A Unified Formulation for the Computation of the Six-Degrees-of-Freedom-Motion-Induced Errors in Floating Doppler Wind LiDARs
Abstract
:1. Introduction
2. Materials
2.1. Pont del Petroli Campaign
2.2. IJmuiden Campaign
3. Methods
3.1. Basic Definitions
3.2. Reconciling the Estimated and the Measured TI
3.2.1. On the Estimated TI
3.2.2. On the Measured TI
3.3. FDWL Geometrical Model
3.4. The VAD Algorithm as a First-Order Fourier Series
3.5. Estimation Error Methodology
3.5.1. Rotational Motion Model
3.5.2. Translational-Motion Model
3.5.3. Total Error Model
3.6. Bias and TI-Increment Estimation Procedure
3.7. Sinusoidal Characterization of the Measured Motion Time Series
3.8. A Note on Appendix A and the Supplementary Materials Math Formulations
4. Results and Discussion
4.1. Error Model Validation
4.2. Experimental Results
4.2.1. The Performance according to the Estimation of the Bias
4.2.2. Performance according to the Estimation of the Increment (I): Case Example
4.3. The Performance of the Estimation of the Increment (II): Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
CW | continuous wave |
DoF | degrees of freedom |
DWL | Doppler wind LiDAR |
FDWL | floating Doppler wind LiDAR |
HWS | horizontal wind speed |
IMU | inertial measurement unit |
LD | linear dichroism |
LoS | line of sight |
LSQ | least squares |
NED | north–east–down |
metmast | meteorological mast |
MDPI | Multidisciplinary Digital Publishing Institute |
PdP | Pont del Petroli |
PSD | power spectral density |
RMSE | root mean square error |
SV | spatial variation |
TI | turbulence intensity |
VAD | velocity–azimuth display |
VWS | vertical wind speed |
WD | wind direction |
Appendix A. Formulation Compendium
Appendix A.1. First-Order Approximation of the Rotation Matrix
Appendix A.2. Wind-Vector Projection over the Rotated LiDAR Pointing Vector (ϕ)
Appendix A.3. Fourier Coefficients for the Rotational Motion Model
Appendix A.4. Fourier Coefficients for the Translational-Motion Model
Appendix A.5. Auxiliary Integrals
Coef. | ||
---|---|---|
] | ||
if | ||
] | ||
if | ||
if | ||
if | ||
if | ||
if | ||
where: | being: | |
References
- Global Wind Energy Council. Global Wind Report 2018; Technical Report; Global Wind Energy Council: Brussels, Belgium, 2019. [Google Scholar]
- Barthelmie, R.; Courtney, M.; Højstrup, J.; Larsen, S. Meteorological aspects of offshore wind energy: Observations from the Vindeby wind farm. J. Wind. Eng. Ind. Aerodyn. 1996, 62, 191–211. [Google Scholar] [CrossRef]
- Ramírez, L.; Fraile, D.; Brindley, G. Offshore Wind in Europe Key Trends and Statistics 2019; Technical Report; WindEurope: Brussels, Belgium, 2020. [Google Scholar]
- Global Wind Energy Council. Global Wind Report 2021; Technical Report; Global Wind Energy Council: Brussels, Belgium, 2021. [Google Scholar]
- Kost, K.; Mayer, J.N.; Thomsen, J.; Hartmann, N.; Senkpiel, C.; Philipps, S.; Nold, S.; Lude, S.; Saad, N.; Schlegl, T. Levelized Cost of Electricity Renewable Energy Technologies; Technical Report; Fraunhofer Institut for Solar Energy Systems (ISE): Freiburg, Germany, 2013. [Google Scholar]
- Timmons, D. 25—Optimal Renewable Energy Systems: Minimizing the Cost of Intermittent Sources and Energy Storage. In A Comprehensive Guide to Solar Energy Systems; Letcher, T.M., Fthenakis, V.M., Eds.; Academic Press: Cambridge, MA, USA, 2018; pp. 485–504. [Google Scholar] [CrossRef]
