A Global Remote-Sensing Assessment of the Intersite Variability in the Greening of Coastal Dunes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Selected Coastal Dune Sites
2.2. NDVI Time Series
2.3. Climate Data
3. Results
3.1. NDVI Variability
3.2. Climate Drivers of Dune Greening
4. Discussion
- *
- Sand supply: A few of the investigated dune cases here demonstrated a substantial mobility due to excessive sand supply combined with strong local winds. The sand had either a local origin (e.g., Rubjerg Knude dune, Denmark; dunes on Isle de Madeleine, Canada), or was brought to the dune site through alongshore drift (the Maranhão dunefields, NE Brazil). At the Rubjerg Knude dune, the local climate may support either mobilization or greening, depending on the relative importance of wind and precipitation (, , ); however, [79] argued that strong local winds were responsible for active transport of the abundant sand eroded from the cliff and the inland migration of the dune. Unlimited sediment supply, combined with drier conditions and very strong winds, may be responsible for the here identified mobilization of the Bolonia and Valdevaqueros dune systems (SW Spain) and of Duna de Cresmina (Portugal). In contrast, an increased presence of nebkha dunes in arid conditions indicates a reduced sediment supply [39,80], here reflected in the slowly greening trend at Guerrero Negro.
- *
- Management: Anthropogenic activities may have impacted dune vegetation cover and the dune dynamics at many sites significantly [29], with certain human activities intended for stabilization (e.g., planting, afforestation; [9,81,82]), and others leading to sand mobilization (e.g., introduction of grazers [43,83]; dune rejuvenation programs [20,82]). In general, previous European management practices included widespread stabilization to protect the coast from flooding, with marram grass planting and afforestation to stop migrating sand [9,81,82]. Indeed, the present study corroborated that some of the largest key indices describing dense dune vegetation with a marked seasonality corresponded to dune sites from N and NW Europe. There, many sites also experienced warming temperatures and declining wind speeds. On the other hand, greening in NW European coastal dune sites has also been ascribed to increased atmospheric nitrogen deposition [84,85] and the drastically reduced population of rabbits [86,87]. The latter was also the dominant cause for the greening of the dunes on the Younghusband Peninsula in Australia [12]. Dune management at several sites selected in the present work has recently adopted an approach that aims at stimulating dune mobility. Particular cases of mobile dunes analysed here correspond to management attempts to reactivate the foredunes by removing the vegetation cover. An example is the Dutch barrier island of Terschelling, where the foredune was reactivated in the mid 1990s, and a significant sand burial of the more landward dune area has taken place since [18]. This was detected here in the negative trend of the analysed time series, although the local climate trends were expected to promote greening. Moreover, the change from increasing to decreasing over time in Figure 3b (see also Figure 9a) was due to a dynamic restoration project, here carried out in 2012–2013 [20]. Again, the mobilization persisted (at least until 2021) despite climate conditions favouring vegetation growth.
- *
- Climate state: It is possible that the current climate at several sites has already crossed the threshold of being sufficiently warm, wet or still for coastal dunes to green. This may imply that at such sites further changes in the climatic variables are irrelevant to greening. In other words, sites may not respond simultaneously or in the same way to climate change. The latter may also be caused by the inherent hysteresis of dune mobility to vegetation cover [76]. The same magnitude of change in wind speed may thus affect dune sites with different vegetation cover (in this paper expressed as ) in different ways.
