.4. Accuracy Analysis of Remote Sensing Modeling for FSCO2 Estimation
4.5. Limitations and Future Works
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Crabbe, R.A.; Dash, J.; Rodriguez-Galiano, V.F.; Janous, D.; Pavelka, M.; Marek, M.V. Extreme warm temperatures alter forest phenology and productivity in Europe. Sci. Total Environ. 2016, 563, 486–495. [Google Scholar] [CrossRef] [PubMed]
- Pumpanen, J.; Kolari, P.; Ilvesniemi, H.; Minkkinen, K.; Vesala, T.; Niinisto, S.; Lohila, A.; Larmola, T.; Morero, M.; Pihlatie, M.; et al. Comparison of different chamber techniques for measuring soil CO2 efflux. Agric. For. Meteorol. 2004, 123, 159–176. [Google Scholar] [CrossRef]
- Wu, C.Y.; Gaumont-Guay, D.; Black, T.A.; Jassal, R.S.; Xu, S.G.; Chen, J.M.; Gonsamo, A. Soil respiration mapped by exclusively use of MODIS data for forest landscapes of Saskatchewan, Canada. ISPRS J. Photogramm. 2014, 94, 80–90. [Google Scholar] [CrossRef]
- Monson, R.K.; Lipson, D.L.; Burns, S.P.; Turnipseed, A.A.; Delany, A.C.; Williams, M.W.; Schmidt, S.K. Winter forest soil respiration controlled by climate and microbial community composition. Nature 2006, 439, 711–714. [Google Scholar] [CrossRef]
- Borken, W.; Xu, Y.J.; Davidson, E.A.; Beese, A. Site and temporal variation of soil respiration in European beech, Norway spruce, and Scots pine forests. Glob. Chang. Biol. 2002, 8, 1205–1216. [Google Scholar] [CrossRef]
- Katayama, A.; Endo, I.; Makita, N.; Matsumoto, K.; Kume, T.; Ohashi, M. Vertical variation in mass and CO2 efflux of litter from the ground to the 40m high canopy in a Bornean tropical rainforest. Agric. For. Meteorol. 2021, 311, 108659. [Google Scholar] [CrossRef]
- Makita, N.; Kosugi, Y.; Sakabe, A.; Kanazawa, A.; Ohkubo, S.; Tani, M. Seasonal and diurnal patterns of soil respiration in an evergreen coniferous forest: Evidence from six years of observation with automatic chambers. PLoS ONE 2018, 13, e0192622. [Google Scholar] [CrossRef] [Green Version]
- Fu, G.; Shen, Z.; Zhang, X.; Shi, P.; Zhang, Y.; Wu, J. Estimating air temperature of an alpine meadow on the Northern Tibetan Plateau using MODIS land surface temperature. Acta Ecol. Sin. 2011, 31, 5. [Google Scholar] [CrossRef]
- Yan, J.X.; Zhang, X.; Liu, J.; Li, H.J.; Ding, G.W. MODIS-Derived Estimation of Soil Respiration within Five Cold Temperate Coniferous Forest Sites in the Eastern Loess Plateau, China. Forests 2020, 11, 131. [Google Scholar] [CrossRef] [Green Version]
- Ai, J.L.; Jia, G.S.; Epstein, H.E.; Wang, H.S.; Zhang, A.Z.; Hu, Y.H. MODIS-Based Estimates of Global Terrestrial Ecosystem Respiration. J. Geophys. Res. Biogeo. 2018, 123, 326–352. [Google Scholar] [CrossRef]
- Huang, N.; Gu, L.H.; Black, T.A.; Wang, L.; Niu, Z. Remote sensing-based estimation of annual soil respiration at two contrasting forest sites. J. Geophys. Res. Biogeosci. 2015, 120, 2306–2325. [Google Scholar] [CrossRef] [Green Version]
- Rozenstein, O.; Qin, Z.H.; Derimian, Y.; Karnieli, A. Derivation of land surface temperature for Landsat-8 TIRS using a split window algorithm. Sensor 2014, 14, 11277. [Google Scholar] [CrossRef] [Green Version]
