LiDAR-Derived Relief Typology of Loess Patches (East Poland)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Mapping of Loess Patches
2.3. DTM and Geomorphon Map
2.4. Relief Analysis and Classification
3. Results
3.1. Relief Types
3.2. Relief Subtypes
3.3. Inhomogeneity and Isolation
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rees, W.G. Physical Principles of Remote Sensing, 3rd ed.; Cambridge University Press: Cambridge, UK, 2012; ISBN 978-1-107-00473-3. [Google Scholar]
- Jensen, J.R. Remote Sensing of the Environment: An Earth Resource Perspective; Prentice Hall Series in Geographic Information Science; Prentice Hall: Upper Saddle River, NJ, USA, 2000; ISBN 978-0-13-489733-2. [Google Scholar]
- Simpson, M.L.; Hutchinson, D.P. IMAGING | Lidar. In Encyclopedia of Modern Optics; Elsevier: Amsterdam, The Netherlands, 2005; pp. 169–178. ISBN 978-0-12-369395-2. [Google Scholar]
- Bater, C.W.; Coops, N.C. Evaluating Error Associated with Lidar-Derived DEM Interpolation. Comput. Geosci. 2009, 35, 289–300. [Google Scholar] [CrossRef]
- Jasiewicz, J.; Stepinski, T.F. Geomorphons—A Pattern Recognition Approach to Classification and Mapping of Landforms. Geomorphology 2013, 182, 147–156. [Google Scholar] [CrossRef]
- Romanescu, G.; Lóczy, D.; Dezső, J.; Carboni, D. Loess-Scape in the Dobrudja Plateau (Romania). Landforms and Updated Typology. Present Environ. Sustain. Dev. 2018, 12, 95–114. [Google Scholar] [CrossRef]
- Liu, K.; Ding, H.; Tang, G.; Song, C.; Liu, Y.; Jiang, L.; Zhao, B.; Gao, Y.; Ma, R. Large-Scale Mapping of Gully-Affected Areas: An Approach Integrating Google Earth Images and Terrain Skeleton Information. Geomorphology 2018, 314, 13–26. [Google Scholar] [CrossRef]
- Lehmkuhl, F.; Nett, J.J.; Pötter, S.; Schulte, P.; Sprafke, T.; Jary, Z.; Antoine, P.; Wacha, L.; Wolf, D.; Zerboni, A.; et al. Loess Landscapes of Europe—Mapping, Geomorphology, and Zonal Differentiation. Earth-Sci. Rev. 2021, 215, 103496. [Google Scholar] [CrossRef]
- Xiong, L.; Tang, G.; Yan, S.; Zhu, S.; Sun, Y. Landform-Oriented Flow-Routing Algorithm for the Dual-Structure Loess Terrain Based on Digital Elevation Models: Flow-routing algorithms for the dual-structure loess terrain. Hydrol. Process. 2014, 28, 1756–1766. [Google Scholar] [CrossRef]
- Jiménez-Jiménez, S.I.; Ojeda-Bustamante, W.; Marcial-Pablo, M.; Enciso, J. Digital Terrain Models Generated with Low-Cost UAV Photogrammetry: Methodology and Accuracy. ISPRS Int. J. Geo-Inf. 2021, 10, 285. [Google Scholar] [CrossRef]
- Wei, H.; Li, S.; Li, C.; Zhao, F.; Xiong, L.; Tang, G. Quantification of Loess Landforms from Three-Dimensional Landscape Pattern Perspective by Using DEMs. ISPRS Int. J. Geo-Inf. 2021, 10, 693. [Google Scholar] [CrossRef]
- Costantino, D.; Angelini, M.G. Production of DTM Quality by TLS Data. Eur. J. Remote Sens. 2013, 46, 80–103. [Google Scholar] [CrossRef] [Green Version]
- Kociuba, W.; Kubisz, W.; Zagórski, P. Use of Terrestrial Laser Scanning (TLS) for Monitoring and Modelling of Geomorphic Processes and Phenomena at a Small and Medium Spatial Scale in Polar Environment (Scott River—Spitsbergen). Geomorphology 2014, 212, 84–96. [Google Scholar] [CrossRef]
