Extracting Mare-like Cryptomare Deposits in Cryptomare Regions Based on CE-2 MRM Data Using SVM Method
Abstract
:1. Introduction
2. Data Processing
2.1. Study Regions and Regional Geology
2.2. Microwave Radiometer Data
2.3. TB Maps Generation
3. Methods
3.1. The Support Vector Machine Method
3.2. Training Samples Optimization
3.3. Extraction of Band Features
4. Results and Discussions
4.1. Extracting the MCD in Balmer–Kapteyn Cryptomare Region
4.2. Extracting the MCD in Dewar, L-F, and S-S Cryptomare Regions
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Head, J.W.; Wilson, L. Lunar mare volcanism: Stratigraphy, eruption conditions, and the evolution of secondary crusts. Geochim. Et Cosmochim. Acta 1992, 56, 2155–2175. [Google Scholar] [CrossRef]
- Antonenko, I.; Head, J.W.; Mustard, J.F.; Hawke, B.R. Criteria for the detection of lunar cryptomaria. Earth Moon Planets 1995, 69, 141–172. [Google Scholar] [CrossRef]
- Whitten, J.L.; Head, J.W. Lunar cryptomaria: Mineralogy and composition of ancient volcanic deposits. Planet. Space Sci. 2015, 106, 67–81. [Google Scholar] [CrossRef]
- Wang, X.; Qiu, D. Lunar Cryptomare: New Insights Into the Balmer-Kapteyn Region. J. Geophys. Res. Planets 2018, 123, 3238–3255. [Google Scholar] [CrossRef]
- Bramson, A.M.; Carter, L.M.; Patterson, G.W.; Sori, M.M.; Morgan, G.A.; Jozwiak, L.M.; Nypaver, C.A.; Cahill, J.T.S. Burial Depths of Extensive Shallow Cryptomaria in the Lunar Schiller–Schickard Region. Planet. Sci. J. 2022, 3, 216. [Google Scholar] [CrossRef]
- Schultz, P.H.; Spudis, P.D. Evidence for Ancient Mare Volcanism; Pergamon Press: Houston, TX, USA, 1979. [Google Scholar]
- Schultz, P.H.; Spudis, P.D. Beginning and end of lunar mare volcanism. Nature 1983, 302, 233–236. [Google Scholar] [CrossRef]
- Hawke, B.R.; Bell, J.F. Remote sensing studies of lunar dark-halo impact craters-Preliminary results and implications for early volcanism. In Proceedings of the Lunar and Planetary Science Conference Proceedings, Houston, TX, USA, 16–20 March 1981; pp. 665–678. [Google Scholar]
- Hawke, B.R.; Gillis, J.J.; Giguere, T.A.; Blewett, D.T.; Lawrence, D.J.; Lucey, P.G.; Smith, G.A.; Spudis, P.D.; Taylor, G.J. Remote sensing and geologic studies of the Balmer-Kapteyn region of the Moon. J. Geophys. Res. Planets 2005, 110, E06004. [Google Scholar] [CrossRef]
- Giguere, T.A.; Hawke, B.R.; Blewett, D.T.; Bussey, D.B.; Lucey, P.G.; Smith, G.A.; Spudis, P.D.; Taylor, G.J. Remote sensing studies of the Lomonosov-Fleming region of the Moon. J. Geophys. Res. Planets 2003, 108, 5118. [Google Scholar] [CrossRef]
- Bell, J.F.; Hawke, B.R. Lunar dark-haloed impact craters: Origin and implications for early mare volcanism. J. Geophys. Res. Solid Earth 1984, 89, 6899–6910. [Google Scholar] [CrossRef]
- Mustard, J.F.; Head, J.W.; Murchie, S.M.; Pieters, C.M.; Belton, M.S. Schickard cryptomare: Interaction between Orientale ejecta and pre-basin mare from spectral mixture analysis of Galileo SSI data. Lunar Planet. Sci. Conf. 1992, 23, 957. [Google Scholar]
