Spatiotemporal Landscape Pattern Analyses Enhanced by an Integrated Index: A Study of the Changbai Mountain National Nature Reserve
Abstract
:1. Introduction
2. Materials and Methods
2.1. The Study Area and Datasets
2.2. An Integrated Spatial Landscape Index (ISLI)
3. Results and Discussion
3.1. Land Cover Change
3.2. Landscape Metrics of Different Land Cover Types
3.3. Variogram Structure Analysis
3.4. Analysis with the Proposed ISLI
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Transition Matrices
2000 | |||||||||
Land cover type | Cropland | Broadleaf forest | Needleleaf forest | Mixed leaf forest | Impervious surface | Water body | Area changes | Percentage changes | |
1995 | Cropland | 36.90 | 11.39 | 1.24 | 0.00 | 0.38 | 0.33 | 13.35 | 26.6% |
Broadleaf forest | 12.42 | 1701.84 | 399.09 | 0.10 | 0.03 | 0.35 | 412.00 | 19.5% | |
Needleleaf forest | 0.04 | 65.16 | 770.72 | 0.03 | 0.00 | 0.03 | 65.26 | 7.8% | |
Mixed leaf forest | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 100% | |
Impervious surface | 0.00 | 0.00 | 0.00 | 0.00 | 11.79 | 0.00 | 0.00 | 0.0 | |
Water body | 0.04 | 0.29 | 0.23 | 0.00 | 0.00 | 4.84 | 0.56 | 10.4% | |
2005 | |||||||||
Land cover type | Cropland | Broadleaf forest | Needleleaf forest | Mixed leaf forest | Impervious surface | Water body | Area changes | Percentage changes | |
2000 | Cropland | 31.79 | 15.71 | 0.65 | 0.00 | 1.17 | 0.08 | 17.61 | 35.7% |
Broadleaf forest | 9.10 | 1587.68 | 179.66 | 1.96 | 0.03 | 0.25 | 191.00 | 10.7% | |
Needleleaf forest | 1.03 | 166.35 | 997.97 | 5.85 | 0.00 | 0.08 | 173.32 | 14.8% | |
Mixed leaf forest | 0.00 | 0.03 | 0.10 | 0.01 | 0.00 | 0.00 | 0.13 | 92.9% | |
Impervious surface | 0.00 | 0.00 | 0.00 | 0.00 | 12.20 | 0.00 | 0.00 | 0.0% | |
Water body | 0.35 | 0.29 | 0.17 | 0.00 | 0.01 | 4.75 | 0.81 | 14.6% | |
2010 | |||||||||
Land cover type | Cropland | Broadleaf forest | Needleleaf forest | Mixed leaf forest | Impervious surface | Water body | Area changes | Percentage changes | |
2005 | Cropland | 29.20 | 10.04 | 0.71 | 0.00 | 1.89 | 0.43 | 13.07 | 30.9% |
Broadleaf forest | 9.68 | 1555.34 | 198.98 | 5.46 | 0.31 | 0.29 | 214.72 | 12.1% | |
Needleleaf forest | 0.39 | 92.25 | 1070.42 | 15.35 | 0.00 | 0.15 | 108.13 | 9.2% | |
Mixed leaf forest | 0.00 | 1.23 | 5.26 | 1.33 | 0.00 | 0.00 | 6.49 | 83.0% | |
Impervious surface | 0.00 | 0.00 | 0.00 | 0.00 | 13.40 | 0.00 | 0.00 | 0.0% | |
Water body | 0.06 | 0.11 | 0.27 | 0.00 | 0.00 | 4.73 | 0.44 | 8.5% | |
2015 | |||||||||
Land cover type | Cropland | Broadleaf forest | Needleleaf forest | Mixed leaf forest | Impervious surface | Water body | Area changes | Percentage changes | |
2010 | Cropland | 29.57 | 6.83 | 0.48 | 0.00 | 2.30 | 0.14 | 9.76 | 24.8% |
Broadleaf forest | 17.65 | 1447.24 | 190.78 | 2.38 | 0.62 | 0.30 | 211.72 | 12.8% | |
Needleleaf forest | 1.24 | 93.34 | 1171.46 | 9.32 | 0.03 | 0.25 | 104.18 | 8.2% | |
Mixed leaf forest | 0.00 | 2.20 | 18.92 | 1.02 | 0.00 | 0.00 | 21.12 | 95.4% | |
Impervious surface | 0.00 | 0.00 | 0.00 | 0.00 | 15.61 | 0.00 | 0.00 | 0.0% | |
Water body | 0.23 | 0.15 | 0.09 | 0.00 | 0.01 | 5.10 | 0.49 | 8.8% | |
2020 | |||||||||