- Kociuba, W.; Janicki, G.; Rodzik, J. 3D Laser Scanning as a New Tool of Assessment of Erosion Rates in Forested Loess Gullies (Case Study: Kolonia Celejów, Lublin Upland). Ann. UMCS Geogr. Geol. Mineral. Petrogr. 2014, 69, 107–116. [Google Scholar] [CrossRef] [Green Version]
- Kociuba, W.; Janicki, G.; Rodzik, J.; Stępniewski, K. Comparison of Volumetric and Remote Sensing Methods (TLS) for Assessing the Development of a Permanent Forested Loess Gully. Nat. Hazards 2015, 79, 139–158. [Google Scholar] [CrossRef]
- Siłuch, M.; Kociuba, W.; Gawrysiak, L.; Bartmiński, P. Assessment and Quantitative Evaluation of Loess Area Geomorphodiversity Using Multiresolution DTMs (Roztocze Region, SE Poland). Resources 2023, 12, 7. [Google Scholar] [CrossRef]
- Buraczynski, J. Erozja Wąwozowa Na Roztoczu—Międzyrzecze Gorajca i Wieprza. Folia Soc. Sci. Lublinensis 1975, 17, 2. [Google Scholar]
- Buraczynski, J. Natężenie erozji wąwozowej i erozji gleb na roztoczu gorajskim. Zesz. Probl. Postępów Nauk Rol. 1977, 193, 91–99. [Google Scholar]
- Maruszczak, H. Erozja Wąwozowa We Wschodniej Części Pasa Wyżyn Południowopolskich. Zesz. Probl. Postępów Nauk Rol. 1973, 151, 15–30. [Google Scholar]
- Józefaciuk, C.; Józefaciuk, A. Gęstość Sieci Wąwozowej w Fizjograficznych Krainach Polski. Pamiętnik Puławski 1992, 101, 51–66. [Google Scholar]
- Gawrysiak, L.; Harasimiuk, M. Spatial Diversity of Gully Density of the Lublin Upland and Roztocze Hills (SE Poland). Ann. UMCS Geogr. Geol. Mineral. Petrogr. 2012, 67, 27. [Google Scholar] [CrossRef] [Green Version]
- Kołodyńska-Gawrysiak, R.; Chabudziński, Ł. Cechy Morfometryczne Oraz Rozmieszczenie Zagłębień Bezodpływowych Płaskowyżu Nałęczowskiego (Wyżyna Lubelska, E Polska). Ann. UMCS Sect. B Geogr. Geol. Mineral. Petrogr. 2014, 69, 45–61. [Google Scholar]
- Kołodyńska-Gawrysiak, R.; Poesen, J. Closed Depressions in the European Loess Belt—Natural or Anthropogenic Origin? Geomorphology 2017, 288, 111–128. [Google Scholar] [CrossRef]
- Kołodyńska-Gawrysiak, R.; Harasimiuk, M.; Chabudziński, Ł.; Jezierski, W. The Importance of Geological Conditions for the Formation of Past Thermokarst Closed Depressions in the Loess Areas of Eastern Poland. Geol. Q. 2018, 62, 685–704. [Google Scholar] [CrossRef]
- Kołodyńska-Gawrysiak, R. Holocene Evolution of Closed Depressions and Its Relation to Landscape Dynamics in the Loess Areas of Poland. Holocene 2019, 29, 543–564. [Google Scholar] [CrossRef]
- Maruszczak, H. Werteby Obszarów Lessowych Wyżyny Lubelskiej. Ann. UMCS Sect. B Geogr. Geol. Mineral. Petrogr. 1954, 8, 123–268. [Google Scholar]
- Maruszczak, H. Charakterystyczny Formy Rzeźby Obszarów Lessowych Wyżyny Lubelskiej. Czas. Geogr. 1958, 29, 335–354. [Google Scholar]
- Maruszczak, H. Le relief des terrains de loess le Plateau de Lublin. Ann. UMCS Sect. B Geogr. Geol. Mineral. Petrogr. 1960, 15, 93–122. [Google Scholar]
- Kęsik, A. Vallées Des Terrains Loessiques de La Partie Quest Du Plateau de Nałęczów. Ann. UMCS Sect. B Geogr. Geol. Mineral. Petrogr. 1960, 15, 123–155. [Google Scholar]
