An Aftershock Deletion Method Based on Fault Buffer Zone
Abstract
:1. Introduction
2. Aftershock Deletion Algorithm Based on “Fault Buffer Zone”
- (1)
- The seismogenic fault closest to the mainshock was identified through a geological survey or focal mechanism solution, simplified into a linear unit.
- (2)
- The length of the seismogenic fault.
- (3)
- The buffer distance of the fault buffer zone.
2.1. Determining the Seismogenic Fault and Its Length Related to the Mainshock
2.2. Determination of Fault Buffer Distance
3. Statistical Results and Discussion
3.1. Verification of 7.0~7.1 Earthquake Fault Buffer Zone
3.2. Verification of 7.2 Earthquake Fault Buffer Zone
3.3. Verification of 7.4(7.4) Earthquake Fault Buffer Zone
3.4. Verification of 7.6(7.6) Earthquake Fault Buffer Zone
3.5. Verification of 8.0(8.0) Earthquake Fault Buffer Zone
4. Test of Fault Buffer Zone of Mainshock and Discussion
5. Conclusions
- We conducted a statistical analysis of earthquakes with magnitudes of 7.0~8.0 in mainland China since 1980 and divided the 20 earthquakes into six groups for analysis, ranging from 7.0, 7.1, 7.2, 7.4, 7.6, and 8.0 (6.6–8.0 and for earthquakes above magnitude 7 or , is approximately equal to ). By using a trial-and-error method, we established an empirical formula for the fault buffer distance. Our trials on the aftershock deletion of other magnitude earthquakes above 5.9 show that this empirical formula is also effective, and the deleted aftershock sequences are accurately clustered using the fault buffer zone-based spatial window method. We compared our method with the K-K method and found that our method is applicable for deleting aftershocks at different magnitudes.
- The test results show that the proposed fault buffer zone-based method improves on the traditional K-K method by taking into account relationships between earthquake magnitude and fault rupture length, increasing the accuracy of aftershock selection. The results of aftershock deletion using this method show good agreement with the actual earthquake occurrence distribution.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chaudhary, M.T.; Piracha, A. Natural Disasters—Origins, Impacts, Management. Encyclopedia 2021, 1, 1101–1131. [Google Scholar] [CrossRef]
- Kamranzad, F.; Memarian, H.; Zare, M. Earthquake Risk Assessment for Tehran, Iran. ISPRS Int. J. Geoinf. 2020, 9, 430. [Google Scholar] [CrossRef]
- Devries, P.M.R.; Viégas, F.; Wattenberg, M.; Meade, B.J. Deep learning of aftershock patterns following large earthquakes. Nature 2018, 560, 632–634. [Google Scholar] [CrossRef] [PubMed]
- Gardner, J.K.; Knopoff, L. Is the sequence of earthquakes in Southern California, with aftershocks removed, Poissonian? Bull. Seismol. Soc. Am. 1974, 64, 1363–1367. [Google Scholar] [CrossRef]
- Taroni, M.; Akinci, A. Good practices in PSHA: Declustering, b-value estimation, foreshocks and aftershocks inclusion; A case study in Italy. Geophys. J. Int. 2021, 224, 1174–1187. [Google Scholar] [CrossRef]
- Shilen, S.; Toksoz, M.N. A statistical method of identifying dependent events and earthquake aftershocks. Seismol. Res. Lett. 1974, 45, 3–16. [Google Scholar] [CrossRef]
- Sheng, J.Q.; Ma, Q.H.; Ren, X.M.; Zhao, W.M. Aftershock deletion method based on comparison of regional seismic activity frequency. Earthquake 2007, 27, 85–94. [Google Scholar]
