Snow Density Retrieval in Quebec Using Space-Borne SMOS Observations
Abstract
:1. Introduction
2. Study Area and Datasets
2.1. Study Area
2.2. Datasets
2.2.1. The SMOS Brightness Temperature Dataset
2.2.2. In-Situ Snow Measurements
2.2.3. Other Auxiliary Datasets
3. Methods
3.1. Forward Emission Model
3.2. Retrieval of Predetermined Parameters (, , ) in Snow-Free Period
3.3. Retrieval of Snow Density
3.4. Objective Postprocessing Method to Reduce Retrieval Uncertainty
4. Results
4.1. Performance of Multiple-Angle Brightness Temperature Simulation
4.2. Performance of Snow Density Retrieval at Example Stations
4.3. Validation of Retrieved Snow Density at All Stations
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Stations | R | Bias kg/m3 | RMSE kg/m3 | ubRMSE kg/m3 | Measurement Number | |||||
---|---|---|---|---|---|---|---|---|---|---|
October – May | December – March | October – May | December – March | October – May | December – March | October – May | December – March | October – May | December – March | |
HQ-CM3T | 0.35 | - | −33.44 | −12.95 | 78.55 | 52.97 | 71.08 | 51.36 | 93 | 62 |
HQ-CM2Z | 0.7 | 0.50 | 111.85 | 122.96 | 124.44 | 126.09 | 54.53 | 27.91 | 104 | 69 |
HQ-CM4C | 0.83 | 0.65 | 49.63 | 51.61 | 72.24 | 64.25 | 52.49 | 38.27 | 103 | 69 |
HQ-CM2N | 0.76 | 0.37 | −29.4 | −40.16 | 69.71 | 61.65 | 63.21 | 46.77 | 104 | 72 |
HQ-CM3G | 0.71 | 0.57 | 12.45 | 13.95 | 79.65 | 69.60 | 78.67 | 68.18 | 107 | 73 |
HQ-CM5L | 0.6 | 0.41 | −24.41 | −3.22 | 61.96 | 47.67 | 56.95 | 47.56 | 105 | 70 |
HQ-CM4G | 0.3 | 0.01 | 108.75 | 118.57 | 131.65 | 123.14 | 74.19 | 33.26 | 104 | 70 |
HQ-CMMZ | 0.77 | 0.49 | −34.98 | −31.97 | 64.34 | 50.26 | 54 | 38.78 | 109 | 72 |
HQ-CMPP | 0.56 | 0.12 | −19.03 | 4.16 | 75.63 | 65.49 | 73.19 | 65.36 | 93 | 59 |
HQ-CM3Q | 0.56 | 0.37 | 11 | 9.67 | 69.13 | 48.37 | 68.25 | 47.39 | 84 | 58 |
HQ-CM2W | 0.66 | 0.27 | −21.54 | −23.67 | 72.96 | 59.21 | 69.71 | 54.28 | 101 | 68 |
HQ-CM4A | 0.36 | 0.46 | −49.88 | −32.27 | 98.15 | 58.26 | 84.53 | 48.51 | 94 | 64 |
HQ-CM4H | 0.36 | 0.40 | 12.14 | 31.34 | 71.24 | 51.31 | 70.19 | 40.63 | 105 | 70 |
HQ-CM3V | 0.3 | 0.31 | −0.17 | 15.82 | 73.74 | 40.10 | 73.74 | 36.84 | 99 | 61 |
HQ-CMLQ | 0.77 | 0.56 | −16.64 | −2.34 | 60.38 | 46.01 | 58.05 | 45.95 | 98 | 63 |
HQ-CM4L | 0.42 | 0.29 | 23.64 | 14.16 | 67.88 | 37.56 | 63.63 | 34.79 | 102 | 60 |
HQ-CM4N | 0.73 | 0.43 | −15.63 | −8.07 | 55.39 | 40.87 | 53.14 | 40.07 | 107 | 71 |
HQ-CM3P | 0.43 | - | 31.69 | 52.68 | 76.22 | 75.39 | 69.32 | 53.93 | 103 | 69 |
HQ-CMPX | 0.66 | 0.15 | −77.45 | −61.53 | 90.86 | 69.38 | 47.51 | 32.05 | 88 | 55 |
HQ-CM2U | 0.82 | 0.55 | 62.91 | 69.30 | 90.03 | 81.75 | 64.4 | 43.36 | 109 | 71 |