- Head, J.W.; Murchie, S.M.; Mustard, J.F.; Pieters, C.M.; Neukum, G.; McEwen, A.; Greeley, R.; Nagel, E.; Belton, M.J. Lunar impact basins: New data for the western limb and far side (Orientale and South Pole-Aitken basins) from the first Galileo flyby. J. Geophys. Res. Planets 1993, 98, 17149–17181. [Google Scholar] [CrossRef] [Green Version]
- Hawke, B.R.; Spudis, P.D.; Clark, P.E. The origin of selected lunar geochemical anomalies: Implications for early volcanism and the formation of light plains. Earth Moon Planets 1985, 32, 257–273. [Google Scholar] [CrossRef]
- Lawrence, D.J.; Feldman, W.C.; Elphic, R.C.; Little, R.C.; Prettyman, T.H.; Maurice, S.; Lucey, P.G.; Binder, A.B. Iron abundances on the lunar surface as measured by the Lunar Prospector gamma-ray and neutron spectrometers. J. Geophys. Res. Planets 2002, 107, 5130. [Google Scholar] [CrossRef]
- Qiu, D.; Li, F.; Yan, J.; Wang, X.; Gao, W.; Deng, Q.; Guo, X. New view of the Balmer-Kapteyn region: Cryptomare distribution and formation. Astron. Astrophys. 2022, 659, A4. [Google Scholar] [CrossRef]
- Zheng, Y.; Chan, K.; Tsang, K.; Zhu, Y.; Hu, G.; Blewett, D.T.; Neish, C. Analysis of Chang’E-2 brightness temperature data and production of high spatial resolution microwave maps of the Moon. Icarus 2019, 319, 627–644. [Google Scholar] [CrossRef]
- Meng, Z.; Hu, S.; Wang, T.; Li, C.; Cai, Z.; Ping, J. Passive microwave probing mare basalts in mare imbrium using CE-2 CELMS data. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2018, 11, 3097–3104. [Google Scholar] [CrossRef]
- Meng, Z.; Lei, J.; Qian, Y.; Xiao, L.; Head, J.W.; Chen, S.; Cheng, W.; Shi, J.; Ping, J.; Kang, Z. Thermophysical Features of the Rümker Region in Northern Oceanus Procellarum: Insights from CE-2 CELMS Data. Remote Sens. 2020, 12, 3272. [Google Scholar] [CrossRef]
- Tang, T.; Meng, Z.; Lian, Y.; Xiao, Z.; Ping, J.; Cai, Z.; Zhang, X.; Dong, X.; Zhang, Y. New Insights into Surface Deposits in the Balmer-Kapteyn Cryptomare Region Provided by Chang’E-2 Microwave Radiometer Data. Remote Sens. 2022, 14, 4556. [Google Scholar] [CrossRef]
- Kodikara, G.R.; McHenry, L.J. Machine learning approaches for classifying lunar soils. Icarus 2020, 345, 113719. [Google Scholar] [CrossRef]
- Chen, H.; Jing, N.; Wang, J.; Chen, Y.; Chen, L. A novel saliency detection method for lunar remote sensing images. IEEE Geosci. Remote Sens. Lett. 2013, 11, 24–28. [Google Scholar] [CrossRef]
- Melgani, F.; Bruzzone, L. Classification of hyperspectral remote sensing images with support vector machines. IEEE Trans. Geosci. Remote Sens. 2004, 42, 1778–1790. [Google Scholar] [CrossRef] [Green Version]
- Qian, Y.; Xiao, L.; Head, J.W. The Young Mare Basalts in Chang’E 5 Mission Landing Region, Northern Oceanus Procellarum. In Proceedings of the 51st Annual Lunar and Planetary Science Conference, Woodlands, TX, USA, 16–20 March 2020; p. 1459. [Google Scholar]
- Lawrence, S.J.; Hawke, B.R.; Gillis-Davis, J.J.; Taylor, G.J.; Lawrence, D.J.; Cahill, J.T.; Hagerty, J.J.; Lucey, P.G.; Smith, G.A.; Keil, K. Composition and origin of the Dewar geochemical anomaly. J. Geophys. Res. Planets 2008, 113, E02001. [Google Scholar] [CrossRef] [Green Version]