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pye, K. Coastal dunes. Prog. Phys. Geogr. Earth Environ. 1983, 7, 531–557. [Google Scholar] [CrossRef]
- Hesp, P.A. Foredunes and blowouts: Initiation, geomorphology and dynamics. Geomorphology 2002, 48, 245–268. [Google Scholar] [CrossRef]
- Martínez, M.L.; Psuty, N.P.; Lubke, R.A. A perspective on coastal dunes. In Coastal Dunes, Ecology and Conservation; Martínez, M.L., Psuty, N.P., Eds.; Springer: Berlin/Heidelberg, Germany, 2004; Volume 171, Chapter 1. [Google Scholar]
- Arens, S.M.; Wiersma, J. The Dutch foredunes: Inventory and classification. J. Coast. Res. 1994, 10, 189–202. [Google Scholar]
- Everard, M.; Jones, L.; Watts, B. Have we neglected the societal importance of sand dunes? An ecosystem services perspective. Aquat. Conserv. Mar. Freshw. Ecosyst. 2010, 20, 476–487. [Google Scholar] [CrossRef]
- Arens, S.M.; Geelen, L.H.W.T. Dune landscape rejuvenation by intended destabilisation in the Amsterdam Water Supply Dunes. J. Coast. Res. 2006, 225, 1094–1107. [Google Scholar] [CrossRef]
- Barbier, E.B.; Hackers, S.D.; Kennedy, C.; Koch, E.W.; Stier, A.C.; Silliman, B.R. The value of estuarine and coastal ecosystem services. Ecol. Monogr. 2011, 81, 169–183. [Google Scholar] [CrossRef]
- Jackson, N.L.; Nordstrom, K.F. Aeolian sediment transport and landforms in managed coastal systems: A review. Aeolian Res. 2011, 3, 181–196. [Google Scholar] [CrossRef]
- Provoost, S.; Laurence, M.; Jones, M.; Edmondson, S.E. Changes in landscape and vegetation of coastal dunes in Northwest Europe: A review. J. Coast. Conserv. 2011, 15, 207–226. [Google Scholar] [CrossRef]
- Rhind, P.; Jones, R.; Jones, L. The impact of dune stabilization on the conservation status of sand dune systems in Wales. In Restoration of Coastal Dunes; Martinez, M.L., Gallego-Fernandez, J.B., Hesp, P.A., Eds.; Springer: Berlin/Heidelberg, Germany, 2013; Chapter 8; pp. 125–143. [Google Scholar] [CrossRef]
- Delgado-Fernandez, I.; O’Keeffe, N.; Davidson-Arnott, R.G.D. Natural and human controls on dune vegetation cover and disturbance. Sci. Total Environ. 2019, 672, 643–656. [Google Scholar] [CrossRef]
- Moulton, M.A.B.; Hesp, P.A.; Miot da Silva, G.; Bouchez, C.; Lavy, M.; Fernandez, G.B. Changes in vegetation cover on the Younghusband Peninsula transgressive dunefields (Australia) 1949–2017. Earth Surf. Process. Landforms 2019, 44, 459–470. [Google Scholar] [CrossRef]
- McKeehan, K.G.; Arbogast, A.F. Repeat photography of Lake Michigan coastal dunes: Expansion of vegetation since 1900 and possible drivers. J. Great Lakes Res. 2021, 47, 1518–1537. [Google Scholar] [CrossRef]
- Gao, J.; Kennedy, D.M.; Konlechner, T.M.; McSweeney, S.; Chiaradia, A.; McGuirk, M. Changes in the vegetation cover of transgressive dune fields: A case study in Cape Woolamai, Victoria. Earth Surf. Process. Landforms 2022, 47, 778–792. [Google Scholar] [CrossRef]
- Hesp, P.A.; Thom, B.G. Geomorphology and evolution of active transgressive dunefields. In Coastal Dunes—Form and Processes; Nordstrom, K.F., Psuty, N., Carter, B., Eds.; John Wiley & Sons Ltd.: Chichester, UK, 1990; Chapter 12; pp. 253–288. [Google Scholar]
- Arens, S.M.; Slings, Q.L.; Geelen, L.H.W.T.; Van der Hagen, H.G.J.M. Restoration of dune mobility in the Netherlands. In Restoration of Coastal Dunes; Martinez, M.L., Gallego-Fernandez, J.B., Hesp, P.A., Eds.; Springer: Berlin/Heidelberg, Germany, 2013; Chapter 7; pp. 107–124. [Google Scholar] [CrossRef]
