High-Temperature Oxidation of Magnesium- and Iron-Rich Olivine under a CO2 Atmosphere: Implications for Venus
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of Initial Olivine Samples
2.2. Olivine Oxidation Experiment
2.3. Sample Analysis
3. Results
3.1. Characterization of Initial Olivine
3.2. Color and Compositional Changes after Oxidation under CO2
3.2.1. Color Changes after Oxidation
3.2.2. Mineralogical Composition of the Oxidation Products
3.3. Microscopic Features of the Oxidation Products
3.4. VNIR Spectroscopy of the Oxidation Products
4. Discussion
4.1. Oxidation Products of Olivine under High-Temperature CO2
4.2. Olivine Conversion Rates and Influencing Factors
4.3. Characterization of Oxidation Processes with VNIR Spectroscopy
5. Implications for Venus
6. Conclusions
- The oxidation products of olivine (Fa09, Fa29 and Fa71) included magnesioferrite, magnetite, laihunite, hematite and maghemite at 470 °C, and hematite, magnetite, magnesioferrite and amorphous SiO2 at 900 °C. The presence of magnetic minerals, produced via the interaction of CO2 and olivine in Venusian basalts, could have powerful impacts on remanence and magnetic properties on the Venusian surface.
- Both high temperature and high Fa# values greatly accelerated the oxidation of olivine under a CO2 atmosphere; temperature was the more important factor. Assuming that conversion rates in the natural Venusian environment would be two orders of magnitude slower than our experimental rates, the conversion of olivine to oxide coating at 470 °C would occur within tens to hundreds of Earth years; at 900 °C, the olivine present on the lava surface could undergo a faster conversion to Fe-oxides once in contact with the Venus atmosphere. If the olivine on Venus is relatively Fe-rich compared to the ubiquitous San Carlos olivine on Earth, its lifetime should be substantially shorter than magnesian olivine.
- CO2 oxidation at Venusian ground temperatures would quickly eliminate the spectral characteristics of olivine. The diagnostic absorption features substantially weakened or even disappeared in the early stages of oxidation, and the spectral changes were relatively minor in the later stage. The spectral parameters at 850 nm and 1020 nm, as well as other relevant spectral windows (considering shifts induced by the elevated temperature), could be used to trace olivine oxidation on the Venus surface.
- Our work revealed a new possible origin of the high emissivity of the basaltic terrain on Venus: the oxidation of Fe-Mg olivine with a relatively high Fe fraction. Oxidation of Fa29 at 470 °C produced magnesioferrite and laihunite, with minor amounts of hematite, and showed an increase in emissivity of 1180 nm, contrary to Fa09. Emissivity is a function of surface temperature, grain size, and mineral composition, and direct application of our experimental results to measured data would not be appropriate. Further study of the oxidation of Fe-Mg olivine with a relatively high Fe fraction on the Venusian surface (470 °C for lowlands or lower T for high elevations) would be necessary to determine whether the altered phases, such as magnesioferrite and laihunite, could be preserved during prolonged oxidation.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Samples | IS (mm/s) | QS (mm/s) | B (T) | S (%) | LW (mm/s) | Mineral |
---|---|---|---|---|---|---|