- Haines, E.L.; Etchegaray-Ramireez, M.I.; Metzger, A.E. Thorium concentrations in the lunar surface. II: Deconvolution modeling and its application to the regions of Aristarchus and Mare Smythii. Lunar Sci. Conf. 1978, 9, 2985–3013. [Google Scholar]
- Hawke, B.R.; Spudis, P.D. Geochemical anomalies on the eastern limb and farside of the moon. In Proceedings of the Lunar Highlands Crust, Houston, TX, USA, 14–17 November 1979. [Google Scholar]
- Clark, P.E.; Hawke, B.R. The lunar farside: The nature of highlands east of Mare Smythii. Earth Moon Planets 1991, 53, 93–107. [Google Scholar] [CrossRef]
- Hawke, B.R.; Blewett, D.T.; Bussey, D.B.J.; Giguere, T.A.; Lawrence, D.J.; Lucey, P.G.; Smith, G.A.; Spudis, P.D.; Taylor, G.J. Geochemical anomalies in the lunar highlands. In Proceedings of the 34th Lunar and Planetary Science, League City, TX, USA, 17–21 March 2003. [Google Scholar]
- Blewett, D.T.; Hawke, B.R.; Lucey, P.G.; Taylor, G.J.; Jaumann, R.; Spudis, P.D. Remote sensing and geologic studies of the Schiller-Schickard region of the Moon. J. Geophys. Res. Planets 1995, 100, 16959–16977. [Google Scholar] [CrossRef] [Green Version]
- Mustard, J.F.; Head, J.W. Buried stratigraphic relationships along the southwestern shores of Oceanus Procellarum: Implications for early lunar volcanism. J. Geophys. Res. Planets 1996, 101, 18913–18925. [Google Scholar] [CrossRef]
- Hareyama, M.; Ishihara, Y.; Demura, H.; Hirata, N.; Honda, C.; Kamata, S.; Karouji, Y.; Kimura, J.; Morota, T.; Nagaoka, H. Global classification of lunar reflectance spectra obtained by Kaguya (SELENE): Implication for hidden basaltic materials. Icarus 2019, 321, 407–425. [Google Scholar] [CrossRef]
- Whitten, J.L.; Head, J.W. Lunar cryptomaria: Physical characteristics, distribution, and implications for ancient volcanism. Icarus 2015, 247, 150–171. [Google Scholar] [CrossRef]
- Campbell, B.A.; Carter, L.M.; Hawke, B.R.; Campbell, D.B.; Ghent, R.R. Volcanic and impact deposits of the Moon’s Aristarchus Plateau: A new view from Earth-based radar images. Geology 2008, 36, 135–138. [Google Scholar] [CrossRef]
- Cai, Z.; Lan, T. Lunar brightness temperature model based on the microwave radiometer data of Chang’E-2. IEEE Trans. Geosci. Remote Sens. 2017, 55, 5944–5955. [Google Scholar] [CrossRef]
- Meng, Z.; Chen, S.; Zheng, Y.; Cheng, W.; Hou, L. Mare Deposits Identification and Feature Analysis in Mare Australe Based on CECELMS Data. J. Geophys. Res. Planets 2020, 125, e2019JE006330. [Google Scholar] [CrossRef]
- Zheng, Y.; Tsang, K.; Chan, K.; Zou, Y.; Zhang, F.; Ouyang, Z. First microwave map of the Moon with Chang’E-1 data: The role of local time in global imaging. Icarus 2012, 219, 194–210. [Google Scholar] [CrossRef]
- Fang, T.; Fa, W. High frequency thermal emission from the lunar surface and near surface temperature of the Moon from Chang’E-2 microwave radiometer. Icarus 2014, 232, 34–53. [Google Scholar] [CrossRef]