- Kooijman, A.M.; Van der Meulen, F. Grazing as a control against ’grass-encroachment’ in dry dune grasslands in the Netherlands. Landsc. Urban Plan. 1996, 34, 232–333. [Google Scholar] [CrossRef]
- Arens, S.M.; Mulder, J.P.M.; Slings, Q.L.; Geelen, L.H.W.T.; Damsma, P. Dynamic dune management, integrating objectives of nature development and coastal safety: Examples from the Netherlands. Geomorphology 2013, 199, 205–213. [Google Scholar] [CrossRef]
- Konlechner, T.M.; Ryu, W.; Hilton, M.J.; Sherman, D.J. Evolution of foredune texture following dynamic restoration, Doughboy Bay, Stewart Island, New Zealand. Aeolian Res. 2015, 19, 208–214. [Google Scholar] [CrossRef]
- Ruessink, B.G.; Arens, S.M.; Kuipers, M.; Donker, J.J.A. Coastal dune dynamics in response to excavated foredune notches. Aeolian Res. 2018, 31, 3–17. [Google Scholar] [CrossRef]
- Feagin, R.A.; Furman, M.; Salgado, K.; Martinez, M.L.; Innocenti, R.A.; Eubanks, K.; Figlus, J.; Huff, T.P.; Sigren, J.; Silva, R. The role of beach and sand dune vegetation in mediating wave run up erosion. Estuar. Coast. Shelf Sci. 2019, 219, 97–106. [Google Scholar] [CrossRef]
- Jackson, D.W.T.; Costas, S.; González-Villanueva, R.; Cooper, A. A global ’greening’ of coastal dunes: An integrated consequence of climate change? Glob. Planet. Chang. 2019, 182, 103026. [Google Scholar] [CrossRef]
- De Battisti, D.; Griffin, J.N. Below-ground biomass of plants, with a key contribution of buried shoots, increases foredune resistance to wave swash. Ann. Bot. 2020, 125, 325–333. [Google Scholar] [CrossRef]
- Petersen, P.S.; Hilton, M.J.; Wakes, S.J. Evidence of aeolian sediment transport across an Ammophila arenaria-dominated foredune, Mason Bay, Stewart Island. N. Z. Geogr. 2011, 67, 174–189. [Google Scholar] [CrossRef]
- Schwarz, C.; Van Starrenburg, C.; Donker, J.; Ruessink, G. Wind and sand transport across a vegetated foredune slope. J. Geophys. Res.-Earth Surf. 2021, 125, 18. [Google Scholar] [CrossRef]
- Cooper, J.A.G.; Masselink, G.; Coco, G.; Short, A.D.; Castelle, B.; Rogers, K.; Anthony, E.; Green, A.N.; Kelley, J.T.; Pilkey, O.H.; et al. Sandy beaches can survive sea-level rise. Nat. Clim. Chang. 2020, 10, 993–995. [Google Scholar] [CrossRef]
- Brunbjerg, A.K.; Svenning, J.C.; Ejrnaes, R. Experimental evidence for disturbance as key to the conservation of dune grassland. Biol. Conserv. 2014, 174, 101–110. [Google Scholar] [CrossRef]
- Elmqvist, T.; Folke, C.; Nyström, M.; Peterson, G.; Bengtsson, J.; Walker, B.; Norberg, J. Response diversity, ecosystem change, and resilience. Front. Ecol. Environ. 2003, 1, 488–494. [Google Scholar] [CrossRef]
- Gao, J.; Kennedy, D.M.; Konlechner, T.M. Coastal dune mobility over the past century: A global review. Prog. Phys. Geogr. 2020, 44, 814–836. [Google Scholar] [CrossRef]
- Petrova, P.G. A Global Remote-Sensing Assessment of the Mobility of Coastal Dunes. Master’s Thesis, Department of Physical Geography, Faculty of Geosciences, Utrecht University, Utrecht, The Netherlands, 2022. [Google Scholar]
- Kroon, A.; De Schipper, M.; De Vries, S.; Aarninkhof, S. Subaqueous and subaerial beach changes after implementation of a mega nourishment in front of a sea dike. J. Mar. Sci. Eng. 2022, 10, 1152. [Google Scholar] [CrossRef]
- Clemmensen, L.B.; Hansen, K.W.T.; Kroon, A. Storminess variation at Skagen, northern Denmark since AD 1860: Relations to climate change and implications for coastal dunes. Aeolian Res. 2014, 15, 101–112. [Google Scholar] [CrossRef]