- Chen, L.; Liu, J.; Chen, Y.; Chen, L.S. Deletion of aftershocks in seismic activity analysis. Chin. J. Geophys. 1998, 41 (Suppl. 1), 244–252. (In Chinese) [Google Scholar]
- Knopoff, L.; Gardner, J.K. Higher seismic activity during local night on the raw worldwide earthquake catalogue. Geophys. J. Int. 1972, 3, 3. [Google Scholar] [CrossRef] [Green Version]
- Shlien, S. A clustering model for earthquake occurrences. Bull. Seismol. Soc. Am. 1970, 60, 1765–1787. [Google Scholar]
- Console, R.; Gasparini, C.; Simoni, B.D.; Marcelli, L.; Vecchi, M. Preambolo al catalogo sismico nazionale (csn). i criteri di informazione del catalogo sismico nazionale (csn). Ann. Geophys. 1979, 32, 37–77. [Google Scholar] [CrossRef]
- Keilis-Borok, V.I.; Knopoff, L.; Rotvain, I.M. Bursts of aftershocks, long-term precursors of strong earthquakes. Nature 1980, 283, 259–263. [Google Scholar] [CrossRef]
- Davis, S.D.; Cliff, F. Single-link cluster analysis, synthetic earthquake catalogues, and aftershock identification. Geophys. J. Int. 1991, 2, 289–306. [Google Scholar] [CrossRef] [Green Version]
- Zhuang, J.; Ogata, Y.; Vere-Jones, D. Stochastic declustering of space-time earthquake occurrences. J. Am. Stat. Assoc. 2002, 97, 369–380. [Google Scholar] [CrossRef]
- Zaliapin, I.; Ben-Zion, Y. Earthquake clusters in southern California I: Identification and stability. J. Geophys. Res. Solid Earth. 2013, 118, 2847–2864. [Google Scholar] [CrossRef]
- Zaliapin, I.; Ben-Zion, Y. Earthquake declustering using the nearest-neighbor approach in space-time-magnitude domain. J. Geophys. Res. Solid Earth. 2020, 125, e2018JB017120. [Google Scholar] [CrossRef]
- Zaliapin, I.; Ben-Zion, Y. Perspectives on clustering and declustering of earthquakes. Seismol. Res. Lett. 2022, 93, 386–401. [Google Scholar] [CrossRef]
- Rosson, Z.; Walter, J.I.; Goebel, T.; Chen, X. Narrow spatial aftershock zones for induced earthquake sequences in Oklahoma. Geophys. Res. Lett. 2019, 46, 10358–10366. [Google Scholar] [CrossRef] [Green Version]
- Baiesi, M.; Paczuski, M. Scale-free networks of earthquakes and aftershocks. Phys. Rev. E—Stat. Phys. Plasmas Fluids Relat. Interdiscip. Top. 2004, 69, 8. [Google Scholar] [CrossRef] [Green Version]
- Dascher-Cousineau, K.; Brodsky, E.E.; Lay, T.; Goebel, T. What controls variations in aftershock productivity? J. Geophys. Res. Solid Earth. 2020, 125, e2019JB018111. [Google Scholar] [CrossRef]
- Zhan, Z.; Jin, B.; Wei, S.; Graves, R.W. Coulomb stress change sensitivity due to variability in mainshock source models and receiving fault parameters: A case study of the 2010–2011 Christchurch, New Zealand, earthquakes. Seismol. Res. Lett. 2011, 82, 800–814. [Google Scholar] [CrossRef] [Green Version]
- Sboras, S.; Lazos, I.; Mouzakiotis, E.; Karastathis, V.; Pavlides, S.; Chatzipetros, A. Fault modelling, seismic sequence evolution and stress transfer scenarios for the July 20, 2017 (MW 6.6) Kos–Gökova Gulf earthquake, SE Aegean. Acta Geophys. 2020, 68, 1245–1261. [Google Scholar] [CrossRef]
- Laurenti, L.; Tinti, E.; Galasso, F.; Franco, L.; Marone, C. Deep learning for laboratory earthquake prediction and autoregressive forecasting of fault zone stress. Earth Planet Sci. Lett. 2022, 598, 117825. [Google Scholar] [CrossRef]
