A Robust Algorithm for Photon Denoising and Bathymetric Estimation Based on ICESat-2 Data
Abstract
:1. Introduction
2. Study Areas and Data
3. Methods
3.1. Two-Step Method
- Since the size of the ICESat-2 spot is about 17 m, set a window 17 m long with a sliding step of 17 m to slide along the underwater photon track;
- In this window, arrange the photon elevation values within the 17 m window to find the median value, , and set the half-height h of the window to 0.7 m (this is an empirical value);
- When the photon elevation H in the window meets , the photon is classified as a signal photon;
- Slide to the next window and repeat Step 3.
3.2. Robust M-Estimation
- Calculate the initial value , residual , and variance factor of the parameter estimate based on the least squares estimation of Equations (1) and (9);
- Calculate the corresponding standardized residuals, = /, from , using Equation (8) IGG3, and calculate the corresponding equivalent weights ;
- The equivalent weight is obtained according to the above steps, and the parameters , variance factor , and residual of the first iteration model are calculated in combination with Equations (6) and (9b);
- The residual and variance factor , obtained in Step 3, are substituted into Equation (8) to calculate the model parameter of the second iteration;
- Repeat Steps 3 and 4 until meeting the conditions . The final estimated model parameters can be calculated using Equation (7).
3.3. Manual Denoising
4. Results
4.1. Photon Denoising Based on DBSCAN
4.2. Photon Denoising Based on the Two-Dimensional Window Filter
4.3. Photon Denoising Based on the Two-Step Method
4.4. Draw Bathymetry Profiles
4.5. Accuracy Assessment
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Abdalati, W.; Zwally, H.J.; Bindschadler, R.; Csatho, B.; Farrell, S.L.; Fricker, H.A.; Harding, D.; Kwok, R.; Lefsky, M.; Markus, T.; et al. The ICESat-2 Laser Altimetry Mission. Proc. IEEE 2010, 98, 735–751. [Google Scholar] [CrossRef]
- Markus, T.; Neumann, T.; Martino, A.; Abdalati, W.; Brunt, K.; Csatho, B.; Farrell, S.; Fricker, H.; Gardner, A.; Harding, D.; et al. The Ice, Cloud, and land Elevation Satellite-2 (ICESat-2): Science requirements, concept, and implementation. Remote Sens. Environ. 2017, 190, 260–273. [Google Scholar] [CrossRef]
- Hagopian, J.; Bolcar, M.; Chambers, J.; Crane, A.; Eegholm, B.; Evans, T.; Hetherington, S.; Mentzell, E.; Thompson, P.L.; Ramos-Izquierdo, L.; et al. Advanced topographic laser altimeter system (ATLAS) receiver telescope assembly (RTA) and transmitter alignment and test. In Proceedings of the Earth Observing Systems XXI, San Diego, CA, USA, 28 August–1 September 2016; pp. 55–67. [Google Scholar] [CrossRef]
- Neumann, T.A.; Martino, A.J.; Markus, T.; Bae, S.; Bock, M.R.; Brenner, A.C.; Brunt, K.M.; Cavanaugh, J.; Fernandes, S.T.; Hancock, D.W.; et al. The Ice, Cloud, and Land Elevation Satellite—2 mission: A global geolocated photon product derived from the Advanced Topographic Laser Altimeter System. Remote Sens. Environ. 2019, 233, 111325. [Google Scholar] [CrossRef] [PubMed]
- Urban, T.J.; Schutz, B.E.; Neuenschwander, A.L. A Survey of ICESat Coastal Altimetry Applications: Continental Coast, Open Ocean Island, and Inland River. Terr. Atmos. Ocean. Sci. 2008, 19, 1–19. [Google Scholar] [CrossRef] [Green Version]