Land cover type | Cropland | Broadleaf forest | Needleleaf forest | Mixed leaf forest | Impervious surface | Water body | Area changes | Percentage changes | |
2015 | Cropland | 36.32 | 8.42 | 0.91 | 0.00 | 2.66 | 0.39 | 12.38 | 25.4% |
Broadleaf forest | 16.31 | 1217.63 | 313.19 | 2.27 | 0.16 | 0.21 | 332.14 | 21.4% | |
Needleleaf forest | 5.71 | 93.63 | 1259.51 | 22.74 | 0.01 | 0.14 | 122.23 | 8.8% | |
Mixed leaf forest | 0.00 | 1.42 | 9.90 | 1.39 | 0.00 | 0.00 | 11.32 | 89.1% | |
Impervious surface | 0.03 | 0.00 | 0.00 | 0.00 | 18.53 | 0.01 | 0.04 | 2.1% | |
Water body | 0.22 | 0.28 | 0.09 | 0.00 | 0.01 | 5.19 | 0.60 | 10.4% |
Appendix B. Land Cover Prediction in 2025
Appendix C. Summary Table of Landscape Index
Area and Edge metrics | Total (class) area (CA); percentage of landscape (PLAND); number of patches (NP); patch density (PD); largest patch index (LPI); total edge (TE); edge density (ED) |
Shape metrics | Landscape shape index (LSI); mean patch shape index (SHAPE_MN); area-weighted mean patch shape index (SHAPE_AM); mean patch fractal dimension (FRAC_MN); area-weighted mean patch fractal dimension (FRAC_AM); mean perimeter-area ratio (PARA_MN); perimeter-area ratio area-weighted mean (PARA_AM); perimeter-area fractal dimension (PAFRAC) |
Aggregation metrics | Landscape division index (DIVISION); splitting index (SPLIT); effective mesh size (MESH); interspersion and juxtaposition index (IJI); percentage of like adjacencies (PLANDJ); aggregation index (AI); patch cohesion index (COHESION) |
Appendix D. Pearson Correlation Coefficients of Landscape Metrics
Index | CA | PLAND | NP | PD | LPI | TE | ED |
---|---|---|---|---|---|---|---|
CA | 1 | 1.00 ** | 0.819 * | 0.819 * | 0.967 ** | 0.994 *** | 0.994 ** |
PLAND | 1 | 0.819 * | 0.819 * | 0.967 ** | 0.994 ** | 0.994 ** | |
NP | 1 | 1.00 ** | 0.864 * | 0.869 * | 0.869 * | ||
PD | 1 | 0.864 * | 0.869 * | 0.869 * | |||
LPI | 1 | 0.981 ** | 0.981 ** | ||||
TE | 1 | 1.00 ** | |||||
ED | 1 |
Index | LSI | SHAPE_MN | SHAPE_AM | FRAC_MN | FRAC_AM | PARA_MN | PARA_AM |
---|---|---|---|---|---|---|---|
LSI | 1 | −0.098 | 0.771 | -0.181 | 0.59 | 0.283 | 0.143 |
SHAPE_MN | 1 | 0.383 | 0.985 ** | 0.672 | −0.94 9 ** | −0.864 * | |
SHAPE_AM | 1 | 0.342 | 0.891 * | −0.351 | −0.499 | ||
FRAC_MN | 1 | 0.591 | −0.978 ** | −0.905 ** | |||
FRAC_AM | 1 | −0.551 | −0.631 | ||||
PARA_MN | 1 | 0.956 ** | |||||
PARA_AM | 1 |
Index | DIVISION | SPLIT | MESH | IJI | PLANDJ | AI | COHESION |
---|---|---|---|---|---|---|---|
DIVISION | 1 | 0.321 | −1.000 ** | 0.560 | −0.472 | −0.461 | −0.428 |
SPLIT | 1 | −0.321 | −0.318 | −0.946 ** | −0.946 ** | −0.989 ** | |
MESH | 1 | −0.560 | 0.472 | 0.461 | 0.429 | ||
IJI | 1 | 0.147 | 0.158 | 0.175 | |||
PLANDJ | 1 | 1.000 ** | 0.954 ** | ||||
AI | 1 | 0.952 ** | |||||
COHESION | 1 |
Appendix E. Variogram Diagrams
References
- Garrigues, S.; Allard, D.; Baret, F.; Weiss, M. Quantifying spatial heterogeneity at the landscape scale using variogram models. Remote Sens. Environ. 2006, 103, 81–96. [Google Scholar] [CrossRef]
- Lv, J.J.; Ma, T.; Dong, Z.W.; Yao, Y.; Yuan, Z.H. Temporal and Spatial Analyses of the Landscape Pattern of Wuhan City Based on Remote Sensing Images. ISPRS Int. J. Geo-Inf. 2018, 7, 340. [Google Scholar] [CrossRef] [Green Version]