- Carbon Trust. Carbon Trust Offshore Wind Accelerator Roadmap for the Commercial Acceptance of Floating LiDAR Technology; Technical Report; Carbon Trust: London, UK, 2018. [Google Scholar]
- Roland Berger. Offshore Wind toward 2020: On the Pathway to Cost Competitiveness; Technical Report; Roland Berger: Munich, Germany, 2013. [Google Scholar]
- Barthelmie, R.; Pryor, S. Can Satellite Sampling of Offshore Wind Speeds Realistically Represent Wind Speed Distributions? J. Appl. Meteorol. 2003, 42, 83–94. [Google Scholar] [CrossRef]
- Chang, R.; Zhu, R.; Badger, M.; Hasager, C.B.; Zhou, R.; Ye, D.; Zhang, X. Applicability of Synthetic Aperture Radar wind retrievals on offshore wind resources assessment in Hangzhou Bay, China. Energies 2014, 7, 3339–3354. [Google Scholar] [CrossRef] [Green Version]
- Hirth, B.D.; Schroeder, J.L.; Gunter, W.S.; Guynes, J.G. Measuring a utility-scale turbine wake using the TTUKa mobile research radars. J. Atmos. Ocean. Technol. 2012, 29, 765–771. [Google Scholar] [CrossRef] [Green Version]
- Vogt, S.; Thomas, P. SODAR—A useful remote sounder to measure wind and turbulence. J. Wind. Eng. Ind. Aerodyn. 1995, 54, 163–172. [Google Scholar] [CrossRef]
- Lang, S.; McKeogh, E. LIDAR and SODAR Measurements of Wind Speed and Direction in Upland Terrain for Wind Energy Purposes. Remote Sens. 2011, 3, 1871–1901. [Google Scholar] [CrossRef] [Green Version]
- International Energy Association. State of the art of Remote Wind Speed Sensing Techniques Using Sodar, Lidar and Satellites; Technical Report; International Energy Association: Paris, France, 2007. [Google Scholar]
- Sempreviva, A.M.; Barthelmie, R.J.; Pryor, S.C. Review of Methodologies for Offshore Wind Resource Assessment in European Seas. Surv. Geophys. 2008, 29, 471–497. [Google Scholar] [CrossRef]
- Slinger, C.; Harris, M. Introduction to Continuous-Wave Doppler Lidar; Summer School in Remote Sensing for Wind Energy: Boulder, CO, USA, 2012. [Google Scholar]
- Lolli, S.; Delaval, A.; Loth, C.; Garnier, A.; Flamant, P.H. 0.355-micrometer direct detection wind lidar under testing during a field campaign in consideration of ESA’s ADM-Aeolus mission. Atmos. Meas. Tech. 2013, 6, 3349–3358. [Google Scholar] [CrossRef] [Green Version]
- Reitebuch, O.; Werner, C.; Leike, I.; Delville, P.; Flamant, P.H.; Cress, A.; Engelbart, D. Experimental Validation of Wind Profiling Performed by the Airborne 10-μm Heterodyne Doppler Lidar WIND. J. Atmos. Ocean. Technol. 2001, 18, 1331–1344. [Google Scholar] [CrossRef]
- Schuon, F.; González, D.; Rocadenbosch, F.; Bischoff, O.; Jané, R. KIC InnoEnergy Project Neptune: Development of a Floating LiDAR Buoy for Wind, Wave and Current Measurements. In Proceedings of the DEWEK 2012 German Wind Energy Conference, Bremen, Germany, 7–8 November 2012. [Google Scholar]
- Silva, M.P.A.d.; Rocadenbosch, F.; Farré-Guarné, J.; Salcedo-Bosch, A.; González-Marco, D.; Peña, A. Assessing Obukhov Length and Friction Velocity from Floating Lidar Observations: A Data Screening and Sensitivity Computation Approach. Remote Sens. 2022, 14, 1394. [Google Scholar] [CrossRef]
- Pichugina, Y.; Banta, R.; Brewer, W.; Sandberg, S.; Hardesty, R. Doppler Lidar–Based Wind-Profile Measurement System for Offshore Wind-Energy and Other Marine Boundary Layer Applications. J. Appl. Meteorol. Climatol. 2012, 51, 327–349. [Google Scholar] [CrossRef]