- Clarke, M.; Rendell, H.; Tastet, J.P.; Clave, B.; Masse, L. Late-Holocene sand invasion and North Atlantic storminess along the Aquitaine coast, southwest France. Holocene 2002, 12, 231–238. [Google Scholar] [CrossRef]
- Pye, K.; Blott, S.J.; Howe, M.A. Coastal dune stabilization in Wales and requirements for rejuvenation. J. Coast. Conserv. 2014, 18, 27–54. [Google Scholar] [CrossRef]
- Sytnik, O.; Stecchi, F. Disappearing coastal dunes: Tourism development and future challenges, a case-study from Ravenna, Italy. J. Coast. Conserv. 2015, 19, 715–727. [Google Scholar] [CrossRef]
- Pagán, J.I.; López, I.; Aragonés, L.; Garcia-Barba, J. The effects of the anthropic actions on the sandy beaches of Guardamar del Segura, Spain. Sci. Total Environ. 2017, 601, 1364–1377. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jackson, D.W.T.; Cooper, J.A.G. Coastal dune fields in Ireland: Rapid regional response to climatic change. J. Coast. Res. 2011, 64, 293–297. [Google Scholar]
- Costas, S.; Naughton, F.; Goble, R.; Renssen, H. Windiness spells in SW Europe since the last glacial maximum. Earth Planet. Sci. Lett. 2016, 436, 82–92. [Google Scholar] [CrossRef]
- García-Romero, L.; Delgado-Fernández, I.; Hesp, P.A.; Hernández-Calvento, L.; Hernández-Cordero, A.I.; Viera-Pérez, M. Biogeomorphological processes in an arid transgressive dunefield as indicators of human impact by urbanization. Sci. Total Environ. 2019, 650, 73–86. [Google Scholar] [CrossRef] [PubMed]
- Navarro-Pons, M.; Muñoz-Pérez, J.J.; Román-Sierra, J.; García, S. Evidencias del incremento en la movilidad de dunas costeras en el último medio siglo como respuesta a la intervención humana. Sci. Mar. 2016, 80, 261–272. [Google Scholar] [CrossRef] [Green Version]
- Tastet, J.P.; Pontee, N.I. Morpho-chronology of coastal dunes in Medoc. A new interpretation of Holocene dunes in southwestern France. Geomorphology 1998, 25, 93–109. [Google Scholar] [CrossRef]
- Jimenez, J.A.; Maia, L.P.; Serra, J.; Morais, J. Aeolian dune migration along the Cearâ coast, north-eastern Brazil. Sedimentology 1999, 46, 689–701. [Google Scholar] [CrossRef]
- del Valle, H.F.; Rostagno, C.M.; Coronato, F.R.; Bouza, P.J.; Blanco, P.D. Sand dune activity in north-eastern Patagonia. J. Arid. Environ. 2008, 72, 411–422. [Google Scholar] [CrossRef]
- da Silva, G.M.; Martinho, C.T.; Hesp, P.; Keim, B.D.; Ferligoj, Y. Changes in dunefield geomorphology and vegetation cover as a response to local and regional climate variations. J. Coast. Res. 2013, 65, 1307–1312. [Google Scholar] [CrossRef]
- Hilbert, N.N.; Guedes, C.C.F.; Giannini, P.C.F. Morphologic and sedimentologic patterns of active aeolian dune-fields on the east coast of Maranhão, northeast Brazil. Earth Surf. Process. Landforms 2016, 41, 87–97. [Google Scholar] [CrossRef]
- Nehren, U.; Thai, H.H.D.; Marfai, M.A.; Raedig, C.; Alfonso, S.; Sartohadi, J.; Castro, C. Ecosystem services of coastal dune systems for hazard mitigation: Case studies from Vietnam, Indonesia, and Chile. In Ecosystem-Based Disaster Risk Reduction and Adaptation in Practice; Springer: Cham, Switzerland, 2016; Chapter 18; pp. 401–433. [Google Scholar] [CrossRef]
- Reckendorf, F.; Leach, D.; Baum, R.; Carlson, J. Stabilization of sand dunes in Oregon. Agric. Hist. 1985, 59, 260–268. [Google Scholar]