- Aliabad, F.A.; Zare, M.; Malamiri, H.G. A comparative assessment of the accuracies of split-window algorithms for retrieving of land surface temperature using Landsat 8 data. Model. Earth Syst. Environ. 2021, 7, 2267–2281. [Google Scholar] [CrossRef]
- Du, C.; Ren, H.Z.; Qin, Q.M.; Meng, J.J.; Zhao, S.H. A practical split-window algorithm for estimating land surface temperature from Landsat 8 data. Remote Sens. 2015, 7, 647–665. [Google Scholar] [CrossRef] [Green Version]
- Yu, X.L.; Guo, X.L.; Wu, Z.C. Land Surface temperature retrieval from Landsat 8 TIRS-Comparison between radiative transfer equation-based method, split window algorithm and single channel method. Remote Sens. 2014, 6, 9829–9852. [Google Scholar] [CrossRef] [Green Version]
- Yan, L.; Li, H.; Han, Y.; Chen, J. Surface temperature splicing study fusing MODIS and Landsat 8: A case study in the Guangdong-Hong Kong-Macao Greater Bay. Trop. Geogr. 2015, 39, 689–700. [Google Scholar]
- Hazaymeh, K.; Hassan, Q.K. Fusion of MODIS and Landsat-8 surface temperature images: A new approach. PLoS ONE 2015, 10, e0117755. [Google Scholar] [CrossRef]
- Inamdar, A.K.; French, A.; Hook, S.; Vaughan, G.; Luckett, W. Land surface temperature retrieval at high spatial and temporal resolutions over the southwestern United States. J. Geophys. Res. Atmos. 2008, 113, D07107. [Google Scholar] [CrossRef]
- Wu, M.Q.; Wu, C.Y.; Huang, W.J.; Niu, Z.; Wang, C.Y.; Li, W.; Hao, P.Y. An improved high spatial and temporal data fusion approach for combining Landsat and MODIS data to generate daily synthetic Landsat imagery. Inf. Fusion 2016, 31, 14–25. [Google Scholar] [CrossRef]
- Yin, Z.X.; Wu, P.H.; Foody, G.M.; Wu, Y.L.; Liu, Z.H.; Du, Y.; Ling, F. Spatiotemporal fusion of land surface temperature based on a convolutional neural network. IEEE Trans. Geosci. Remote Sens. 2021, 59, 1808–1822. [Google Scholar] [CrossRef]
- Zhu, Z.; Liu, B.J.; Wang, H.L.; Hu, M.C.A. Analysis of the spatiotemporal changes in watershed landscape pattern and its influencing factors in rapidly urbanizing areas using satellite data. Remote Sens. 2021, 13, 1168. [Google Scholar] [CrossRef]
- Chen, T.; Xu, Z.W.; Tang, G.P.; Chen, X.H.; Fang, H.; Guo, H.; Yuan, Y.; Zheng, G.X.; Jiang, L.L.; Niu, X.Y. Spatiotemporal monitoring of soil CO2 efflux in a subtropical forest during the dry season based on field observations and remote sensing imagery. Remote Sens. 2021, 13, 3481. [Google Scholar] [CrossRef]
- Wang, S.; Qian, X.; Han, B.P.; Luo, L.C.; Ye, R.; Xiong, W. Effects of different operational modes on the flood-induced turbidity current of a canyon-shaped reservoir: Case study on Liuxihe Reservoir, South China. Hydrol. Process. 2013, 27, 4004–4016. [Google Scholar] [CrossRef]
- Fleck, D.; He, Y.; Alexander, C.; Jacobson, G.; Cunningham, K.L. Simultaneous Soil Flux Measurements of Five Gases—N2O, CH4, CO2, NH3, and H2O—With the Picarro G2508; Picarro Inc.: Santa Clara, CA, USA, 2013; pp. 1–11. Available online: https://www.picarro.com/support/library/documents/an034_simultaneous_soil_flux_measurements_of_five_gases_n2o_ch4_co2_nh3 (accessed on 1 September 2018).