- Turner, M.G. Landscape Ecology: What Is the State of the Science? Annu. Rev. Ecol. Evol. Syst. 2005, 36, 319–344. [Google Scholar] [CrossRef]
- Uuemaa, E.A.; Antrop, M.B.; Roosaare, J.C.; Marja, R.C.; Mander, Ü.A. Landscape Metrics and Indices: An Overview of Their Use in Landscape Research. Living Rev. Landsc. Res. 2009, 3, 1–28. [Google Scholar] [CrossRef]
- Wu, J. Landscape Ecology; Higher Education Press: Beijing, China, 2007. [Google Scholar]
- Liu, X.; Li, X.; Chen, Y.; Tan, Z.; Li, S.; Ai, B. A new landscape index for quantifying urban expansion using multi-temporal remotely sensed data. Landsc. Ecol. 2010, 25, 671–682. [Google Scholar] [CrossRef]
- Turner, M.G. Spatial and temporal analysis of landscape patterns. Landsc. Ecol. 1990, 4, 21–30. [Google Scholar] [CrossRef]
- Wagner, H.H.; Fortin, M.-J. Spatial Ananlysis of Landscapes: Concepts and Statistics. Ecology 2005, 86, 1975–1987. [Google Scholar] [CrossRef] [Green Version]
- Frazier, A.E.; Kedron, P. Landscape Metrics: Past Progress and Future Directions. Curr. Landsc. Ecol. Rep. 2017, 2, 63–72. [Google Scholar] [CrossRef] [Green Version]
- Mander, Ü. Landscape Planning. In Encyclopedia of Ecology; Jørgensen, S.E., Fath, B.D., Eds.; Academic Press: Oxford, UK, 2008; pp. 2116–2126. [Google Scholar]
- Sang, K.; Fontana, G.L.; Piovan, S.E. Assessing Railway Landscape by AHP Process with GIS: A Study of the Yunnan-Vietnam Railway. Remote Sens. 2022, 14, 603. [Google Scholar] [CrossRef]
- Yu, X.; Mu, C.; Zhang, D. Assessment of land reclamation benefits in mining areas using fuzzy comprehensive evaluation. Sustainability 2020, 12, 2015. [Google Scholar] [CrossRef] [Green Version]
- Gong, J.; Jin, T.; Cao, E.; Wang, S.; Yan, L. Is ecological vulnerability assessment based on the VSD model and AHP-Entropy method useful for loessial forest landscape protection and adaptative management? A case study of Ziwuling Mountain Region, China. Ecol. Indic. 2022, 143, 109379. [Google Scholar] [CrossRef]
- Tian, W.; Xu, Y.; Huang, Y. Comparative analysis of AHP and entropy weight method in urban street landscape evalution. J. Southwest China Norm. Univ. Nat. Sci. Ed. 2020, 45, 147–153. [Google Scholar]
- Shannon, C.E. A Mathematical Theory of Communication. Bell Syst. Tech. J. 1948, 27, 379–423. [Google Scholar] [CrossRef] [Green Version]
- Xia, M.; Jia, K.; Zhao, W.; Liu, S.; Wei, X.; Wang, B. Spatio-temporal changes of ecological vulnerability across the Qinghai-Tibetan Plateau. Ecol. Indic. 2021, 123, 107274. [Google Scholar] [CrossRef]
- Zhang, J.; Yang, X.; Wang, Z.; Zhang, T.; Liu, X. Remote Sensing Based Spatial-Temporal Monitoring of the Changes in Coastline Mangrove Forests in China over the Last 40 Years. Remote Sens. 2021, 13, 1986. [Google Scholar] [CrossRef]
- Zou, L.; Wang, J.; Bai, M. Assessing spatial–temporal heterogeneity of China’s landscape fragmentation in 1980–2020. Ecol. Indic. 2022, 136, 108654. [Google Scholar] [CrossRef]
- Wang, H.; Xu, J.; Sheng, L.; Ma, L.; Liu, X. Study on the characteristics of climate change in Changbai Mountain National Natural Reserve from 1958 to 2017. Arab. J. Geosci. 2020, 13, 1–16. [Google Scholar] [CrossRef]