- Meng, Z.; Chen, S.; Wang, Y.; Wang, T.; Cai, Z.; Zhang, Y.; Zheng, Y.; Hu, S. Reevaluating Mare Moscoviense and its vicinity using Chang’E-2 microwave sounder data. Remote Sens. 2020, 12, 535. [Google Scholar] [CrossRef] [Green Version]
- Liu, C.; Mei, L.; Meng, Z.; Wang, Y.; Zhu, K.; Cheng, W.; Cai, Z.; Ping, J.; Gusev, A. Special Thermophysical Features of Floor Materials in Mare Smythii Indicated by CE-2 CELMS Data. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 8135–8143. [Google Scholar] [CrossRef]
- Chan, K.; Tsang, K.; Kong, B.; Zheng, Y. Lunar regolith thermal behavior revealed by Chang’E-1 microwave brightness temperature data. Earth Planet. Sci. Lett. 2010, 295, 287–291. [Google Scholar] [CrossRef]
- Matveev, Y.G.; Suchkin, G.L.; Troitskii, V.S. Change of Lunite Density with Depth in the Surface Layer. Astron. Zhurnal 1965, 42, 810. [Google Scholar]
- Meng, Z.; Lei, J.; Xiao, Z.; Cao, W.; Cai, Z.; Cheng, W.; Feng, X.; Ping, J. Re-Evaluating Influence of Rocks on Microwave Thermal Emission of Lunar Regolith Using CE-2 MRM Data. IEEE Trans.Rouse Craters A Wide Range Light Plain Geosci. Remote Sens. 2022, 60, 1–12. [Google Scholar] [CrossRef]
- Luo, M.; Ma, Y.; Zhang, H. A spatial constrained k-means approach to image segmentation. In Proceedings of the Fourth International Conference on Information, Communications and Signal Processing, 2003 and the Fourth Pacific Rim Conference on Multimedia. Proceedings of the 2003 Joint, Singapore, 15–18 December 2003; pp. 738–742. [Google Scholar]
- Maheshwary, P.; Srivastav, N. Retrieving similar image using color moment feature detector and k-means clustering of remote sensing images. In Proceedings of the 2008 International Conference on Computer and Electrical Engineering, Dhaka, Bangladesh, 20–22 December 2008; pp. 821–824. [Google Scholar]
- Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef] [Green Version]
- Huang, S.; Yin, J.; Zhu, H.; Cao, Z. Gaussian Attractive Force-Based Alternative Parametric Active Contour Model for 3D Lunar Crater Detection. In Proceedings of the IGARSS 2018–2018 IEEE International Geoscience and Remote Sensing Symposium, Valencia, Spain, 22–27 July 2018; pp. 7082–7085. [Google Scholar]
- Jiang, C.; Shen, H.; Li, H.; Wang, Y. Optimal real-time lunar soft landing using random forest. Chin. Space Sci. Technol. 2018, 38, 8. [Google Scholar]
- Lucey, P.G.; Blewett, D.T.; Taylor, G.J.; Hawke, B.R. Imaging of lunar surface maturity. J. Geophys. Res. Planets 2000, 105, 20377–20386. [Google Scholar] [CrossRef]
Frequency (GHz) | 3.0 | 7.8 | 19.35 | 37 |
Bandwidth (MHz) | 100 | 200 | 500 | 500 |
Integration time (ms) | 200 | 200 | 200 | 200 |
Temperature sensitivity (K) | ≤0.5 | ≤0.5 | ≤0.5 | ≤0.5 |
3 dB beam width | E: 15 + 2° | E: 9 + 2° | E: 9 + 2° | E: 10 + 2° |
H: 12 + 2° | H: 9 + 2° | H: 10 + 2° | H: 10 + 2° |
Region | nTB at Noon | nTB at Night | dTB |
---|---|---|---|
Dewar | 3.0, 19.35 GHz | 3.0, 7.8 GHz, 19.35 GHz | 37 GHz |
L-F | 37 GHz | 3.0, 37 GHz | 3.0, 19.35, 37 GHz |
S-S | 19.35 GHz | 3.0, 19.35, 37 GHz | 3.0, 37 GHz |
B-K | 37 GHz | 3.0, 37 GHz | 3.0, 19.35, 37 GHz |
Compositions | Abundance | |
---|---|---|
MCD | N | |