- Montanaro, M.; Gerace, A.; Lunsford, A.; Reuter, D. Stray light artifacts in imagery from the Landsat 8 thermal infrared sensor. Remote Sens. 2014, 6, 10435–10456. [Google Scholar] [CrossRef] [Green Version]
- Barsi, J.A.; Schott, J.R.; Hook, S.J.; Raqueno, N.G.; Markham, B.L.; Radocinski, R.G. Landsat-8 thermal infrared sensor (TIRS) vicarious radiometric calibration. Remote Sens. 2014, 6, 11607–11626. [Google Scholar] [CrossRef] [Green Version]
- Jimenez-Munoz, J.C.; Sobrino, J.A.; Skokovic, D.; Mattar, C.; Cristobal, J. Land surface temperature retrieval methods from Landsat-8 thermal infrared sensor data. IEEE Geosci. Remote Sens. Lett. 2014, 11, 1840–1843. [Google Scholar] [CrossRef]
- Tang, S.M.; Wang, C.J.; Wilkes, A.; Zhou, P.; Jiang, Y.Y.; Han, G.D.; Zhao, M.L.; Huang, D.; Schonbach, P. Contribution of grazing to soil atmosphere CH4 exchange during the growing season in a continental steppe. Atmos. Environ. 2013, 67, 170–176. [Google Scholar] [CrossRef]
- Nakagawa, S.; Schielzeth, H. A general and simple method for obtaining R2 from generalized linear mixed-effects models. Methods Ecol. Evol. 2013, 4, 133–142. [Google Scholar] [CrossRef]
- Monson, R.K.; Sparks, J.P.; Rosenstiel, T.N.; Scott-Denton, L.E.; Huxman, T.E.; Harley, P.C.; Turnipseed, A.A.; Burns, S.P.; Backlund, B.; Hu, J. Climatic influences on net ecosystem CO2 exchange during the transition from wintertime carbon source to springtime carbon sink in a high-elevation, subalpine forest. Oecologia 2005, 146, 130–147. [Google Scholar] [CrossRef]
- Wang, W.; Peng, S.S.; Wang, T.; Fang, J.Y. Winter soil CO2 efflux and its contribution to annual soil respiration in different ecosystems of a forest-steppe ecotone, north China. Soil Biol. Biochem. 2010, 42, 451–458. [Google Scholar] [CrossRef]
- Crabbe, R.A.; Janous, D.; Darenova, E.; Pavelka, M. Exploring the potential of LANDSAT-8 for estimation of forest soil CO2 efflux. Int. J. Appl. Earth Obs. 2019, 77, 42–52. [Google Scholar] [CrossRef]
- Burdun, I.; Sagris, V.; Mander, U. Relationships between field-measured hydrometeorological variables and satellite-based land surface temperature in a hemiboreal raised bog. Int. J. Appl. Earth Obs. 2019, 74, 295–301. [Google Scholar] [CrossRef]
- Kimball, J.S.; Jones, L.A.; Zhang, K.; Heinsch, F.A.; McDonald, K.C.; Oechel, W.C. A Satellite Approach to Estimate Land-Atmosphere CO2 Exchange for Boreal and Arctic Biomes Using MODIS and AMSR-E. IEEE Trans. Geosci. Remote Sens. 2009, 47, 569–587. [Google Scholar] [CrossRef]
- Huang, C.; Chen, Y.; Wu, J.P. Mapping spatio-temporal flood inundation dynamics at large river basin scale using time-series flow data and MODIS imagery. Int. J. Appl. Earth Obs. 2014, 26, 350–362. [Google Scholar] [CrossRef]
- Peng, Y.D.; Li, W.S.; Luo, X.B.; Du, J.; Zhang, X.Y.; Gan, Y.; Gao, X.B. Spatiotemporal reflectance fusion via tensor sparse representation. IEEE Trans. Geosci. Remote Sens. 2022, 60, 1–18. [Google Scholar] [CrossRef]
- Bond-Lamberty, B. New techniques and data for understanding the global soil respiration flux. Earths Future 2018, 6, 1176–1180. [Google Scholar] [CrossRef] [Green Version]
- Warner, D.L.; Guevara, M.; Inamdar, S.; Vargas, R. Upscaling soil-atmosphere CO2 and CH4 fluxes across a topographically complex forested landscape. Agric. For. Meteorol. 2019, 264, 80–91. [Google Scholar] [CrossRef]
- Huang, N.; Wang, L.; Song, X.P.; Black, T.A.; Jassal, R.S.; Myneni, R.B.; Wu, C.Y.; Wang, L.; Song, W.J.; Ji, D.B.; et al. Spatial and temporal variations in global soil respiration and their relationships with climate and land cover. Sci. Adv. 2020, 6, eabb8508. [Google Scholar] [CrossRef]
- Xu, C.Y.; Qu, J.J.; Hao, X.J.; Zhu, Z.L.; Gutenberg, L. Monitoring soil carbon flux with in-situ measurements and satellite observations in a forested region. Geoderma 2020, 378, 114617. [Google Scholar] [CrossRef]