- Zheng, D.; Wallin, D.O.; Hao, Z. Rates and patterns of landscape change between 1972 and 1988 in the Changbai Mountain area of China and North Korea. Landsc. Ecol. 1997, 12, 241–254. [Google Scholar] [CrossRef]
- Liu, L.; Zhang, X.; Gao, Y.; Chen, X.; Mi, J. Finer-Resolution Mapping of Global Land Cover: Recent Developments, Consistency Analysis, and Prospects. J. Remote Sens. 2021, 2021, 1–38. [Google Scholar] [CrossRef]
- Gong, P.; Wang, J.; Yu, L.; Zhao, Y.; Chen, J. Finer resolution observation and monitoring of global land cover: First mapping results with Landsat TM and ETM+ data. Int. J. Remote Sens. 2013, 34, 2607–2654. [Google Scholar] [CrossRef] [Green Version]
- Chen, J.; Chen, J.; Liao, A.; Cao, X.; Chen, L.; Chen, X.; He, C.; Han, G.; Peng, S.; Lu, M. Global land cover mapping at 30 m resolution: A POK-based operational approach. ISPRS J. Photogramm. Remote Sens. 2015, 103, 7–27. [Google Scholar] [CrossRef] [Green Version]
- Soltanikazemi, M.; Minaei, S.; Shafizadeh-Moghadam, H.; Mahdavian, A. Field-scale estimation of sugarcane leaf nitrogen content using vegetation indices and spectral bands of Sentinel-2: Application of random forest and support vector regression. Comput. Electron. Agric. 2022, 200, 107130. [Google Scholar] [CrossRef]
- Wang, G.; Gertner, G.; Xiao, X.; Wente, S.; Anderson, A.B. Appropriate plot size and spatial resolution for mapping multiple vegetation types. Photogramm. Eng. Remote Sens. 2001, 67, 575–584. [Google Scholar]
- Meer, F.V.D. Remote-sensing image analysis and geostatistics. Int. J. Remote Sens. 2012, 33, 5644–5676. [Google Scholar] [CrossRef]
- Asmat, A.; Atkinson, P.M.; Foody, G.M. Geostatistically estimated image noise is a function of variance in the underlying signal. Int. J. Remote Sens. 2010, 31, 1009–1025. [Google Scholar] [CrossRef]
- Garrigues, S.; Verhoef, A.; Blyth, E.; Wright, A.; Balan-Sarojini, B.; Robinson, E.; Dadson, S.; Boone, A.; Boussetta, S.; Balsamo, G. Capability of the variogram to quantify the spatial patterns of surface fluxes and soil moisture simulated by land surface models. Prog. Phys. Geogr. 2021, 45, 279–293. [Google Scholar] [CrossRef]
- Zhang, B.; Zhang, Q.; Feng, C.; Feng, Q.; Zhang, S. Understanding Land Use and Land Cover Dynamics from 1976 to 2014 in Yellow River Delta. Land. 2017, 6, 20. [Google Scholar] [CrossRef] [Green Version]
- Behera, M.D.; Borate, S.N.; Panda, S.N.; Behera, P.R.; Roy, P.S. Modelling and analyzing the watershed dynamics using Cellular Automata (CA)–Markov model–A geo-information based approach. J. Earth Syst. Sci. 2012, 121, 1011–1024. [Google Scholar] [CrossRef] [Green Version]
- Li, l.; Wu, D.; Liu, Y.; Gong, J.; Liu, H.; Zheng, J. Spatial and temporal evolution characteristics and simulation prediction of ecological and economics coordination degree in Huizhou based on a CA-Marcov model. J. Ecol. Rural Environ. 2020, 36, 161–170. [Google Scholar]
- Yin, X. Study on Spatial and Temporal Differentiation Characteristics of Urban Greening 3D Landscape Pattern Based on GIS. Master’s Thesis, Liaoning Normal University, Dalian, China, 2019. [Google Scholar]
- McGarigal, K.; Markds, B. FRAGSTATS 4.2: Spatial Pattern Analysis Program for Categorical Maps. Available online: https://github.com/kmcgarigal/Fragstats (accessed on 15 January 2022).