Fa09–470–24 d | 1.14 | 2.93 | − | 91.0 | 0.34 | Ol |
0.41 | 0.76 | − | 9.0 | 0.29 | Mag-Lh | |
Fa29–470–24 d | 1.14 | 2.97 | − | 92.7 | 0.31 | Ol |
0.42 | 0.64 | − | 7.3 | 0.46 | Mag-Lh | |
Fa71–470–12 d | 1.14 | 2.87 | − | 67.3 | 0.30 | Ol |
0.41 | 0.80 | − | 22.5 | 0.26 | Mag-Lh | |
0.36 | −0.12 | 51.69 | 10.2 | 0.29 | Hem | |
Fa09–900–3 d | 0.50 | −0.10 | 47.55 | 12.8 | 0.61 | Mag(O) |
0.35 | −0.10 | 50.00 | 12.1 | 0.29 | Mag(T) | |
0.37 | −0.20 | 51.27 | 62.4 | 0.29 | Hem | |
1.14 | 2.97 | − | 12.8 | 0.35 | Ol | |
Fa29–900–3 d | 0.50 | −0.10 | 46.57 | 10.4 | 0.76 | Mag(O) |
0.35 | −0.10 | 49.74 | 18.8 | 0.30 | Mag(T) | |
0.37 | −0.19 | 51.25 | 70.8 | 0.28 | Hem | |
Fa71–900–3 d | 0.50 | 0.00 | 45.62 | 5.7 | 0.59 | Mag(O) |
0.35 | −0.1 | 49.53 | 9.1 | 0.34 | Mag(T) | |
0.37 | −0.20 | 51.45 | 85.2 | 0.27 | Hem | |
Fa71–900–1 h | 1.16 | 2.97 | − | 27.3 | 0.28 | Ol |
1.13 | 2.78 | − | 27.0 | 0.27 | Ol | |
0.33 | −0.02 | 49.37 | 23.8 | 0.43 | Mag(O) | |
0.64 | 0.01 | 45.35 | 9.9 | 0.51 | Mag(T) | |
0.36 | −0.12 | 51.54 | 12.0 | 0.28 | Hem | |
Fa29–470–24 d (6.2 K a) | 1.15 | 3.24 | − | 9.6 | Ol | |
− | 82.0 | Ol | ||||
0.18 | 2.52 | − | 3.5 | Mag | ||
0.38 | 2.65 | − | 4.9 | Lh |
Samples | R850 | R900 | R990 | R1020 | R1100 | R1180 |
---|---|---|---|---|---|---|
Fa09–initial | 0.451 | 0.441 | 0.409 | 0.400 | 0.405 | 0.428 |
Fa29–initial | 0.359 | 0.331 | 0.278 | 0.266 | 0.264 | 0.291 |
Fa71–initial | 0.232 | 0.205 | 0.172 | 0.166 | 0.161 | 0.174 |
Fa09–470–24 d | 0.457 | 0.450 | 0.416 | 0.408 | 0.417 | 0.445 |
Fa29–470–24 d | 0.245 | 0.247 | 0.236 | 0.232 | 0.240 | 0.266 |
Fa71–470–12 d | 0.100 | 0.108 | 0.129 | 0.136 | 0.154 | 0.167 |
Fa09–900–1 h | 0.383 | 0.393 | 0.435 | 0.441 | 0.468 | 0.499 |
Fa09–900–6 h | 0.351 | 0.362 | 0.425 | 0.438 | 0.475 | 0.508 |
Fa09–900–12 h | 0.347 | 0.356 | 0.416 | 0.427 | 0.460 | 0.489 |
Fa09–900–1 d | 0.307 | 0.318 | 0.383 | 0.398 | 0.433 | 0.455 |
Fa09–900–3 d | 0.344 | 0.359 | 0.459 | 0.487 | 0.554 | 0.605 |
Fa29–900–1 h | 0.172 | 0.174 | 0.188 | 0.189 | 0.195 | 0.201 |
Fa29–900–6 h | 0.168 | 0.172 | 0.208 | 0.217 | 0.234 | 0.243 |
Fa29–900–12 h | 0.134 | 0.137 | 0.161 | 0.167 | 0.177 | 0.182 |
Fa29–900–1 d | 0.139 | 0.142 | 0.170 | 0.176 | 0.189 | 0.195 |
Fa29–900–3 d | 0.210 | 0.220 | 0.306 | 0.334 | 0.406 | 0.458 |
Fa71–900–1 h | 0.064 | 0.062 | 0.059 | 0.058 | 0.056 | 0.055 |
Fa71–900–6 h | 0.056 | 0.055 | 0.058 | 0.058 | 0.058 | 0.058 |
Fa71–900–12 h | 0.089 | 0.090 | 0.103 | 0.106 | 0.109 | 0.110 |
Fa71–900–1 d | 0.094 | 0.097 | 0.127 | 0.136 | 0.155 | 0.166 |
Fa71–900–3 d | 0.136 | 0.142 | 0.204 | 0.226 | 0.277 | 0.309 |
References
- Mahieux, A.; Vandaele, A.C.; Robert, S.; Wilquet, V.; Drummond, R.; Montmessin, F.; Bertaux, J.L. Densities and temperatures in the Venus mesosphere and lower thermosphere retrieved from SOIR on board Venus Express: Carbon dioxide measurements at the Venus terminator. J. Geophys. Res. Planets 2012, 117, E7. [Google Scholar] [CrossRef] [Green Version]
- Seiff, A.; Schofield, J.; Kliore, A.; Taylor, F.; Limaye, S.; Revercomb, H.; Sromovsky, L.; Kerzhanovich, V.; Moroz, V.; Marov, M.Y. Models of the structure of the atmosphere of Venus from the surface to 100 kilometers altitude. Adv. Space Res. 1985, 5, 3–58. [Google Scholar] [CrossRef]
- Taylor, S.R.; McLennan, S. Planetary Crusts: Their Composition, Origin and Evolution; Cambridge University Press: Cambridge, UK, 2009; Volume 10, pp. 1–402. [Google Scholar]