HQ-CMPN | 0.6 | 0.32 | −26.66 | −6.69 | 80.53 | 60.57 | 76 | 60.20 | 96 | 67 |
HQ-CM2K | 0.82 | 0.65 | 25.48 | 33.71 | 46.8 | 38.72 | 39.26 | 19.05 | 105 | 64 |
HQ-CM3H | 0.73 | 0.63 | 44.79 | 52.42 | 81.05 | 75.35 | 67.55 | 54.13 | 109 | 72 |
HQ-CM4D | 0.62 | 0.37 | 40.4 | 49.10 | 77.74 | 71.73 | 66.41 | 52.30 | 97 | 67 |
HQ-CM5H | 0.74 | 0.25 | 42.72 | 52.34 | 73.61 | 78.72 | 59.95 | 58.80 | 99 | 64 |
HQ-CMKW | 0.63 | 0.58 | 4.12 | 18.10 | 61.56 | 49.20 | 61.42 | 45.75 | 115 | 73 |
HQ-CM4M | 0.63 | 0.52 | −76.54 | −72.32 | 100.48 | 92.70 | 65.09 | 57.99 | 88 | 66 |
HQ-CM4E | 0.62 | 0.46 | −22.16 | −2.25 | 62.7 | 36.71 | 58.65 | 36.64 | 103 | 70 |
HQ-CM4F | 0.71 | 0.65 | −16.36 | −1.53 | 65.08 | 49.54 | 62.99 | 49.51 | 105 | 71 |
HQ-CM3L | 0.35 | 0.08 | 23.48 | 19.26 | 105.1 | 106.59 | 102.44 | 104.84 | 53 | 49 |
HQ-CM3U | 0.36 | - | −26.36 | −11.21 | 92.11 | 60.07 | 88.26 | 59.01 | 87 | 61 |
HQ-CM3Y | 0.56 | 0.32 | 18.96 | 13.59 | 71.88 | 50.40 | 69.33 | 48.53 | 83 | 57 |
HQ-CM3D | 0.5 | 0.31 | 98.86 | 102.81 | 114.94 | 106.53 | 58.64 | 27.91 | 107 | 70 |
HQ-CM3C | 0.56 | 0.13 | 91.9 | 120.15 | 117.25 | 131.32 | 72.81 | 53.00 | 101 | 68 |
HQ-CM2X | 0.05 | - | −22.72 | −20.42 | 111.01 | 89.50 | 108.66 | 87.14 | 79 | 57 |
HQ-CM3F | 0.79 | 0.67 | −18.01 | −33.46 | 75.39 | 65.92 | 73.2 | 56.80 | 86 | 66 |
HQ-CM2S | 0.42 | 0.08 | 18.14 | 34.92 | 72.66 | 59.12 | 70.36 | 47.71 | 98 | 66 |
HQ-CM4J | 0.8 | 0.83 | 6.98 | 30.42 | 52.69 | 42.14 | 52.23 | 29.16 | 108 | 66 |
HQ-CMBS | 0.62 | 0.21 | −5.73 | 10.30 | 56.53 | 44.99 | 56.24 | 43.79 | 100 | 63 |
HQ-CMRS | 0.22 | - | −70.72 | −66.93 | 114.79 | 89.79 | 90.43 | 59.85 | 79 | 57 |
HQ-CM3Z | 0.79 | 0.70 | −17.54 | −17.85 | 61.28 | 48.86 | 58.72 | 45.48 | 99 | 71 |
HQ-CM2M | 0.64 | 0.61 | 90.63 | 106.50 | 108.32 | 113.65 | 59.33 | 39.68 | 97 | 65 |
HQ-CM3S | 0.37 | 0.08 | 35.6 | 44.35 | 100.46 | 88.04 | 93.94 | 76.05 | 80 | 60 |
ALL SITES | 0.5 | 0.29 | 9.44 | 18.33 | 82.89 | 72.31 | 82.35 | 69.95 | 4161 | 2816 |
References
- Zhang, T.J. Influence of the seasonal snow cover on the ground thermal regime: An overview. Rev. Geophys. 2005, 43, RG4002. [Google Scholar] [CrossRef]
- Kirnbauer, R.; Bloschl, G.; Gutknecht, D. Entering the Era of Distributed Snow Models. Hydrol. Res. 1994, 25, 1–24. [Google Scholar] [CrossRef]
- Chang, A.T.C.; Foster, J.L.; Hall, D.K. Nimbus-7 SMMR Derived Global Snow Cover Parameters. Ann. Glaciol. 1987, 9, 39–44. [Google Scholar] [CrossRef] [Green Version]
- Raleigh, M.S.; Small, E.E. Snowpack density modeling is the primary source of uncertainty when mapping basin-wide SWE with lidar. Geophys. Res. Lett. 2017, 44, 3700–3709. [Google Scholar] [CrossRef]