- Riitters, K.H. A factor analysis of landscape pattern and structure metrics. Landsc. Ecol. 1995, 10, 23–39. [Google Scholar] [CrossRef]
- Asuero, A.G.; Sayago, A.; Gonzalez, A. The correlation coefficient: An overview. Crit. Rev. Anal. Chem. 2006, 36, 41–59. [Google Scholar] [CrossRef]
- Cui, L.; Luo, C.; Yao, C.; Zou, Z.; Wu, G.; Li, Q.; Wang, X. The Influence of Climate Change on Forest Fires in Yunnan Province, Southwest China Detected by GRACE Satellites. Remote Sens. 2022, 14, 712. [Google Scholar] [CrossRef]
- Bu, R.; Hu, Y.; Chang, Y.; Li, X.; He, H. A correlation analysis on landscape metrics. Ecol. Sin. 2005, 25, 2764–2775. [Google Scholar]
Year | Land Cover Type | Nugget Model | Exponential Model | |
---|---|---|---|---|
Nugget | Sill | Range | ||
1995 | Broadleaf | 0.32 | 0.28 | 3576.6 |
Needleleaf | 0.29 | 0.31 | 3847.8 | |
2000 | Broadleaf | 0.30 | 0.34 | 3636.0 |
Needleleaf | 0.30 | 0.33 | 4002.6 | |
2005 | Broadleaf | 0.30 | 0.35 | 3933.0 |
Needleleaf | 0.26 | 0.36 | 3819.6 | |
2010 | Broadleaf | 0.31 | 0.34 | 4049.7 |
Needleleaf | 0.30 | 0.33 | 4073.7 | |
2015 | Broadleaf | 0.28 | 0.32 | 4194.6 |
Needleleaf | 0.29 | 0.31 | 5243.4 | |
2020 | Broadleaf | 0.38 | 0.32 | 4073.7 |
Needleleaf | 0.39 | 0.29 | 3556.5 |
Index | PLAND | LSI | SHAPE_MN | FRAC_AM | COHESION | DIVISION | IJI |
---|---|---|---|---|---|---|---|
Correlation coefficient | 0.774 ** | 0.595 ** | −0.568 ** | 0.490 ** | 0.461 * | −0.543 ** | −0.370 * |
Index | PLAND | LSI | SHAPE_MN | FRAC_AM | COHESION | DIVISION | IJI |
---|---|---|---|---|---|---|---|
Correlation coefficient | 0.972 ** | 0.793 ** | −0.030 ** | 0.715 ** | 0.742 * | −0.830 ** | −0.698 * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.; Zhang, J.; Wang, F.; Yang, W. Spatiotemporal Landscape Pattern Analyses Enhanced by an Integrated Index: A Study of the Changbai Mountain National Nature Reserve. Remote Sens. 2023, 15, 1760. https://doi.org/10.3390/rs15071760
Zhang Y, Zhang J, Wang F, Yang W. Spatiotemporal Landscape Pattern Analyses Enhanced by an Integrated Index: A Study of the Changbai Mountain National Nature Reserve. Remote Sensing. 2023; 15(7):1760. https://doi.org/10.3390/rs15071760
Chicago/Turabian StyleZhang, Ying, Jingxiong Zhang, Fengyan Wang, and Wenjing Yang. 2023. "Spatiotemporal Landscape Pattern Analyses Enhanced by an Integrated Index: A Study of the Changbai Mountain National Nature Reserve" Remote Sensing 15, no. 7: 1760. https://doi.org/10.3390/rs15071760
APA StyleZhang, Y., Zhang, J., Wang, F., & Yang, W. (2023). Spatiotemporal Landscape Pattern Analyses Enhanced by an Integrated Index: A Study of the Changbai Mountain National Nature Reserve. Remote Sensing, 15(7), 1760. https://doi.org/10.3390/rs15071760