- Barsukov, V.; Borunov, S.; Volkov, V.; Dorofeeva, V.; Zolotov, M.I. Analysis of the Mineral Composition of Soil at the Landing Sites of the Venera-13, Venera-14, and Vega-2 Landers on the Basis of Thermodynamic Calculations; Akademiia Nauk SSSR Doklady: Moskva, Russia, 1986; Volume 287, pp. 415–417. [Google Scholar]
- Barsukov, V.; Surkov, I.A.; Dmitriev, L.; Khodakovskii, I. Geochemical studies of Venus by Vega-1 and Vega-2 landers. Geokhimiia 1986, 3, 275–288. [Google Scholar]
- Barsukov, V.L.; Borunov, S.P.; Volkov, V.P.; Dorofeeva, V.A.; Zolotov, M.I.; Parotkin, S.V.; Semenov, I.V.; Sidorov, Y.I.; Khodakovskii, I.L.; Shapkin, A.I. Estimate of the mineral-composition of Venus soil at Venera-13, Venera-14 and Vega-2 landing sites (thermodynamic calculations). Dokl. Akad. Nauk Sssr 1986, 287, 415–418. [Google Scholar]
- Barsukov, V.L.; Surkov, Y.A.; Moskaleva, L.P.; Shcheglov, O.P.; Kharyukova, V.P.; Manvelyan, O.S.; Perminov, V.G. Geochemical study of the surface of Venus by the Venera-13 and Venera-14 space probes. Geochemistry 1982, 7, 899–920. [Google Scholar]
- Surkov, Y.A.; Barsukov, V.L.; Moskalyeva, L.P.; Kharyukova, V.P.; Kemurdzhian, A.L. New data on the composition, structure, and properties of Venus rock obtained by Venera 13 and Venera 14. J. Geophys. Res. Solid Earth 1984, 89, B393–B402. [Google Scholar] [CrossRef]
- Barsukov, V.L.; Basilevsky, A.T.; Burba, G.A.; Bobinna, N.N.; Kryuchkov, V.P.; Kuzmin, R.O.; Nikolaeva, O.V.; Pronin, A.A.; Ronca, L.B.; Chernaya, I.M.; et al. The geology and geomorphology of the Venus surface as revealed by the radar images obtained by Veneras 15 and 16. J. Geophys. Res. Solid Earth 1986, 91, 378–398. [Google Scholar] [CrossRef]
- Campbell, B.A. Merging Magellan Emissivity and SAR Data for Analysis of Venus Surface Dielectric Properties. Icarus 1994, 112, 187–203. [Google Scholar] [CrossRef] [Green Version]
- Pettengill, G.H.; Ford, P.G.; Chapman, B.D. Venus: Surface electromagnetic properties. J. Geophys. Res. Solid Earth 1988, 93, 14881–14892. [Google Scholar] [CrossRef]
- Hashimoto, G.L.; Roos-Serote, M.; Sugita, S.; Gilmore, M.S.; Kamp, L.W.; Carlson, R.W.; Baines, K.H. Felsic highland crust on Venus suggested by Galileo Near-Infrared Mapping Spectrometer data. J. Geophys. Res. Planets 2008, 113, E5. [Google Scholar] [CrossRef] [Green Version]
- Smrekar, S.E.; Stofan, E.R.; Mueller, N.; Treiman, A.; Elkins-Tanton, L.; Helbert, J.; Piccioni, G.; Drossart, P. Recent Hotspot Volcanism on Venus from VIRTIS Emissivity Data. Science 2010, 328, 605–608. [Google Scholar] [CrossRef] [PubMed]
- Dyar, M.D.; Helbert, J.; Maturilli, A.; Muller, N.T.; Kappel, D. Probing Venus surface iron contents with six-band visible near-infrared spectroscopy from orbit. Geophys. Res. Lett. 2020, 47, e2020GL090497. [Google Scholar] [CrossRef]
- Garvin, J.B.; Getty, S.A.; Arney, G.N.; Johnson, N.M.; Kohler, E.; Schwer, K.O.; Sekerak, M.; Bartels, A.; Saylor, R.S.; Elliott, V.E. Revealing the mysteries of Venus: The DAVINCI mission. Planet. Sci. J. 2022, 3, 117. [Google Scholar] [CrossRef]
- Smrekar, S.; Dyar, M.; Hensley, S.; Helbert, J.; Team, V.S. VERITAS (Venus Emissivity, Radio Science, InSAR, Topography and Spectroscopy): A Proposed Discovery Mission; AAS/Division for Planetary Sciences Meeting Abstracts: Pasadena, CA, USA, 2016; Volume 48, p. 216.07. [Google Scholar]