- Gottschall, J.; Wolken-Möhlmann, G.; Lange, B. About offshore resource assessment with floating lidars with special respect to turbulence and extreme events. J. Phys. Conf. Ser. 2014, 555, 12–43. [Google Scholar] [CrossRef]
- Salcedo-Bosch, A.; Rocadenbosch, F.; Gutiérrez-Antuñano, M.A.; Tiana-Alsina, J. Estimation of Wave Period from Pitch and Roll of a Lidar Buoy. Sensors 2021, 21, 1310. [Google Scholar] [CrossRef] [PubMed]
- Salcedo-Bosch, A.; Gutierrez-Antunano, M.A.; Tiana-Alsina, J.; Rocadenbosch, F. Motional Behavior Estimation Using Simple Spectral Estimation: Application to the Off-Shore Wind Lidar. In Proceedings of the 2020 IEEE International Geoscience and Remote Sensing Symposium (IGARSS-2020), Waikoloa, HI, USA, 26 September–2 October 2020. [Google Scholar]
- Gutiérrez-Antuñano, M.; Tiana-Alsina, J.; Salcedo, A.; Rocadenbosch, F. Estimation of the Motion-Induced Horizontal-Wind-Speed Standard Deviation in an Offshore Doppler Lidar. Remote Sens. 2018, 10, 2037. [Google Scholar] [CrossRef] [Green Version]
- Salcedo-Bosch, A.; Gutierrez-Antunano, M.A.; Tiana-Alsina, J.; Rocadenbosch, F. Floating Doppler Wind Lidar Measurement of Wind Turbulence: A Cluster Analysis. In Proceedings of the 2020 IEEE International Geoscience and Remote Sensing Symposium (IGARSS-2020), Waikoloa, HI, USA, 26 September–2 October 2020. [Google Scholar]
- Gutiérrez-Antuñano, M.A.; Tiana-Alsina, J.; Rocadenbosch, F. Performance evaluation of a floating lidar buoy in nearshore conditions. Wind. Energy 2017, 20, 1711–1726. [Google Scholar] [CrossRef] [Green Version]
- Kelberlau, F.; Neshaug, V.; Lønseth, L.; Bracchi, T.; Mann, J. Taking the Motion out of Floating Lidar: Turbulence Intensity Estimates with a Continuous-Wave Wind Lidar. Remote Sens. 2020, 12, 898. [Google Scholar] [CrossRef] [Green Version]
- Gottschall, J.; Gribben, B.; Stein, D.; Würth, I. Floating lidar as an advanced offshore wind speed measurement technique: Current technology status and gap analysis in regard to full maturity. Wiley Interdiscip. Rev. Energy Environ. 2017, 6, e250. [Google Scholar] [CrossRef]
- Mücke, T.; Kleinhans, D.; Peinke, J. Atmospheric turbulence and its influence on the alternating loads on wind turbines. Wind Energy 2011, 14, 301–316. [Google Scholar] [CrossRef]
- Désert, T.; Knapp, G.; Aubrun, S. Quantification and Correction of Wave-Induced Turbulence Intensity Bias for a Floating LIDAR System. Remote Sens. 2021, 13, 2973. [Google Scholar] [CrossRef]
- Gottschall, J.; Wolken-Möhlmann, G.; Viergutz, T.; Lange, B. Results and conclusions of a floating-lidar offshore test. Energy Procedia 2014, 53, 156–161. [Google Scholar] [CrossRef]
- Salcedo-Bosch, A.; Rocadenbosch, F.; Sospedra, J. A Robust Adaptive Unscented Kalman Filter for Floating Doppler Wind-LiDAR Motion Correction. Remote Sens. 2021, 13, 4167. [Google Scholar] [CrossRef]
- Salcedo-Bosch, A.; Rocadenbosch, F.; Sospedra, J. Enhanced Dual Filter for Floating Wind Lidar Motion Correction: The Impact of Wind and Initial Scan Phase Models. Remote Sens. 2022, 14, 4704. [Google Scholar] [CrossRef]
- Tiana-Alsina, J.; Gutiérrez, M.A.; Würth, I.; Puigdefàbregas, J.; Rocadenbosch, F. Motion compensation study for a floating doppler wind lidar. In Proceedings of the Geoscience and Remote Sensing Symposium Proceedings, Milan, Italy, 26–31 July 2015. [Google Scholar]