FA | 9.67 wt.% | 9.26 wt.% |
TA | 1.19 wt.% | 1.11 wt.% |
RA | 0.28 wt.% | 0.30 wt.% |
Channel | nTB at Daytime | nTB at Night | dTB (K) | |||
---|---|---|---|---|---|---|
MCD | H | MCD | H | MCD | H | |
3.0 GHz | 1.003 | 0.998 | 0.998 | 0.998 | 3.64 | 2.41 |
7.8 GHz | 1.006 | 0.999 | 0.998 | 0.999 | 8.64 | 6.74 |
19.35 GHz | 1.005 | 0.996 | 0.996 | 1.000 | 21.60 | 18.19 |
37 GHz | 1.004 | 0.993 | 0.990 | 1.001 | 48.39 | 43.06 |
Region | Compositions | Abundance | |
---|---|---|---|
MCD | N | ||
Dewar | FA | 8.43 wt.% | 8.22 wt.% |
TA | 1.05 wt.% | 0.99 wt.% | |
RA | 0.36 wt.% | 0.33 wt.% | |
L-F | FA | 7.48 wt.% | 7.24 wt.% |
TA | 0.66 wt.% | 0.65 wt.% | |
RA | 0.33 wt.% | 0.32 wt.% | |
S-S | FA | 10.36 wt.% | 9.82 wt.% |
TA | 0.83 wt.% | 0.75 wt.% | |
RA | 0.53 wt.% | 0.52 wt.% |
Region | Channel | nTB at Daytime | nTB at Night | dTB (K) | |||
---|---|---|---|---|---|---|---|
MCD | H | MCD | H | MCD | H | ||
Dewar | 3.0 GHz | 1.005 | 1.002 | 1.003 | 1.003 | 8.27 | 8.23 |
7.8 GHz | 1.007 | 1.002 | 0.997 | 0.998 | 23.38 | 22.68 | |
19.35 GHz | 1.006 | 1.000 | 0.993 | 0.993 | 46.57 | 44.68 | |
37 GHz | 1.007 | 1.000 | 0.988 | 0.989 | 86.26 | 84.00 | |
L-F | 3.0 GHz | 0.997 | 0.994 | 0.995 | 0.996 | 3.09 | 2.22 |
7.8 GHz | 0.990 | 0.984 | 0.985 | 0.989 | 11.18 | 9.11 | |
19.35 GHz | 0.998 | 0.985 | 0.974 | 0.982 | 32.02 | 27.09 | |
37 GHz | 1.006 | 0.988 | 0.955 | 0.968 | 67.13 | 59.93 | |
S-S | 3.0 GHz | 1.007 | 1.007 | 0.990 | 0.996 | 7.28 | 5.97 |
7.8 GHz | 1.013 | 1.013 | 0.991 | 0.999 | 18.97 | 16.62 | |
19.35 GHz | 1.012 | 1.005 | 0.993 | 0.997 | 36.24 | 31.67 | |
37 GHz | 1.011 | 1.006 | 0.989 | 0.993 | 61.77 | 55.80 |
Region | W (km2) | MCD (km2) | Proportion (MCD/W) |
---|---|---|---|
Dewar | 4780 | 3101.1 | 64.9% |
L-F | 113,000 | 59,078.3 | 52.3% |
S-S | 226,700 | 173,097.3 | 76.4% |
B-K | 60,600 | 38,791.6 | 64.0% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tang, T.; Meng, Z.; Lian, Y.; Wei, Z.; Dong, X.; Wang, Y.; Wang, M.; Cai, Z.; Zhang, X.; Gusev, A.; et al. Extracting Mare-like Cryptomare Deposits in Cryptomare Regions Based on CE-2 MRM Data Using SVM Method. Remote Sens. 2023, 15, 2010. https://doi.org/10.3390/rs15082010
Tang T, Meng Z, Lian Y, Wei Z, Dong X, Wang Y, Wang M, Cai Z, Zhang X, Gusev A, et al. Extracting Mare-like Cryptomare Deposits in Cryptomare Regions Based on CE-2 MRM Data Using SVM Method. Remote Sensing. 2023; 15(8):2010. https://doi.org/10.3390/rs15082010
Chicago/Turabian StyleTang, Tianqi, Zhiguo Meng, Yi Lian, Zhaoran Wei, Xuegang Dong, Yongzhi Wang, Mingchang Wang, Zhanchuan Cai, Xiaoping Zhang, Alexander Gusev, and et al. 2023. "Extracting Mare-like Cryptomare Deposits in Cryptomare Regions Based on CE-2 MRM Data Using SVM Method" Remote Sensing 15, no. 8: 2010. https://doi.org/10.3390/rs15082010
APA StyleTang, T., Meng, Z., Lian, Y., Wei, Z., Dong, X., Wang, Y., Wang, M., Cai, Z., Zhang, X., Gusev, A., & Zhang, Y. (2023). Extracting Mare-like Cryptomare Deposits in Cryptomare Regions Based on CE-2 MRM Data Using SVM Method. Remote Sensing, 15(8), 2010. https://doi.org/10.3390/rs15082010