- Smrekar, S.; Hensley, S.; Nybakken, R.; Wallace, M.S.; Perkovic-Martin, D.; You, T.-H.; Nunes, D.; Brophy, J.; Ely, T.; Burt, E. VERITAS (Venus Emissivity, Radio Science, InSAR, Topography, and Spectroscopy): A Discovery Mission. In Proceedings of the 2022 IEEE Aerospace Conference (AERO), Big Sky, MT, USA, 5–12 March 2022; pp. 1–20. [Google Scholar]
- Smrekar, S.E.; Hensley, S.; Dyar, M.; Helbert, J.; Andrews-Hanna, J.; Breuer, D.; Buczkowski, D.; Campbell, B.; Davaille, A.; DiAchille, G. VERITAS (Venus Emissivity, Radio Science, InSAR, Topography, and Spectroscopy): A proposed Discovery mission. In Proceedings of the 51st Lunar and Planetary Science Conference, The Woodlands, TX, USA, 16–20 March 2020; Volume 2132, p. 1449. [Google Scholar]
- Helbert, J.; Vandaele, A.C.; Marcq, E.; Robert, S.; Ryan, C.; Guignan, G.; Rosas-Ortiz, Y.; Neefs, E.; Thomas, I.; Arnold, G. The VenSpec suite on the ESA EnVision mission to Venus. In Proceedings of the Infrared Remote Sensing and Instrumentation XXVII, San Diego, CA, USA, 12–14 August 2019; Volume 11128, pp. 18–32. [Google Scholar]
- Widemann, T.; Ghail, R.; Wilson, C.F.; Titov, D.V. EnVision: Europe’s proposed mission to Venus. In Proceedings of the AGU Fall Meeting Abstracts, San Francisco, CA, USA, 1–17 December 2020; Volume 2020, p. P022-02. [Google Scholar]
- Baines, K.H.; Atreya, S.; Carlson, R.W.; Crisp, D.; Drossart, P.; Formisano, V.; Limaye, S.S.; Markiewicz, W.J.; Piccioni, G. To the depths of Venus: Exploring the deep atmosphere and surface of our sister world with Venus Express. Planet. Space Sci. 2006, 54, 1263–1278. [Google Scholar] [CrossRef]
- Hashimoto, G.L.; Sugita, S. On observing the compositional variability of the surface of Venus using nightside near-infrared thermal radiation. J. Geophys. Res. Planets 2003, 108, 5109. [Google Scholar] [CrossRef] [Green Version]
- Lecacheux, J.; Drossart, P.; Laques, P.; Deladerriere, F.; Colas, F. Detection of the surface of Venus at 1.0 μm from ground-based observations. Planet. Space Sci. 1993, 41, 543–549. [Google Scholar] [CrossRef]
- Khodakovsky, I.; Volkov, V.; Sidorov, Y.I.; Borisov, M.; Lomonosov, M. Venus: Preliminary prediction of the mineral composition of surface rocks. Icarus 1979, 39, 352–363. [Google Scholar] [CrossRef]
- Zolotov, M.Y. Gas-Solid Interactions on Venus and other Solar System Bodies. Rev. Mineral. Geochem. 2018, 84, 351–392. [Google Scholar] [CrossRef]
- Fegley Jr., B.; Treiman, A.H. Chemistry of atmosphere-surface interactions on Venus and Mars. Wash. DC Am. Geophys. Union Geophys. Monogr. Ser. 1992, 66, 7–71. [Google Scholar]
- Vinogradov, A.; Volkov, V. On the wallastonite equilibrium as a mechanism determining Venus’ atmospheric composition. Geochem. Int. 1971, 8, 463–467. [Google Scholar]
- Mueller, R.F.; Kridelbaugh, S.J. Kinetics of CO2 production on Venus. Icarus 1973, 19, 531–541. [Google Scholar] [CrossRef]
- Nozette, S.; Lewis, J.S. Venus: Chemical weathering of igneous rocks and buffering of atmospheric composition. Science 1982, 216, 181–183. [Google Scholar] [CrossRef] [PubMed]
- Lewis, J.S.; Prinn, R.G. Planets and Their Atmospheres: Origins and Evolution; Academic Press: Orlando, FL, USA, 1984. [Google Scholar]
- Fegley, B.; Treiman, A.H.; Sharpton, V.L. Venus surface mineralogy: Observational and theoretical constraints. In Proceedings of the Lunar and Planetary Science, Houston, TX, USA, 16–20 March 1992; 1992; Volume 22. [Google Scholar]