- Bischoff, O.; Yu, W.; Gottschall, J.; Cheng, P.W. Validating a simulation environment for floating lidar systems. J. Phys. Conf. Ser. 2018, 1037, 052036. [Google Scholar] [CrossRef] [Green Version]
- Salcedo-Bosch, A.; Farré-Guarné, J.; Sala-Álvarez, J.; Villares-Piera, J.; Rocadenbosch, F.; Tanamachi, R.L. Floating Doppler wind lidar simulator for horizontal wind speed measurement error assessment. In Proceedings of the 2021 IEEE International Geoscience and Remote Sensing Symposium (IGARSS-2021), Brussels, Belgium, 11–16 July 2021. [Google Scholar]
- Kelberlau, F.; Mann, J. Quantification of Motion-Induced Measurement Error on Floating Lidar Systems. Atmos. Meas. Tech. Discuss. 2022, 2022, 1–31. [Google Scholar] [CrossRef]
- Sospedra, J.; Cateura, J.; Puigdefàbregas, J. Novel multipurpose buoy for offshore wind profile measurements EOLOS platform faces validation at ijmuiden offshore metmast. Sea Technol. 2015, 56, 25–28. [Google Scholar]
- Scientific, C. ZephIR 300; Technical Report; Campbell Scientific: Edmonton, AB, Canada, 2016. [Google Scholar]
- Pitter, M.; Burin des Roziers, E.; Medley, J.; Mangat, M.; Slinger, C.; Harris, M. Performance Stability of Zephir in High Motion Enviroments: Floating and Turbine Mounted; Technical Report; ZephIR: Ledbury, UK, 2014. [Google Scholar]
- Knoop, S.; Bosveld, F.C.; de Haij, M.J.; Apituley, A. A 2-year intercomparison of continuous-wave focusing wind lidar and tall mast wind measurements at Cabauw. Atmos. Meas. Tech. 2021, 14, 2219–2235. [Google Scholar] [CrossRef]
- Gutiérrez Antuñano, M. Doppler Wind LIDAR Systems Data Processing and Applications: An Overview towards Developing the New Generation of Wind Remote-Sensing Sensors for Off-Shore Wind Farms. Ph.D. Thesis, Universitat Politècnica de Catalunya, Barcelona, Spain, 2019. [Google Scholar]
- KIC InnoEnnergy. Neptune Project Leaflet; Technical Report; KIC InnoEnergy: Eindhoven, The Netherlands, 2015. [Google Scholar]
- MicroStrain. 3DM-GX3® -45 Theory of Operation; Technical Report; 459 Hurricane Lane: Williston, VT, USA, 2012. [Google Scholar]
- Barlow, R.J. Statistics: A Guide to the Use of Statistical Methods in the Physical Sciences; Manchester Physics Series; Wiley: Chichester, UK, 1989. [Google Scholar]
- Pẽnha, A.; Hasager, C.; Merete, B.; Barthelmie, R.; Ferhat, B.; Jean-Pierre, C.; Stefan, E.; Frandsen, S.; Michael, H.; Ioanna, K.; et al. Remote Sensing for Wind Energy; DTU Wind Energy: Roskilde, Denmark, 2015. [Google Scholar]
- Tolstov, J.P. Fourier Series; Prentice-Hall Inc.: Englewood Cliffs, NJ, USA, 1962. [Google Scholar]
- Stearns, S.D.; Hush, D.R. Digital Signal Processing with Examples in MATLAB, 2nd ed.; Taylor & Francis Inc.: Bosa Roca, FL, USA, 2011. [Google Scholar]
- Stade, E. Fourier Analysis, 1st ed.; Wiley-Interscience: Hoboken, NJ, USA, 2015. [Google Scholar]
- Kogaki, T.; Sakurai, K.; Shimada, S.; Kawabata, H.; Otake, Y.; Kondo, K.; Fujita, E. Field Measurements of Wind Characteristics Using LiDAR on a Wind Farm with Downwind Turbines Installed in a Complex Terrain Region. Energies 2020, 13, 5135. [Google Scholar] [CrossRef]
- Palais, B.; Palais, R.; Rodi, S. A Disorienting Look at Euler’s Theorem on the Axis of a Rotation. Am. Math. Mon. 2009, 116, 892–909. [Google Scholar] [CrossRef] [Green Version]
- Roithmayr, C.M.; Hodges, D.H. Dynamics: Theory and Application of Kane’s Method; American Society of Mechanical Engineers Digital Collection; NASA-Langley Research Center: Hampton, VA, USA, 2016.