- Buraczynski, J. Typy Dolin Roztocza Zachodniego. Ann. UMCS Sect. B Geogr. Geol. Mineral. Petrogr. 1968, 23, 47–86. [Google Scholar]
- Maruszczak, H. Warunki Geologiczno-Geomorfologiczne Rozwoju Erozji Gleb w Południowej Części Województwa Lubelskiego. Wiad. Inst. Melior. Użyt. Zielonych 1963, 3, 19–44. [Google Scholar]
- Dąbrowski, A.; Jasiewicz, J. Zastosowanie Form Morfometrycznych Do Analizy Zróżnicowania Wybranych Typów Powierzchni Na Obszarach Młodoglacjalnych. Badania Fizjogr. 2014, 5, 95–111. [Google Scholar]
- Józsa, E.; Kalmár, P. Assessing the Applicability of EU-DEM Dataset to Landform Classification Using Geomorphons Approach: The Case Study of Eastern Mecsek Maountains Region. Kartogr. List. Lett. 2014, 22, 90–101. [Google Scholar]
- Gawrysiak, L. Segmentacje Rzeźby Terenu z Wykorzystaniem Metod Automatycznej Klasyfikacji i ich Relacja do Mapy Geomorfologicznej; MCSU Press: Lublin, Poland, 2018. [Google Scholar]
- Silveira, R.M.P.; Silveira, C.T. da Automated Hierarchical Classification of Landforms in the State of Paraná Supported by Digital Terrain Modeling. Rev. Bras. Geogr. Física 2015, 8, 1509–1523. [Google Scholar] [CrossRef]
- Dekavalla, M.; Argialas, D. Evaluation of a Spatially Adaptive Approach for Land Surface Classification from Digital Elevation Models. Int. J. Geogr. Inf. Sci. 2017, 31, 1978–2000. [Google Scholar] [CrossRef]
- Gawrysiak, L.; Kociuba, W. Application of Geomorphons for Analysing Changes in the Morphology of a Proglacial Valley (Case Study: The Scott River, SW Svalbard). Geomorphology 2020, 371, 107449. [Google Scholar] [CrossRef]
- Dyba, K.; Jasiewicz, J. Toward Geomorphometry of Plains—Country-Level Unsupervised Classification of Low-Relief Areas (Poland). Geomorphology 2022, 413, 108373. [Google Scholar] [CrossRef]
- Maruszczak, H. Wyżyny Lubelsko-Wołyńskie. In Geomorfologia Polski; PWN: Warszawa, Poland, 1972; pp. 340–384. [Google Scholar]
- Solon, J.; Borzyszkowski, J.; Bidłasik, M.; Richling, A.; Badora, K.; Balon, J.; Teresa, B.-W.; Chab, L.; Dobrowolski, R.; Grzegorczyk, I.; et al. Physico-Geographical Mesoregions of Poland: Verification and Adjustment of Boundaries on the Basis of Contemporary Spatial Data. Geogr. Pol. 2018, 91, 143–170. [Google Scholar] [CrossRef]
- Maruszczak, H. Podstawowe Profile Lessów w Polsce; MCSU Press: Lublin, Poland, 2001; Volume 2, ISBN 83-227-1723-7. [Google Scholar]
- Maruszczak, H. Podstawowe Profile Lessów w Polsce; MCSU Press: Lublin, Poland, 1991; Volume 1. [Google Scholar]
- Haase, D.; Fink, J.; Haase, G.; Ruske, R.; Pécsi, M.; Richter, H.; Altermann, M.; Jäger, K.-D. Loess in Europe—Its Spatial Distribution Based on a European Loess Map, Scale 1:2,500,000. Quat. Sci. Rev. 2007, 26, 1301–1312. [Google Scholar] [CrossRef]
- Woźniak, P. High Resolution Elevation Data in Poland. In Geomorphometry for Geosciences; Adam Mickiewicz Uniwersity: Poznań, Poland, 2015; pp. 13–14. ISBN 978-83-7986-059-3. [Google Scholar]
- Tang, G.; Song, X.; Li, F.; Zhang, Y.; Xiong, L. Slope Spectrum Critical Area and Its Spatial Variation in the Loess Plateau of China. J. Geogr. Sci. 2015, 25, 1452–1466. [Google Scholar] [CrossRef] [Green Version]