- Ma, Y.; Xu, N.; Liu, Z.; Yang, B.; Yang, F.; Wang, X.H.; Li, S. Satellite-derived bathymetry using the ICESat-2 lidar and Sentinel-2 imagery datasets. Remote Sens. Environ. 2020, 250, 112047. [Google Scholar] [CrossRef]
- Hsu, H.-J.; Huang, C.-Y.; Jasinski, M.; Li, Y.; Gao, H.; Yamanokuchi, T.; Wang, C.-G.; Chang, T.-M.; Ren, H.; Kuo, C.-Y.; et al. A semi-empirical scheme for bathymetric mapping in shallow water by ICESat-2 and Sentinel-2: A case study in the South China Sea. ISPRS J. Photogramm. Remote Sens. 2021, 178, 1–19. [Google Scholar] [CrossRef]
- Nguyen, V.-A.; Ren, H.; Huang, C.-Y.; Tseng, K.-H. Bathymetry derivation in shallow water of the South China Sea with ICESat-2 and Sentinel-2 data. J. Appl. Remote Sens. 2021, 15, 044513. [Google Scholar] [CrossRef]
- Jasinski, M.F.; Stoll, J.D.; Cook, W.B.; Ondrusek, M.; Stengel, E.; Brunt, K. Inland and Near-Shore Water Profiles Derived from the High-Altitude Multiple Altimeter Beam Experimental Lidar (MABEL). J. Coast. Res. 2016, 76, 44–55. [Google Scholar] [CrossRef]
- Lu, X.; Hu, Y.; Yang, Y.; Vaughan, M.; Palm, S.; Trepte, C.; Omar, A.; Lucker, P.; Baize, R. Enabling value added scientific applications of ICESat-2 data with effective removal of afterpulses. Earth Space Sci. 2021, 8, e2021EA001729. [Google Scholar] [CrossRef]
- Cao, B.; Fang, Y.; Gao, L.; Hu, H.; Jiang, Z.; Sun, B.; Lou, L. An active-passive fusion strategy and accuracy evaluation for shallow water bathymetry based on ICESat-2 ATLAS laser point cloud and satellite remote sensing imagery. Int. J. Remote Sens. 2021, 42, 2783–2806. [Google Scholar] [CrossRef]
- Zhang, Z.; Liu, X.; Ma, Y.; Xu, N.; Zhang, W.; Li, S. Signal Photon Extraction Method for Weak Beam Data of ICESat-2 Using Information Provided by Strong Beam Data in Mountainous Areas. Remote Sens. 2021, 13, 863. [Google Scholar] [CrossRef]
- Yujia, L.; Xiaoqing, Z.; Guoyuan, L.; Jinquan, G.; Yue, M.; Yifu, C. Progress and prospect of space-borne photon-counting lidar shallow water bathymetry technology. Infrared Laser Eng. 2022, 51, 20220003. [Google Scholar]
- Xiaoxiao, Z.; Cheng, W.; Xiaohuan, X.; Sheng, N.; Xuebo, Y.; Dong, L. Research progress of ICESat-2/ATLAS data processing and applications. Infrared Laser Eng. 2020, 49, 20200259. [Google Scholar] [CrossRef]
- Ester, M.; Kriegel, H.-P.; Sander, J.; Xu, X. A density-based algorithm for discovering clusters in large spatial databases with noise. In Proceedings of the 2nd International Conference on Knowledge Discovery and Data Mining, IAAI, Portland, OR, USA, 2–4 August 1996; pp. 226–231. [Google Scholar]
- Duan, L.; Xu, L.; Guo, F.; Lee, J.; Yan, B. A local-density based spatial clustering algorithm with noise. Inf. Syst. 2007, 32, 978–986. [Google Scholar] [CrossRef]
- Leng, Z.; Zhang, J.; Ma, Y.; Zhang, J.; Zhu, H. A novel bathymetry signal photon extraction algorithm for photon-counting LiDAR based on adaptive elliptical neighborhood. Int. J. Appl. Earth Obs. Geoinf. 2022, 115, 103080. [Google Scholar] [CrossRef]
- Zhang, J.; Kerekes, J.; Csathó, B.; Schenk, T.; Wheelwright, R. A clustering approach for detection of ground in micropulse photon-counting LiDAR altimeter data. In Proceedings of the IEEE Geoscience and Remote Sensing Symposium, Quebec City, QC, Canada, 13–18 July 2014; pp. 177–180. [Google Scholar] [CrossRef]
- Wang, C.; Wang, A.; Rong, W.; Tao, Y.; Fu, R. Adaptive Denoising Algorithm for Photon-Counting LiDAR Point Clouds. Laser Optoelectron. Prog. 2021, 58, 1428001. [Google Scholar]