- Girardi, J.D.; Davis, D.M. Parabolic dune reactivation and migration at Napeague, NY, USA: Insights from aerial and GPR imagery. Geomorphology 2010, 114, 530–541. [Google Scholar] [CrossRef]
- Mathew, S.; Davidson-Arnott, R.G.D.; Ollerhead, J. Evolution of a beach-dune system following a catastrophic storm overwash event: Greenwich Dunes, Prince Edward Island, 1936-2005. Can. J. Earth Sci. 2010, 47, 273–290. [Google Scholar] [CrossRef]
- Jewell, M.; Houser, C.; Trimble, S. Initiation and evolution of blowouts within Padre Island National Seashore, Texas. Ocean. Coast. Manag. 2015, 95, 155–164. [Google Scholar] [CrossRef]
- Huang, H.; Zinnert, J.C.; Wood, L.K.; Young, D.R.; D’Odorico, P. Non-linear shift from grassland to shrubland in temperate barrier islands. Ecology 2018, 99, 1671–1681. [Google Scholar] [CrossRef] [Green Version]
- Pickart, A.J.; Hesp, P.A. Spatio-temporal geomorphological and ecological evolution of a transgressive dunefield system, Northern California, USA. Glob. Planet. Chang. 2019, 172, 88–103. [Google Scholar] [CrossRef]
- Ajedegba, J.O.; Perotto-Baldivieso, H.L.; Jones, K.D. Coastal Dune Vegetation Resilience on South Padre Island, Texas: A Spatiotemporal Evaluation of the Landscape Structure. J. Coast. Res. 2019, 35, 534–544. [Google Scholar] [CrossRef]
- Gaspar de Freitas, J. Dune(s): Fiction, history, and science on the Oregon coast. Anthr. Rev. 2021, 9, 443–461. [Google Scholar] [CrossRef]
- Harris, L.; Nel, R.; Schoeman, D. Mapping beach morphodynamics remotely: A novel application tested on South African sandy shores. Estuarine Coast. Shelf Sci. 2011, 92, 78–89. [Google Scholar] [CrossRef]
- Miguel, L.L.A.J.; Castro, J.W.A. Aeolian dynamics of transgressive dunefields on the southern Mozambique coast, Africa. Earth Surf. Process. Landforms 2018, 43, 2533–2546. [Google Scholar] [CrossRef]
- Vimpere, L.; Kindler, P.; Castelltort, S. Chevrons: Origin and relevance for the reconstruction of past wind regimes. Earth-Sci. Rev. 2019, 193, 317–332. [Google Scholar] [CrossRef]
- Hilton, M.J. The loss of New Zealand’s active dunes and the spread of marram grass (Ammophila arenaria). N. Z. Geogr. 2006, 62, 105–120. [Google Scholar] [CrossRef]
- Tribe, H.M.; Kennedy, D.M. The geomorphology and evolution of a large barrier spit: Farewell Spit, New Zealand. Earth Surf. Process. Landforms 2010, 35, 1751–1762. [Google Scholar] [CrossRef]
- Levin, N. Climate-driven changes in tropical cyclone intensity shape dune activity on Earth’s largest sand island. Geomorphology 2011, 125, 239–252. [Google Scholar] [CrossRef]
- Levin, N.; Jablon, P.E.; Phinn, S.; Collins, K. Coastal dune activity and foredune formation on Moreton Island, Australia, 1944-2015. Aeolian Res. 2017, 25, 107–121. [Google Scholar] [CrossRef]
- Mujabar, P.S.; Chandrasekar, N. Dynamics of coastal landform features along the southern Tamil Nadu of India by using remote sensing and Geographic Information System. Geocarto Int. 2012, 27, 347–370. [Google Scholar] [CrossRef]
- Fryberger, S.G.; Krystinik, L.F.; Schenk, C.J. Tidally flooded back-barrier dunefield, Guerrero Negro area, Baja California, Mexico. Sedimentology 1990, 37, 23–43. [Google Scholar] [CrossRef]
- Sayre, R.; Karagulle, D.; Frye, C.; Boucher, T.; Wolff, N.H.; Breyer, S.; Wright, D.; Martin, M.; Butler, K.; Van Graafeiland, K.; et al. An assessment of the representation of ecosystems in global protected areas using new maps of World Climate Regions and World Ecosystems. Glob. Ecol. Conserv. 2020, 21, e00860. [Google Scholar] [CrossRef]