Date | Cloud Cover (%) | Azimuth/Zenith Angles of the Sun | ML(10) | AL(10) | K1 | K2 |
---|---|---|---|---|---|---|
11 September 2019 | 0 | 135.06/58.8 | 3.34 × 10−4 | 0.1 | 774.89 | 1321.08 |
27 September 2019 | 5.9 | 139.15/57.0 | 3.34 × 10−4 | 0.1 | 774.89 | 1321.08 |
29 October 2019 | 1.5 | 151.85/47.8 | 3.34 × 10−4 | 0.1 | 774.89 | 1321.08 |
14 November 2019 | 0.3 | 154.61/43.4 | 3.34 × 10−4 | 0.1 | 774.89 | 1321.08 |
30 November 2019 | 52.3 | 155.31/39.9 | 3.34 × 10−4 | 0.1 | 774.89 | 1321.08 |
17 January 2020 | 91.3 | 149.15/38.2 | 3.34 × 10−4 | 0.1 | 774.89 | 1321.08 |
18 February 2020 | 0 | 141.45/45.3 | 3.34 × 10−4 | 0.1 | 774.89 | 1321.08 |
Model Type | Model Description | AIC | BIC | p-Value | mR2 | cR2 |
---|---|---|---|---|---|---|
None random effect | FSCO2~1 + (1|day) | - | - | - | ||
FSCO2~1+ (1|month) FSCO2~1 + (1|season) | - | - | - | |||
Daily random effect | FSCO2~LST + (1|day) | 220.75 | 208.99 | 0.19 | 0.904 | |
Monthly random effect | FSCO2~LST + (1|month) | −34.76 | −23.00 | <0.001 | 0.47 | 0.553 |
Seasonally random effect | FSCO2~LST + (1|season) | 984.47 | 996.24 | <0.217 | 0.07 | 0.353 |
Authors | Sites | Method | Satellite Data and Resolutions | Inversion Spatial Scales | Highest Inversion Accuracy | Published Year |
---|---|---|---|---|---|---|
Kimball et al. [34] | Tundra forest | terrestrial carbon flux (TCF) model | MODIS and AMSR-E | Continent scale | 0.89 | 2009 |
Huang et al. [35] | Broadleaf forest site (Midwest USA) | Statistical model | MODIS LST/500 m | Basin scale | 2014 | |
Wu et al. [3] | Canadian boreal black spruce stand | Linear regression model | MODIS LST & NDVI/500 m | Landscape scale | 0.78 | 2014 |
Huang et al. [11] | FLUXNET forest | Remote-sensing-based model | MODIS LST/500 m | Site scale | 2015 | |
Huang et al. [36] | Croplands | support vector regression | Landsat 8 images | County level | 0.73 | 2017 |
Ben Bond-Lamberty [37] | Artificial neural network model | Global scale | 2018 | |||
Crabbe et al. [32] | Forest | Linear mixed model | Landsat 8 LST/30 m | Patch scale | 2019 | |
Warner et al. [38] | Bamboo forest | Quantile-based digital soil mapping | DEM/2 m | Basin scale | 0.64 | 2019 |
Huang et al. [39] | Global | biome-specific statistical model | MODIS/1 km | Global scale | 2020 | |
Xu et al. [40] | Forest | Improved downscale model | MODIS, Landsat 8 OLI/TIRS | Regional scale | 0.47 | 2020 |
Chen et al. [22] | Tropical forest | Random forest | MODIS/500 m | Basin scale | 0.88 | 2021 |
Burdun et al. [33] | Peatlands | Model | Landsat/MODIS LST/1 km | Regional scale | 0.67 | 2021 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ablat, X.; Huang, C.; Tang, G.; Erkin, N.; Sawut, R. Modeling Soil CO2 Efflux in a Subtropical Forest by Combining Fused Remote Sensing Images with Linear Mixed Effect Models. Remote Sens. 2023, 15, 1415. https://doi.org/10.3390/rs15051415
Ablat X, Huang C, Tang G, Erkin N, Sawut R. Modeling Soil CO2 Efflux in a Subtropical Forest by Combining Fused Remote Sensing Images with Linear Mixed Effect Models. Remote Sensing. 2023; 15(5):1415. https://doi.org/10.3390/rs15051415
Chicago/Turabian StyleAblat, Xarapat, Chong Huang, Guoping Tang, Nurmemet Erkin, and Rukeya Sawut. 2023. "Modeling Soil CO2 Efflux in a Subtropical Forest by Combining Fused Remote Sensing Images with Linear Mixed Effect Models" Remote Sensing 15, no. 5: 1415. https://doi.org/10.3390/rs15051415
APA StyleAblat, X., Huang, C., Tang, G., Erkin, N., & Sawut, R. (2023). Modeling Soil CO2 Efflux in a Subtropical Forest by Combining Fused Remote Sensing Images with Linear Mixed Effect Models. Remote Sensing, 15(5), 1415. https://doi.org/10.3390/rs15051415