- Mueller, R.F. A chemical model for the lower atmosphere of Venus. Icarus 1964, 3, 285–298. [Google Scholar] [CrossRef]
- Hashimoto, G.L.; Abe, Y.; Sasaki, S. CO2 amount on Venus constrained by a criterion of topographic-greenhouse instability. Geophys. Res. Lett. 1997, 24, 289–292. [Google Scholar] [CrossRef]
- Treiman, A.H.; Bullock, M.A. Mineral reaction buffering of Venus’ atmosphere: A thermochemical constraint and implications for Venus-like planets. Icarus 2012, 217, 534–541. [Google Scholar] [CrossRef]
- Zolotov, M.Y. Sulfur-containing gases in the Venus atmosphere and stability of carbonates. In Proceedings of the Lunar and Planetary Science Conference, Houston, TX, USA, 11–15 March 1985; Volume 16, pp. 942–943. [Google Scholar]
- Berger, G.; Cathala, A.; Fabre, S.; Borisova, A.Y.; Pages, A.; Aigouy, T.; Esvan, J.; Pinet, P. Experimental exploration of volcanic rocks-atmosphere interaction under Venus surface conditions. Icarus 2019, 329, 8–23. [Google Scholar] [CrossRef]
- Fegley, B.; Klingelhofer, G.; Brackett, R.A.; Izenberg, N.; Kremser, D.T.; Lodders, K. Basalt oxidation and the formation of hematite on the surface of Venus. Icarus 1995, 118, 373–383. [Google Scholar] [CrossRef]
- Filiberto, J.; Trang, D.; Treiman, A.H.; Gilmore, M.S. Present-day volcanism on Venus as evidenced from weathering rates of olivine. Sci. Adv. 2020, 6, eaax7445. [Google Scholar] [CrossRef] [Green Version]
- Cutler, K.S.; Filiberto, J.; Treiman, A.H.; Trang, D. Experimental Investigation of Oxidation of Pyroxene and Basalt: Implications for Spectroscopic Analyses of the Surface of Venus and the Ages of Lava Flows. Planet. Sci. J. 2020, 1, 21. [Google Scholar] [CrossRef]
- Teffeteller, H.; Filiberto, J.; McCanta, M.C.; Treiman, A.H.; Keller, L.; Cherniak, D.; Rutherford, M.; Cooper, R.F. An experimental study of the alteration of basalt on the surface of Venus. Icarus 2022, 384, 115085. [Google Scholar] [CrossRef]
- Santos, A.R.; Gilmore, M.S.; Greenwood, J.P.; Nakley, L.M.; Phillips, K.; Kremic, T.; Lopez, X. Experimental Weathering of Rocks and Minerals at Venus Conditions in the Glenn Extreme Environments Rig (GEER). J. Geophys. Res.: Planets 2023, 128, e2022JE007423. [Google Scholar] [CrossRef]
- Qi, C.; Zhao, Y.H.; Zimmerman, M.E.; Kim, D.; Kohlstedt, D.L. Evolution of microstructural properties in sheared iron-rich olivine. J. Geophys. Res. Solid Earth 2021, 126, e2020JB019629. [Google Scholar] [CrossRef]
- Lafuente, B.; Downs, R.; Yang, H.; Stone, N. The power of databases: The RRUFF project. In Highlights in Mineralogical Crystallography; Armbruster, T., Danisi, R.M., Eds.; W. De Gruyter: Berlin, Germany, 2015; Volume 1, p. 30. [Google Scholar]
- Kan, X.; Coey, J. Mössbauer spectra, magnetic and electrical properties of laihunite, a mixed valence iron olivine mineral. Am. Mineral. 1985, 70, 576–580. [Google Scholar]
- Dyar, M.D.; Agresti, D.G.; Schaefer, M.W.; Grant, C.A.; Sklute, E.C. Mössbauer spectroscopy of earth and planetary materials. Annu. Rev. Earth Planet. Sci. 2006, 34, 83–125. [Google Scholar] [CrossRef] [Green Version]
- Gehring, A.; Fischer, H.; Louvel, M.; Kunze, K.; Weidler, P. High temperature stability of natural maghemite: A magnetic and spectroscopic study. Geophys. J. Int. 2009, 179, 1361–1371. [Google Scholar] [CrossRef]