- Magruder, L.A.; Wharton III, M.E.; Stout, K.D.; Neuenschwander, A.L. Noise filtering techniques for photon-counting ladar data. In Proceedings of the Laser Radar Technology and Applications XVII, Baltimore, MD, USA, 23–27 April 2012; pp. 237–245. [Google Scholar]
- Wang, Z.; Chen, S.; Kong, W.; Liu, X. Comparison and Analysis of Denoising for Photon-Counting LiDAR Data. Laser Optoelectron. Prog. 2023, 60, 0628001. [Google Scholar]
- Zhu, X.; Nie, S.; Wang, C.; Xi, X.; Wang, J.; Li, D.; Zhou, H. A noise removal algorithm based on OPTICS for photon-counting LiDAR data. IEEE Geosci. Remote Sens. Lett. 2020, 18, 1471–1475. [Google Scholar] [CrossRef]
- Wang, Z.; Xi, X.; Nie, S.; Wang, C. Bathymetric Method of Nearshore Based on ICESat-2/ATLAS Data—A Case Study of the Islands and Reefs in The South China Sea. In Proceedings of the IGARSS 2022-2022 IEEE International Geoscience and Remote Sensing Symposium, Kuala Lumpur, Malaysia, 17–22 July 2022; pp. 2868–2871. [Google Scholar]
- Xie, D.; Li, G.; Wang, J.; Wang, Z.; Ye, F.; Yang, X. A novel denoising algorithm for photon-counting laser data based on LDBSCAN. In Proceedings of the AOPC 2019: Advanced Laser Materials and Laser Technology, Beijing, China, 7–9 July 2019; pp. 267–280. [Google Scholar]
- Ranndal, H.; Christiansen, P.S.; Kliving, P.; Andersen, O.B.; Nielsen, K. Evaluation of a Statistical Approach for Extracting Shallow Water Bathymetry Signals from ICESat-2 ATL03 Photon Data. Remote Sens. 2021, 13, 3548. [Google Scholar] [CrossRef]
- Huang, T.; Yang, G.; Tang, G. A fast two-dimensional median filtering algorithm. IEEE Trans. Acoust. Speech Signal Process. 1979, 27, 13–18. [Google Scholar] [CrossRef] [Green Version]
- Huber, P.J. Robust estimation of a location parameter. In Breakthroughs in Statistics: Methodology and Distribution; Springer: Berlin /Heidelberg, Germany, 1992; pp. 492–518. [Google Scholar]
- Huber, P.J. Robust statistics. In International Encyclopedia of Statistical Science; Springer: Berlin /Heidelberg, Germany, 2011; pp. 1248–1251. [Google Scholar]
- Wieser, A.; Brunner, F.K. Short Static GPS Sessions: Robust Estimation Results. GPS Solutions 2002, 5, 70–79. [Google Scholar] [CrossRef]
- Yuanxi, Y. Robust estimation for dependent observations. Manuscr. Geod. 1994, 19, 10–17. [Google Scholar]
- Yang, Y.; He, H.; Xu, G. Adaptively robust filtering for kinematic geodetic positioning. J. Geodesy 2001, 75, 109–116. [Google Scholar] [CrossRef]
- Yang, Y.; Song, L.; Xu, T. Robust estimator for correlated observations based on bifactor equivalent weights. J. Geodesy 2002, 76, 353–358. [Google Scholar] [CrossRef]
- Qu, W.; Chen, H.; Zhang, Q.; Gao, Y.; Wang, Q.; Hao, M. A robust estimation algorithm for the increasing breakdown point based on quasi-accurate detection and its application to parameter estimation of the GNSS crustal deformation model. J. Geodesy 2021, 95, 1–17. [Google Scholar] [CrossRef]
- Deng, D. DBSCAN clustering algorithm based on density. In Proceedings of the 2020 7th International Forum on Electrical Engineering and Automation (IFEEA), Hefei, China, 25–27 September 2020; pp. 949–953. [Google Scholar]
- Zanella, G.; Roberts, G. Scalable Importance Tempering and Bayesian Variable Selection. J. R. Stat. Soc. Ser. B Stat. Methodol. 2019, 81, 489–517. [Google Scholar] [CrossRef] [Green Version]