- Proakis, J.; Manolakis, D. Digital Signal Processing, 4th ed.; Prentice Hall: Upper Saddle River, NJ, USA, 2006. [Google Scholar]
- Plancherel, M.; Leffler, M. Contribution À ĽÉtude de la reprÉsentation D’une fonction arbitraire par des intÉgrales dÉfinies. Rend. Del Circ. Mat. Palermo (1884–1940) 1910, 30, 289–335. [Google Scholar] [CrossRef]
- Yao, G.; Xie, J.; Huang, W. HF Radar Ocean Surface Cross Section for the Case of Floating Platform Incorporating a Six-DOF Oscillation Motion Model. IEEE J. Ocean. Eng. 2021, 46, 156–171. [Google Scholar] [CrossRef]
- Wan, B.; Wu, X.; Yue, X.; Zhang, L.; Wang, L. Calibration of Phased-Array High-Frequency Radar on an Anchored Floating Platform. Remote Sens. 2022, 14, 2174. [Google Scholar] [CrossRef]
- Wagner, R.; Mikkelsen, T.; Courtney, M. Investigation of Turbulence Measurements with a Continuous Wave, Conically Scanning LiDAR; Technical Report; DTU: Roskilde, Denmark, 2009. [Google Scholar]
- Gottschall, J.; Courtney, M.S.; Wagner, R.; Jørgensen, H.E.; Antoniou, I. Lidar profilers in the context of wind energy–a verification procedure for traceable measurements. Wind Energy 2012, 15, 147–159. [Google Scholar] [CrossRef]
- Jeffreys, H.; Taylor, G.I. On the formation of water waves by wind. Proc. R. Soc. Lond. Ser. A Contain. Pap. Math. Phys. Character 1925, 107, 189–206. [Google Scholar] [CrossRef] [Green Version]
- IEA Wind TCP. Available online: https://iea-wind.org/ (accessed on 3 March 2023).
- Task 52—Large-Scale Deployment of Wind Lidar|IEA Wind TCP. Available online: https://iea-wind.org/task52/ (accessed on 3 March 2023).
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Salcedo-Bosch, A.; Farré-Guarné, J.; Araújo da Silva, M.P.; Rocadenbosch, F. A Unified Formulation for the Computation of the Six-Degrees-of-Freedom-Motion-Induced Errors in Floating Doppler Wind LiDARs. Remote Sens. 2023, 15, 1478. https://doi.org/10.3390/rs15061478
Salcedo-Bosch A, Farré-Guarné J, Araújo da Silva MP, Rocadenbosch F. A Unified Formulation for the Computation of the Six-Degrees-of-Freedom-Motion-Induced Errors in Floating Doppler Wind LiDARs. Remote Sensing. 2023; 15(6):1478. https://doi.org/10.3390/rs15061478
Chicago/Turabian StyleSalcedo-Bosch, Andreu, Joan Farré-Guarné, Marcos Paulo Araújo da Silva, and Francesc Rocadenbosch. 2023. "A Unified Formulation for the Computation of the Six-Degrees-of-Freedom-Motion-Induced Errors in Floating Doppler Wind LiDARs" Remote Sensing 15, no. 6: 1478. https://doi.org/10.3390/rs15061478
APA StyleSalcedo-Bosch, A., Farré-Guarné, J., Araújo da Silva, M. P., & Rocadenbosch, F. (2023). A Unified Formulation for the Computation of the Six-Degrees-of-Freedom-Motion-Induced Errors in Floating Doppler Wind LiDARs. Remote Sensing, 15(6), 1478. https://doi.org/10.3390/rs15061478