- Osereme, E.-E.C.; Iserom, I.B.; Joshua, I.E.E. Synthesis, microstructure and magnetic properties of nanocrystalline MgFe2O4 particles: Effect of mixture of fuels and sintering temperature. Sci. Sinter. 2016, 48, 221–235. [Google Scholar] [CrossRef]
- Bartels, K.; Burns, R. Oxidized olivines on Mars: Spectroscopic investigations of heat-induced aerial oxidation products. In Proceedings of the Lunar and Planetary Science Conference, Houston, TX, USA, 13–17 March 1989; Volume 20, p. 44. [Google Scholar]
- Isaacson, P.J.; Klima, R.L.; Sunshine, J.M.; Cheek, L.C.; Pieters, C.M.; Hiroi, T.; Dyar, M.D.; Lane, M.; Bishop, J. Visible to near-infrared optical properties of pure synthetic olivine across the olivine solid solution. Am. Mineral. 2014, 99, 467–478. [Google Scholar] [CrossRef]
- Pieters, C.M.; Head, J.W.; Pratt, S.; Patterson, W.; Garvin, J.; Barsukov, V.L.; Basilevsky, A.T.; Khodakovsky, I.L.; Selivanov, A.S.; Panfilov, A.S.; et al. The color of the surface of Venus. Science 1986, 234, 1379–1383. [Google Scholar] [CrossRef]
- Treiman, A.H.; Filiberto, J.; Vander Kaaden, K.E. Near-infrared reflectance of rocks at high temperature: Preliminary results and implications for near-infrared emissivity of Venus’s surface. Planet. Sci. J. 2021, 2, 43. [Google Scholar] [CrossRef]
- Knafelc, J.; Filiberto, J.; Ferré, E.C.; Conder, J.A.; Costello, L.; Crandall, J.R.; Dyar, M.D.; Friedman, S.A.; Hummer, D.R.; Schwenzer, S.P. The effect of oxidation on the mineralogy and magnetic properties of olivine. Am. Mineral. 2019, 104, 694–702. [Google Scholar] [CrossRef]
- Zolotov, M.Y. Chemical weathering of olivines and ferromagnesian pyroxenes on the surface of Venus. In Proceedings of the Lunar and Planetary Science Conference, Houston, TX, USA, 18–22 March 1991; Volume 22, p. 1567. [Google Scholar]
- Cornell, R.M.; Schwertmann, U. The Iron Oxides: Structure, Properties, Reactions, Occurrences, and Uses; Wiley-vch Weinheim: Berlin, Germany, 2003; Volume 664, p. 493. [Google Scholar]
- Hoye, G.; Evans, M. Remanent magnetizations in oxidized olivine. Geophys. J. Int. 1975, 41, 139–150. [Google Scholar] [CrossRef] [Green Version]
- Kondoh, S.; Kitamura, M.; Morimoto, N. Synthetic laihunite (☐xFe2−3x2+Fe2x3+SiO4), an oxidation product of olivine. Am. Mineral. 1985, 70, 737–746. [Google Scholar]
- Fegley, B.; Treiman, A.H.; Sharpton, V.L. Venus surface mineralogy—Observational and theoretical constraints. Proc. Lunar Planet. Sci. 1992, 22, 3–19. [Google Scholar]
- Keller, L.P.; Thomas, K.L.; McKay, D.S. Mineralogical Changes in IDPs Resulting from Atmospheric Entry Heating. In International Astronomical Union Colloquium; Cambridge University Press: Cambridge, UK, 1996; Volume 150, pp. 295–298. [Google Scholar]
- Lemine, O.M.; Sajieddine, M.; Bououdina, M.; Msalam, R.; Mufti, S.; Alyamani, A. Rietveld analysis and Mössbauer spectroscopy studies of nanocrystalline hematite α-Fe2O3. J. Alloys Compd. 2010, 502, 279–282. [Google Scholar] [CrossRef]
- Dyar, M.D.; Helbert, J.; Cooper, R.F.; Sklute, E.C.; Maturilli, A.; Mueller, N.T.; Kappel, D.; Smrekar, S.E. Surface weathering on Venus: Constraints from kinetic, spectroscopic, and geochemical data. Icarus 2021, 358, 114139. [Google Scholar] [CrossRef]
- Michel, R.; Ammar, M.R.; Poirier, J.; Simon, P. Phase transformation characterization of olivine subjected to high temperature in air. Ceram. Int. 2013, 39, 5287–5294. [Google Scholar] [CrossRef]