- Huntington, J.L.; Hegewisch, K.C.; Daudert, B.; Morton, C.G.; Abatzoglou, J.T.; McEvoy, D.J.; Erickson, T. Climate Engine–Cloud computing and visualization of climate and remote sensing data for advanced natural resource monitoring and process understanding. Bull. Am. Meteorol. Soc. 2017, 2397–2409. [Google Scholar] [CrossRef]
- Gorelick, N.; Hancher, M.; Dixon, M.; Illyshchenko, S.; Thau, D.; Moore, R. Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sens. Environ. 2017, 202, 18–27. [Google Scholar] [CrossRef]
- Martínez, B.; Gilabert, M.A. Vegetation dynamics from NDVI time series analysis using the wavelet transform. Remote Sens. Environ. 2009, 113, 1823–1842. [Google Scholar] [CrossRef]
- Ghaderpour, E.; Vujadinovic, T. Change detection within remotely sensed satellite image time series via spectral analysis. Remote Sens. 2020, 12, 4001. [Google Scholar] [CrossRef]
- Ghaderpour, E. JUST: MATLAB and Python software for change detection and time series analysis. GPS Solut. 2021, 25, 85. [Google Scholar] [CrossRef]
- Awty-Carroll, K.; Bunting, P.; Hardy, A.; Bell, G. An evaluation and comparison of four dense time series change detection methods using simulated data. Remote Sens. 2019, 11, 2779. [Google Scholar] [CrossRef] [Green Version]
- Ghaderpour, E.; Pagiatakis, S.D.; Hassan, Q.K. A survey on change detection and time series analysis with applications. Appl. Sci. 2021, 11, 6141. [Google Scholar] [CrossRef]
- Ghaderpour, E.; Liao, W.; Lamoureux, M.P. Antileakage least-squares spectral analysis for seismic data regularization and random noise attenuation. Geophysics 2018, 83, 157–170. [Google Scholar] [CrossRef]
- Gocic, M.; Trajkovic, S. Analysis of changes in meteorological variables using Mann-Kendall and Sen’s slope estimator statistical tests in Serbia. Glob. Planet. Chang. 2013, 100, 172–182. [Google Scholar] [CrossRef]
- Sen, P.K. Estimates of the regression coefficient based on Kendall’s tau. J. Am. Stat. Assoc. 1968, 63, 1379–1389. [Google Scholar] [CrossRef]
- Lancaster, N.; Helm, P. A test of a climatic index of dune mobility using measurements from the southwestern United States. Earth Surf. Process. Landforms 2000, 25, 197–207. [Google Scholar] [CrossRef]
- Tsoar, H. Sand dunes mobility and stability in relation to climate. Phys. A Stat. Mech. Its Appl. 2005, 357, 50–56. [Google Scholar] [CrossRef]
- Tsoar, H.; Levin, N.; Porat, N.; Maia, L.P.; Herrmann, H.J.; Tatumi, S.H.; Claudino-Sales, V. The effect of climate change on the mobility and stability of coastal sand dunes in Ceará State (NE Brazil). Quat. Res. 2009, 71, 217–226. [Google Scholar] [CrossRef]
- Yizhaq, H.; Ashkenazy, Y.; Tsoar, H. Sand dune dynamics and climate change: A modeling approach. J. Geophys. Res.-Earth Surf. 2009, 114, F01023. [Google Scholar] [CrossRef] [Green Version]
- Gabarrou, S.; Le Cozannet, G.; Parteli, E.J.R.; Pedreros, R.; Guerber, E.; Millescamps, B.; Mallet, C.; Oliveros, C. Modelling the retreat of a coastal dune under changing winds. J. Coast. Res. 2018, 85, 166–170. [Google Scholar] [CrossRef]
- Hesp, P.A.; Hernández-Calvento, L.; Gallego-Fernández, J.B.; Miot da Silva, G.; Hernández-Cordero, A.I.; Ruz, M.H.; Romero, L.G. Nebkha or not? -Climate control on foredune mode. J. Arid. Environ. 2021, 187. [Google Scholar] [CrossRef]
- Arens, S.M.; Löffler, M.A.M.; Nuijen, E.M. Evaluatie Dynamisch Kustbeheer Friese Waddeneilanden; Technical Report Arens BSDO RAP2006.04; Arens BSDO: Amsterdam, The Netherlands, 2007. (In Dutch) [Google Scholar]