- Netzel, P.; Nowosad, J.; Jasiewicz, J.; Niesterowicz, J.; Stepinski, T. Geopat 2: User’S Manual; Cincinnati, OH, USA, 2018. [Google Scholar] [CrossRef]
- Haralick, R.M.; Shanmugam, K.; Dinstein, I. Textural Features for Image Classification. IEEE Trans. Syst. Man Cybern. 1973, SMC-3, 610–621. [Google Scholar] [CrossRef] [Green Version]
- Lin, J. Divergence Measures Based on the Shannon Entropy. IEEE Trans. Inform. Theory 1991, 37, 145–151. [Google Scholar] [CrossRef] [Green Version]
- Jasiewicz, J.; Netzel, P.; Stepinski, T.F. Landscape Similarity, Retrieval, and Machine Mapping of Physiographic Units. Geomorphology 2014, 221, 104–112. [Google Scholar] [CrossRef]
- Wood, J.D. The Geomorphologic Characterization of Digital Elevation Models. Ph.D. Thesis, University of Leicester, Leicester, UK, 1996. [Google Scholar]
- Wei, H.; Xiong, L.; Zhao, F.; Tang, G.; Lane, S.N. Large-Scale Spatial Variability in Loess Landforms and Their Evolution, Luohe River Basin, Chinese Loess Plateau. Geomorphology 2022, 415, 108407. [Google Scholar] [CrossRef]
- Liu, K.; Na, J.; Fan, C.; Huang, Y.; Ding, H.; Wang, Z.; Tang, G.; Song, C. Large-Scale Detection of the Tableland Areas and Erosion-Vulnerable Hotspots on the Chinese Loess Plateau. Remote Sens. 2022, 14, 1946. [Google Scholar] [CrossRef]
- Tang, G.; Xiao, C.; Jia, D.; Yang, X. DEM Based Investigation of Loess Shoulder-Line; Chen, J., Pu, Y., Eds.; Society of Photo-Optical Instrumentation Engineers: Nanjing, China, 2007; p. 67532E. [Google Scholar]
- Niesterowicz, J.; Stepinski, T.F. Regionalization of Multi-Categorical Landscapes Using Machine Vision Methods. Appl. Geogr. 2013, 45, 250–258. [Google Scholar] [CrossRef]
Type | Subtype | N * | Area (ha) ** | Mean | Max | Min |
---|---|---|---|---|---|---|
High | Ha | 79 (12) | 67,625 (19.88) | 856.0 | 31,875 | 25 |
Hb | 150 (23) | 148,025 (43.54) | 986.8 | 17,750 | 25 | |
Hc | 71 (11) | 10,650 (3.13) | 150.0 | 925 | 25 | |
Hd | 49 (8) | 4525 (1.33) | 92.3 | 475 | 25 | |
Whole type | 349 (54) | 230,825 (67.88) | 661.4 | 31,875 | 25 | |
Medium | Ma | 80 (12) | 27,275 (8.02) | 340.9 | 6475 | 25 |
Mb | 128 (20) | 49,350 (14.51) | 385.5 | 4300 | 25 | |
Whole type | 208 (32) | 76,625 (22.53) | 368.4 | 6475 | 25 | |
Low | La | 60 (9) | 25,950 (7.63) | 432.5 | 3450 | 25 |
Lb | 30 (5) | 6650 (1.96) | 221.7 | 675 | 25 | |
Whole type | 90 (14) | 32,600 (9.59) | 362.2 | 3450 | 25 | |
Total | 647 | 340,050 (100) | 525.6 | 31,875 | 25 |
Type | Subtype | Mean Height (m a.s.l.) | Local Relief (m) | Mean Slope (°) |
---|---|---|---|---|
High | Ha | 253.1 | 240.4 | 7.79 |
Hb | 245.1 | 218.0 | 4.62 | |
Hc | 234.3 | 177.1 | 3.55 | |
Hd | 247.1 | 188.7 | 6.17 | |
Whole type | 246.9 | 240.4 | 5.53 | |
Medium | Ma | 228.4 | 138.5 | 2.72 |
Mb | 222.3 | 170.7 | 2.36 | |
Whole type | 224.5 | 170.7 | 2.49 | |
Low | La | 216.4 | 110.1 | 1.44 |
Lb | 209.3 | 72.9 | 1.02 | |
Whole type | 214.9 | 110.1 | 1.35 | |
Total | 238.8 | 240.4 | 4.45 |