- Chakraborty, S. Rates and mechanisms of Fe-Mg interdiffusion in olivine at 980 °C–1300 °C. J. Geophys. Res. Solid Earth 1997, 102, 12317–12331. [Google Scholar] [CrossRef]
- Li, Z.; Cai, N. Principle of Gas-Solid Reaction; Science Press: Beijing, China, 2020; pp. 274–287. [Google Scholar]
- Barrat, J.A.; Jambon, A.; Gillet, P.H.; Sautter, V.; Göpel, C.; Lesourd, M.; Keller, F. Petrology and chemistry of the Picritic Shergottite North West Africa 1068 (NWA 1068). Geochim. Cosmochim. 2002, 66, 3505–3518. [Google Scholar] [CrossRef]
- Vinet, N.; Higgins, M.D. What can crystal size distributions and olivine compositions tell us about magma solidification processes inside Kilauea Iki lava lake, Hawaii? J. Volcanol. Geotherm. Res. 2011, 208, 136–162. [Google Scholar] [CrossRef]
- Banfield, J.F.; Veblen, D.R.; Jones, B.F. Transmission electron microscopy of subsolidus oxidation and weathering of olivine. Contrib. Mineral. Petrol. 1990, 106, 110–123. [Google Scholar] [CrossRef]
- Fegley, B.; Zolotov, M.Y.; Lodders, K. The oxidation state of the lower atmosphere and surface of Venus. Icarus 1997, 125, 416–439. [Google Scholar] [CrossRef] [Green Version]
- Zolotov, M.Y. Pyrite-magnetite or magnetite-hematite mineral assemblages as a possible buffer of the composition of the Venus atmosphere. In Proceedings of the Lunar and Planetary Science Conference, Houston, TX, USA, 16–20 March 1992; Volume 23, p. 1591. [Google Scholar]
- Zolotov, M.Y. A model for the thermal equilibrium of the surface venusian atmosphere. Geochem. Int. 1996, 33, 80–100. [Google Scholar]
- Gilmore, M.; Treiman, A.; Helbert, J.; Smrekar, S. Venus surface composition constrained by observation and experiment. Space Sci. Rev. 2017, 212, 1511–1540. [Google Scholar] [CrossRef]
- Myers, T.L.; Brauer, C.S.; Su, Y.-F.; Blake, T.A.; Tonkyn, R.G.; Ertel, A.B.; Johnson, T.J.; Richardson, R.L. Quantitative reflectance spectra of solid powders as a function of particle size. Appl. Opt. 2015, 54, 4863–4875. [Google Scholar] [CrossRef] [PubMed]
- Hapke, B. Bidirectional reflectance spectroscopy: 1. Theory 1981, 86, 3039–3054. [Google Scholar]
- Weitz, C.M.; Plaut, J.J.; Greeley, R.; Saunders, R.S. Dunes and microdunes on Venus: Why were so few found in the Magellan data? Icarus 1994, 112, 282–295. [Google Scholar] [CrossRef]
- Helbert, J.; Maturilli, A.; Dyar, M.D.; Alemanno, G. Deriving iron contents from past and future Venus surface spectra with new high-temperature laboratory emissivity data. Sci. Adv. 2021, 7, eaba9428. [Google Scholar] [CrossRef]
- Florensky, C.P.; Basilevsky, A.T.; Kryuchkov, V.P.; Kusmin, R.O.; Nikolaeva, O.V.; Pronin, A.A.; Chernaya, I.M.; Tyuflin, Y.S.; Selivanov, A.S.; Naraeva, M.K.; et al. Venera 13 and Venera 14: Sedimentary rocks on Venus? Science 1983, 221, 57–59. [Google Scholar] [CrossRef]
- Keldysh, M. Venus exploration with the Venera 9 and Venera 10 spacecraft. Icarus 1977, 30, 605–625. [Google Scholar] [CrossRef]
- Pieters, C.; Patterson, W.; Pratt, S.; Head, J.; Garvin, J. Oxidized basalts on the surface of Venus: Compositional implications of measured spectral properties. In Proceedings of the Lunar and Planetary Science Conference, Houston, TX, USA, 17–21 March 1986; Volume 17, pp. 662–663. [Google Scholar]
- Sueno, S.; Matsuura, S.; Prewiit, C. Fe–deficient olivine structure type minerals from Colorado, USA and Japan. Mineral. J. 1985, 12, 376–392. [Google Scholar] [CrossRef] [Green Version]