- Pye, K.; Blott, S.J.; Forbes, N.; Maskell, L.C. Geomorphological and ecological change in a coastal foreland dune system, Sandscale Haws, Cumbria, UK: The management challenges posed by climate change. J. Coast. Conserv. 2020, 24, 64. [Google Scholar] [CrossRef]
- Pye, K.; Blott, S.J. Evolution of a sediment-starved, over-stabilized dunefield: Kenfig Burrows, South Wales, UK. J. Coast. Conserv. 2017, 21, 685–717. [Google Scholar] [CrossRef]
- Veer, M.A.C. Nitrogen availability in relation to vegetation changes resulting from grass encroachment in Dutch dry dunes. J. Coast. Conserv. 1997, 3, 41–48. [Google Scholar] [CrossRef]
- Kooijman, A.M.; Van Til, M.; Noordijk, E.; Remke, E.; Kalbitz, K. Nitrogen deposition and grass encroachment in calcareous and acidic Grey dunes (H2130) in NW-Europe. Biol. Conserv. 2017, 212, 406–415. [Google Scholar] [CrossRef]
- Ranwell, D.S. Newborough Warren, Anglesey: III. Changes in the vegetation on parts of the dune system after the loss of rabbits by Myxomatosis. J. Ecol. 1960, 48, 385–395. [Google Scholar] [CrossRef]
- van der Hagen, H.G.J.M.; van Rooijen, N.; Schaminée, J.H.J. Forty years of rabbit influence on vegetation development in the coastal dunes of Meijendel, the Netherlands. In Proceedings of the 2017 Littoral Conference ‘Change, Naturalness and People’, Liverpool, UK, 5–7 September 2017; pp. 90–116. [Google Scholar]
0–0.003 | 0.003–0.006 | 0.006–0.009 | >0.009 | Total | ||
---|---|---|---|---|---|---|
≤0.3 | 51 | 27 | 8 | 3 | 89 | |
>0.3 | 18 | 42 | 10 | 3 | 73 | |
Total | 69 | 69 | 18 | 6 | 162 |
First Part | Second Part | Total | Accelerated | Decelerated |
---|---|---|---|---|
133 | 86 | 47 | ||
7 | 2 | 5 | ||
8 | 2 | 6 | ||
31 | 23 | 8 |
Variable | # Significant | # Significant | # Not Significant |
---|---|---|---|
Greening dune sites (162) | |||
Average daily temperature T | 158 | 1 | 3 |
Accumulated daily precipitation P | 67 | 63 | 32 |
Average daily wind speed W | 59 | 63 | 40 |
Mobilizing dune sites (17) | |||
Average daily temperature T | 16 | 0 | 1 |
Accumulated daily precipitation P | 7 | 10 | 0 |
Average daily wind speed W | 8 | 6 | 3 |
Conditions | # Cases | Interpretation |
---|---|---|
Greening dune sites with (158) | ||
, , | 50 | Greening |
, , | 30 | Mobilizing/greening |
, , | 35 | Mobilizing/greening |
, , | 43 | Mobilizing |
Mobilizing dune sites with (16) | ||
, , | 4 | Greening |
, , | 3 | Mobilizing/greening |
, , | 3 | Mobilizing/greening |
, , | 6 | Mobilizing |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Petrova, P.G.; de Jong, S.M.; Ruessink, G. A Global Remote-Sensing Assessment of the Intersite Variability in the Greening of Coastal Dunes. Remote Sens. 2023, 15, 1491. https://doi.org/10.3390/rs15061491
Petrova PG, de Jong SM, Ruessink G. A Global Remote-Sensing Assessment of the Intersite Variability in the Greening of Coastal Dunes. Remote Sensing. 2023; 15(6):1491. https://doi.org/10.3390/rs15061491
Chicago/Turabian StylePetrova, Petya G., Steven M. de Jong, and Gerben Ruessink. 2023. "A Global Remote-Sensing Assessment of the Intersite Variability in the Greening of Coastal Dunes" Remote Sensing 15, no. 6: 1491. https://doi.org/10.3390/rs15061491
APA StylePetrova, P. G., de Jong, S. M., & Ruessink, G. (2023). A Global Remote-Sensing Assessment of the Intersite Variability in the Greening of Coastal Dunes. Remote Sensing, 15(6), 1491. https://doi.org/10.3390/rs15061491