- Weining, Q. Method for selecting weight iteration with robust initial value. Geomat. Inf. Sci. Wuhan Univ. 2003, 28, 452–454. [Google Scholar]
- Angiulli, F.; Basta, S.; Pizzuti, C. Distance-based detection and prediction of outliers. IEEE Trans. Knowl. Data Eng. 2005, 18, 145–160. [Google Scholar] [CrossRef]
- Green, P.J. Iteratively reweighted least squares for maximum likelihood estimation, and some robust and resistant alternatives. J. R. Stat. Soc. Ser. B 1984, 46, 149–170. [Google Scholar] [CrossRef]
- Yang, Y. Robust estimation of geodetic datum transformation. J. Geodesy 1999, 73, 268–274. [Google Scholar] [CrossRef]
- Parrish, C.E.; Magruder, L.A.; Neuenschwander, A.L.; Forfinski-Sarkozi, N.; Alonzo, M.; Jasinski, M. Validation of ICESat-2 ATLAS Bathymetry and Analysis of ATLAS’s Bathymetric Mapping Performance. Remote Sens. 2019, 11, 1634. [Google Scholar] [CrossRef] [Green Version]
- Neumann, T.; Brenner, A.; Hancock, D.; Robbins, J.; Saba, J.; Harbeck, K.; Gibbons, A.; Lee, J.; Luthcke, S.; Rebold, T. ATLAS/ICESat-2 L2A Global Geolocated Photon Data, version 3; NASA National Snow and Ice Data Center Distributed Active Archive Center: Boulder, CO, USA, 2020; Volume 10. [Google Scholar]
Local Time | Data | Terrain |
---|---|---|
19:42:52–19:49:54 | 480-20210425-gt1r | flat |
(night) | 480-20210425-gt2r | undulating |
10:28:06–10:35:16 | 1036-20210301-gt2r | flat |
(day) | 1036-20210301-gt1r | undulating |
Local Time | Data | Terrain | Denoising Algorithm | F1 Score | Accuracy | Precision | Recall |
---|---|---|---|---|---|---|---|
19:42:52–19:49:54 (night) | 480-20210425-gt1r | flat | DBSCAN | 0.9046 | 0.8310 | 0.8680 | 0.9443 |
Two-dimensional window filter | 0.8996 | 0.8414 | 0.9956 | 0.8205 | |||
The two-step method | 0.9435 | 0.9087 | 0.9921 | 0.8995 | |||
480-20210425-gt2r | undulating | DBSCAN | 0.7187 | 0.5688 | 0.6696 | 0.7755 | |
Two-dimensional window filter | 0.7665 | 0.7174 | 0.9275 | 0.6531 | |||
The two-step method | 0.8343 | 0.8319 | 0.9096 | 0.7704 | |||
10:28:06–10:35:16 (day) | 1036-20210301-gt2r | flat | DBSCAN | 0.6757 | 0.7296 | 0.5848 | 0.8000 |
Two-dimensional window filter | 0.4689 | 0.7208 | 0.7101 | 0.3500 | |||
The two-step method | 0.7038 | 0.8327 | 0.9349 | 0.5643 | |||
1036-20210301-gt1r | undulating | DBSCAN | 0.6702 | 0.7745 | 0.5876 | 0.7798 | |
Two-dimensional window filter | 0.4930 | 0.7811 | 0.7719 | 0.3621 | |||
The two-step method | 0.7780 | 0.8923 | 0.9873 | 0.6420 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhong, J.; Liu, X.; Shen, X.; Jiang, L. A Robust Algorithm for Photon Denoising and Bathymetric Estimation Based on ICESat-2 Data. Remote Sens. 2023, 15, 2051. https://doi.org/10.3390/rs15082051
Zhong J, Liu X, Shen X, Jiang L. A Robust Algorithm for Photon Denoising and Bathymetric Estimation Based on ICESat-2 Data. Remote Sensing. 2023; 15(8):2051. https://doi.org/10.3390/rs15082051
Chicago/Turabian StyleZhong, Junsheng, Xiuguo Liu, Xiang Shen, and Liming Jiang. 2023. "A Robust Algorithm for Photon Denoising and Bathymetric Estimation Based on ICESat-2 Data" Remote Sensing 15, no. 8: 2051. https://doi.org/10.3390/rs15082051
APA StyleZhong, J., Liu, X., Shen, X., & Jiang, L. (2023). A Robust Algorithm for Photon Denoising and Bathymetric Estimation Based on ICESat-2 Data. Remote Sensing, 15(8), 2051. https://doi.org/10.3390/rs15082051