- Olsen, A.A.; Rimstidt, J.D. Using a mineral lifetime diagram to evaluate the persistence of olivine on Mars. Am. Mineral. 2007, 92, 598–602. [Google Scholar] [CrossRef]
- Brossier, J.F.; Gilmore, M.S.; Toner, K. Low radar emissivity signatures on Venus volcanoes and coronae: New insights on relative composition and age. Icarus 2020, 343, 113693. [Google Scholar] [CrossRef] [PubMed]
- Zhong, S.-S.; Chinese Academy of Sciences, Beijing, China. Experimental Data of High-Temperature Oxidation of Magnesium- and Iron-Rich Olivine under a CO2 Atmosphere. 2013; to be submitted. [Google Scholar]
Fa# | SiO2 wt% | Al2O3 wt% | Fe2O3 wt% | MgO wt% | CaO wt% | MnO wt% | Na2O wt% | K2O wt% | P2O5 wt% | TiO2 wt% | Ni wt% | SUM |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Fa09 | 40.72 | 0.21 | 10.12 | 48.79 | 0.21 | 0.14 | 0.06 | <DL | 0.02 | 0.02 | <DL | 99.68 |
Fa29 | 35.90 | 0.26 | 26.30 | 35.80 | 0.32 | 0.11 | <DL | <DL | <DL | <DL | 0.23 | 98.92 |
Fa71 | 31.00 | 0.07 | 54.80 | 12.50 | 0.22 | 0.05 | <DL | <DL | <DL | <DL | 0.06 | 98.70 |
Fa# | Oxidation T | Oxidation Duration | Major Components | Minor Components |
---|---|---|---|---|
Fa09 | 470 °C | 3 d | Ol, Qtz | Hem |
6 d | Ol, En, Qtz | Hem | ||
12 d | Ol, En | Hem | ||
18 d | Ol, En, MgFe-Ox | Hem | ||
24 d | Ol, En, Mag-Lh a | Hem | ||
Fa29 | 470 °C | 3 d | Ol | Hem |
6 d | Ol | Hem, Mgh | ||
12 d | Ol | Hem, Mgh | ||
18 d | Ol | Hem | ||
24 d | Ol, Mag-Lh a | Hem, Mgh | ||
Fa71 | 470 °C | 12 h | Ol, Hem, Lh | Mgh |
1 d | Ol, Hem, Lh | Mag | ||
3 d | Ol, Hem, Lh | Mag | ||
6 d | Ol, Hem, Lh | Mgh | ||
12 d | Ol, Hem, Mag-Lh a | - | ||
Fa09 | 900 °C | 1 h | Ol, Hem, Qtz, En | - |
6 h | Ol, Hem, Qtz, En | - | ||
12 h | Ol, Hem, Qtz, En | Mfr | ||
1 d | Ol, Hem, En, Qtz | Mfr | ||
3 d | Ol, Hem, En, Mag a | Mfr | ||
Fa29 | 900 °C | 1 h | Ol, Hem | Mag |
6 h | Ol, Hem, Spl | Mfr | ||
12 h | Ol, Hem, Spl | Mfr | ||
1 d | Ol, Hem, Spl | Mfr | ||
3 d | Ol, Hem, Spl, Mag a, amorphous SiO2a | Mfr | ||
Fa71 | 900 °C | 1 h | Ol, Mag, Hem | Mgh |
6 h | Hem, Mag, Ol | Mgh | ||
12 h | Hem, Mag, Ol | - | ||
1 d | Hem, Mag, Ol | - | ||
3 d | Hem, Ol, Mag a amorphous SiO2 a | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhong, S.-S.; Zhao, Y.-Y.S.; Lin, H.; Chang, R.; Qi, C.; Wang, J.; Mo, B.; Wen, Y.; Yu, W.; Zhou, D.-S.; et al. High-Temperature Oxidation of Magnesium- and Iron-Rich Olivine under a CO2 Atmosphere: Implications for Venus. Remote Sens. 2023, 15, 1959. https://doi.org/10.3390/rs15081959
Zhong S-S, Zhao Y-YS, Lin H, Chang R, Qi C, Wang J, Mo B, Wen Y, Yu W, Zhou D-S, et al. High-Temperature Oxidation of Magnesium- and Iron-Rich Olivine under a CO2 Atmosphere: Implications for Venus. Remote Sensing. 2023; 15(8):1959. https://doi.org/10.3390/rs15081959
Chicago/Turabian StyleZhong, Shan-Shan, Yu-Yan Sara Zhao, Honglei Lin, Rui Chang, Chao Qi, Junhu Wang, Bing Mo, Yuanyun Wen, Wen Yu, Di-Sheng Zhou, and et al. 2023. "High-Temperature Oxidation of Magnesium- and Iron-Rich Olivine under a CO2 Atmosphere: Implications for Venus" Remote Sensing 15, no. 8: 1959. https://doi.org/10.3390/rs15081959
APA StyleZhong, S. -S., Zhao, Y. -Y. S., Lin, H., Chang, R., Qi, C., Wang, J., Mo, B., Wen, Y., Yu, W., Zhou, D. -S., Yu, X. -W., Li, X., & Liu, J. (2023). High-Temperature Oxidation of Magnesium- and Iron-Rich Olivine under a CO2 Atmosphere: Implications for Venus. Remote Sensing, 15(8), 1959. https://doi.org/10.3390/rs15081959