- Lazos, I.; Pikridas, C.; Chatzipetros, A.; Pavlides, S. Determination of local active tectonics regime in central and northern Greece, using primary geodetic data. Appl. Geomat. 2021, 13 (Suppl. 1), 3–17. [Google Scholar] [CrossRef]
- Guo, Z.J.; Qin, B.Y.; Xu, W.Y.; Tang, Q. Preliminary study on a model for the development of the focus of an earthquake. Chin. J. Geophys. 1973, 16, 43–48. [Google Scholar]
- Wells, D.; Coppersmith, K. New Empirical Relationships among Magnitude, Rupture Length, Rupture Width, Rupture Area, and Surface Displacement. Bull. Seismol. Soc. Am. 1994, 84, 974–1002. [Google Scholar]
- Deng, Q.D.; Zhang, P.Z.; Ran, Y.K.; Yang, X.P.; Min, W.; Chen, L.C. Active tectonics and earthquake activities in China. Earth Sci. Front. 2003, 10 (Suppl. 1), 66–73. [Google Scholar]
- Chen, J.; Li, T.; Sun, J.B.; Fang, J.H.; Yao, Y.; Li, Y.H.; Wang, H.R.; Fu, B. Coseismic surface ruptures and seismogenic Muji fault of the 25 November 2016 Arketao Mw6. 6 earthquake in northern Pamir. Seismol. Geol. 2016, 38, 1160–1174. [Google Scholar]
- Zhou, H.L. Source mechanism of earthquake (Nov.5, 1988) located between Xiji and Totohe Bark in Qinghai Province. Earthq. Res. China. 1995, 11, 84–91. (In Chinese) [Google Scholar]
- Li, Z.H.; Ma, H.S.; Qu, Y.J. Study on seismogenic structure and seismic activity characteristics before the Yutian M7.3 earthquake on March 21, 2008, Xinjiang. Earthq. Res. China. 2009, 25, 199–205. (In Chinese) [Google Scholar]
- Xu, P.S.; Liu, Z.F.; Zhang, Z.Q.; Li, J.; Liu, L.F.; Su, Y.J. Double difference relocation and focal mechanisms of the Jinggu Ms6.6 earthquakes sequences in Yunnan Province in 2014. Earth Sci.—J. China Univ. Geosci. 2015, 40, 1741–1754. (In Chinese) [Google Scholar]
- Wei, W.; Xie, C.; Zhou, B.; Zhi, G.; Wang, Y. Location of the mainshock and aftershock sequences of the M6.9 Mainling earthquake, Tibet. Chin. Sci. Bull. 2018, 63, 1493–1501. (In Chinese) [Google Scholar] [CrossRef] [Green Version]
- Luo, F.Z.; Qu, Y.J.; Wang, J. Study on the M7.1 earthquake at the mouth of Kalakunlun MT. in Hetian, Xinjiang on Nov.19, 1996. Inland Earthq. 2003, 17, 33–38. (In Chinese) [Google Scholar]
- Wu, W.W.; Wei, Y.L.; Long, F.; Liang, M.J.; Chen, X.F.; Sun, W.; Zhao, J. Study on source parameters of the 8 August 2017 M7.0 Jiuzhaigou earthquake and its aftershocks, Northern Sichuan. Seismol. Geol. 2020, 42, 492–512. [Google Scholar]
- Shao, Z.G.; Ma, H.S.; Zhang, L.P.; Huang, J.P.; Wen, X.Z. The characteristics of co-seismic slip and aftershocks distribution of the Ms7.1 earthquake at Qinghai Yushu in 2010 and its relationship with tectonics. Chin. J. Geophys. 2013, 56, 3800–3810. (In Chinese) [Google Scholar]
- Lei, J.; Zhao, D. Structural heterogeneity of the Longmenshan fault zone and the mechanism of the 2008 Wenchuan earthquake (Ms8.0). Geochem. Geophys. Geosyst. 2009, 10. [Google Scholar] [CrossRef]
- Klimenko, M.V.; Klimenko, V.V.; Zakharenkova, I.E.; Pulinets, S.A.; Zhao, B.; Tsidilina, M.N. Formation mechanism of great positive TEC disturbances prior to Wenchuan earthquake on May 12, 2008. Adv. Space Res. 2011, 48, 488–499. [Google Scholar] [CrossRef]
- Chen, M. Aftershocks and Background Seismicity in Tangshan and the Rest of North China. J. Geophys. Res. Solid Earth 2021, 126, e2020JB021395. [Google Scholar] [CrossRef]