Type | Subtype | Flat | Summit | Ridge | Shoulder | Spur | Slope | Hollow | Footslope | Valley | Depression |
---|---|---|---|---|---|---|---|---|---|---|---|
High | Ha | 0.18 | 0.66 | 12.59 | 0.74 | 25.12 | 39.77 | 9.55 | 0.45 | 9.39 | 1.55 |
Hb | 0.89 | 0.52 | 8.95 | 2.30 | 19.33 | 45.65 | 10.51 | 1.53 | 9.91 | 0.41 | |
Hc | 1.27 | 0.11 | 3.80 | 3.23 | 13.77 | 63.88 | 7.90 | 1.71 | 4.17 | 0.17 | |
Hd | 0.03 | 0.21 | 6.82 | 0.32 | 19.81 | 56.62 | 8.19 | 0.34 | 7.24 | 0.42 | |
Whole type | 0.68 | 0.54 | 9.77 | 1.84 | 20.82 | 44.89 | 10.07 | 1.20 | 9.46 | 0.74 | |
Medium | Ma | 5.04 | 0.17 | 5.13 | 8.04 | 12.00 | 49.85 | 8.39 | 5.02 | 6.30 | 0.07 |
Mb | 12.07 | 0.33 | 6.24 | 10.51 | 9.95 | 38.79 | 7.04 | 8.60 | 6.25 | 0.22 | |
Whole type | 9.61 | 0.27 | 5.85 | 9.65 | 10.66 | 42.65 | 7.51 | 7.35 | 6.27 | 0.17 | |
Low | La | 34.51 | 0.18 | 3.42 | 13.12 | 4.09 | 26.58 | 3.04 | 11.96 | 3.00 | 0.10 |
Lb | 61.93 | 0.08 | 1.65 | 10.18 | 1.63 | 12.90 | 1.16 | 9.18 | 1.24 | 0.04 | |
Whole type | 40.16 | 0.16 | 3.05 | 12.52 | 3.59 | 23.76 | 2.65 | 11.39 | 2.64 | 0.09 | |
Total | 6.44 | 0.44 | 8.19 | 4.61 | 16.89 | 42.69 | 8.73 | 3.56 | 7.93 | 0.53 |
Type | Subtype | Mean | Min | Max | Stdev |
---|---|---|---|---|---|
High | Ha | 0.0390 | 0.0012 | 0.2596 | 0.0293 |
Hb | 0.0347 | 0.0006 | 0.1921 | 0.0215 | |
Hc | 0.0526 | 0.0034 | 0.1803 | 0.0300 | |
Hd | 0.0385 | 0.0036 | 0.1532 | 0.0217 | |
Whole type | 0.0748 | 0.0006 | 0.6465 | 0.0748 | |
Medium | Ma | 0.0438 | 0.0010 | 0.2377 | 0.0355 |
Mb | 0.0438 | 0.0008 | 0.2730 | 0.0291 | |
Whole type | 0.0564 | 0.0008 | 0.3332 | 0.0374 | |
Low | La | 0.0428 | 0.0015 | 0.1844 | 0.0286 |
Lb | 0.0639 | 0.0017 | 0.2700 | 0.0547 | |
Whole type | 0.9006 | 0.0015 | 0.5257 | 0.0884 | |
Total | 0.1706 | 0.0006 | 0.9777 | 0.1632 |
Type | Subtype | IN-Mean | IN-Max | IS-Mean | IS-Max |
---|---|---|---|---|---|
High | Ha | 0.0250 | 0.0533 | 0.0736 | 0.4589 |
Hb | 0.0316 | 0.1171 | 0.0791 | 0.3258 | |
Hc | 0.0295 | 0.0799 | 0.1085 | 0.2814 | |
Hd | 0.0089 | 0.0330 | 0.0514 | 0.1620 | |
Whole type | 0.0291 | 0.1171 | 0.0783 | 0.4589 | |
Medium | Ma | 0.0365 | 0.0761 | 0.1140 | 0.3611 |
Mb | 0.0311 | 0.0969 | 0.1084 | 0.2981 | |
Whole type | 0.0330 | 0.0969 | 0.1104 | 0.3611 | |
Low | La | 0.0394 | 0.0748 | 0.1523 | 0.3651 |
Lb | 0.0314 | 0.0750 | 0.1715 | 0.4182 | |
Whole type | 0.0378 | 0.0750 | 0.1562 | 0.4182 | |
Total | 0.0308 | 0.1171 | 0.0931 | 0.4589 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gawrysiak, L.; Kociuba, W. LiDAR-Derived Relief Typology of Loess Patches (East Poland). Remote Sens. 2023, 15, 1875. https://doi.org/10.3390/rs15071875
Gawrysiak L, Kociuba W. LiDAR-Derived Relief Typology of Loess Patches (East Poland). Remote Sensing. 2023; 15(7):1875. https://doi.org/10.3390/rs15071875
Chicago/Turabian StyleGawrysiak, Leszek, and Waldemar Kociuba. 2023. "LiDAR-Derived Relief Typology of Loess Patches (East Poland)" Remote Sensing 15, no. 7: 1875. https://doi.org/10.3390/rs15071875
APA StyleGawrysiak, L., & Kociuba, W. (2023). LiDAR-Derived Relief Typology of Loess Patches (East Poland). Remote Sensing, 15(7), 1875. https://doi.org/10.3390/rs15071875