2.0–2.5 | 30 | 6 | 5.0–5.5 | 50 | 183 |
2.5–3.5 | 30 | 12 | 5.5–6.5 | 50 | 365 |
3.5–4.0 | 40 | 23 | 6.5–7.0 | 100 | 548 |
4.0–4.5 | 40 | 46 | 7.0–7.5 | 100 | 730 |
4.5–5.0 | 40 | 92 | 7.5–8.0 | 150 | 913 |
ID | Date | Location | Target Fault | Buffer Distance (km) | |||
---|---|---|---|---|---|---|---|
Longitude | Latitude | Depth | |||||
a | 7.0 | 25 November 2016 | 74.1° | 39.2° | 10 | Muji fault | 36 |
b | 7.1 | 5 November 1988 | 90.7° | 32.9° | / | Chibu zhangcuo -zhasa fault | 39 |
c | 7.1 | 26 April 1990 | 100.13° | 36.12° | 29 | Northern margin fault of Gonghe basin | 39 |
d | 7.1 | 5 October 2008 | 74.03° | 39.45° | 10 | Kazikearte fault | 39 |
e | 7.1 | 7 October 2014 | 100.55° | 23.4° | 10 | Sanlinyang-siyongjie fault | 39 |
f | 7.1 | 18 November 2017 | 95° | 29.75° | 10 | Ani bridge fault | 39 |
ID | Date | Location | Target Fault | Buffer Distance (km) | |||
---|---|---|---|---|---|---|---|
Lon | Lat | Depth | |||||
a | 7.2 | 24 January 1981 | 101.17° | 31° | 12 | Xianshuihe fault | 42 |
b | 7.2 | 3 February 1996 | 100.22° | 27.3° | 10 | Lijiang-Daju fault | 42 |
c | 7.2 | 19 November 1996 | 78.35° | 35.43° | / | Eslak karaur | 42 |
d | 7.2 | 25 August 2008 | 83.65° | 30.93° | 10 | Yare fault | 42 |
e | 7.2 | 20 April 2013 | 102.98° | 30.3° | 17 | Guanxian-Jiangyou fault | 42 |
f | 7.2 | 8 August 2017 | 95° | 29.75° | 10 | Tazang fault | 42 |
ID | Date | Location | Main Fault | Buffer Distance (km) | |||
---|---|---|---|---|---|---|---|
Lon | Lat | Depth | |||||
a | 7.4 | 23 August 1985 | 75.6° | 39.58° | / | Kazikealte fault | 48 |
b | 7.4 | 21 March 2008 | 81.43° | 35.8° | / | Altun Mountain’s south margin fault | 48 |
c | 7.4 | 14 April 2010 | 96.58° | 33.22° | 14 | Ganzi-Yushu- Fenghuoshan | 48 |
d | 7.4 | 12 February 2014 | 82.52° | 36.13° | 10 | Yare fault | 48 |
ID | Date | Location | Target Fault | Buffer Distance (km) | |||
---|---|---|---|---|---|---|---|
Lon | Lat | Depth | |||||
a | 7.6 | 18 November 1997 | 87.3° | 35.2° | / | Altun Mountain’s south margin fault | 54 |
b | 7.6 | 6 November 1988 | 99.72° | 22.83° | 13 | longling-lancang fault | 54 |
ID | Date | Location | Target Fault | Interception Method | |||
---|---|---|---|---|---|---|---|
Lon | Lat | Depth | |||||
a | 8.1 | 14 November 2001 | 90.53° | 35.93° | 10 | Muziluk-Whale Lake | Far-end |
b | 6.8 | 22 September 1989 | 102.38° | 31.55° | 10 | Malkang fault | Far-end |
c | 5.9 | 30 August 2008 | 83.85° | 42.72° | 6 | Southern margin fault of Greater Yuludus Basin | Both sides |
d | 6.3 | 17 June 2019 | 104.97° | 104.97° | 16 | 104.97° | Far-end |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, G.; Zhao, B.; Liu, Y. An Aftershock Deletion Method Based on Fault Buffer Zone. Remote Sens. 2023, 15, 1662. https://doi.org/10.3390/rs15061662
Yang G, Zhao B, Liu Y. An Aftershock Deletion Method Based on Fault Buffer Zone. Remote Sensing. 2023; 15(6):1662. https://doi.org/10.3390/rs15061662
Chicago/Turabian StyleYang, Guangliang, Bingjie Zhao, and Yijun Liu. 2023. "An Aftershock Deletion Method Based on Fault Buffer Zone" Remote Sensing 15, no. 6: 1662. https://doi.org/10.3390/rs15061662
APA StyleYang, G., Zhao, B., & Liu, Y. (2023). An Aftershock Deletion Method Based on Fault Buffer Zone. Remote Sensing, 15(6), 1662. https://doi.org/10.3390/rs15061662