- Tsang, L.; Chen, C.T.; Chang, A.T.C.; Guo, J.J.; Ding, K.H. Dense media radiative transfer theory based on quasicrystalline approximation with applications to passive microwave remote sensing of snow. Radio Sci 2000, 35, 731–749. [Google Scholar] [CrossRef]
- Royer, A.; Roy, A.; Montpetit, B.; Saint-Jean-Rondeau, O.; Picard, G.; Brucker, L.; Langlois, A. Comparison of commonly-used microwave radiative transfer models for snow remote sensing. Remote Sens. Environ. 2017, 190, 247–259. [Google Scholar] [CrossRef] [Green Version]
- Lemmetyinen, J.; Schwank, M.; Rautiainen, K.; Kontu, A.; Parkkinen, T.; Mätzler, C.; Wiesmann, A.; Wegmüller, U.; Derksen, C.; Toose, P.; et al. Snow density and ground permittivity retrieved from L-band radiometry: Application to experimental data. Remote Sens. Environ. 2016, 180, 377–391. [Google Scholar] [CrossRef]
- Schwank, M.; Matzler, C.; Wiesmann, A.; Wegmuller, U.; Pulliainen, J.; Lemmetyinen, J.; Rautiainen, K.; Derksen, C.; Toose, P.; Drusch, M. Snow Density and Ground Permittivity Retrieved from L-Band Radiometry: A Synthetic Analysis. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2015, 8, 3833–3845. [Google Scholar] [CrossRef]
- Jordan, R.E. A One-Dimensional Temperature Model for a Snow Cover: Technical Documentation for SNTHERM.89; U.S. Army Corps of Engineers, Cold Regions Research & Engineering Laboratory: Hanover, NH, USA, 1991. [Google Scholar]
- Lehning, M.; Bartelt, P.; Brown, B.; Russi, T.; Stockli, U.; Zimmerli, M. SNOWPACK model calculations for avalanche warning based upon a new network of weather and snow stations. Cold Reg. Sci. Technol. 1999, 30, 145–157. [Google Scholar] [CrossRef]
- Gray, J.M.N.T.; Morland, L.W. The Compaction of Polar Snow Packs. Cold Reg. Sci. Technol. 1995, 23, 109–119. [Google Scholar] [CrossRef]
- Mortimer, C.; Mudryk, L.; Derksen, C.; Luojus, K.; Brown, R.; Kelly, R.; Tedesco, M. Evaluation of long-term Northern Hemisphere snow water equivalent products. Cryosphere 2020, 14, 1579–1594. [Google Scholar] [CrossRef]
- Mortimer, C.; Mudryk, L.; Derksen, C.; Brady, M.; Luojus, K.; Venäläinen, P.; Moisander, M.; Lemmetyinen, J.; Takala, M.; Tanis, C.; et al. Benchmarking algorithm changes to the Snow CCI+ snow water equivalent product. Remote Sens. Environ. 2022, 274, 112988. [Google Scholar] [CrossRef]
- Venalainen, P.; Luojus, K.; Lemmetyinen, J.; Pulliainen, J.; Moisander, M.; Takala, M. Impact of dynamic snow density on GlobSnow snow water equivalent retrieval accuracy. Cryosphere 2021, 15, 2969–2981. [Google Scholar] [CrossRef]
- Sturm, M.; Wagner, A.M. Using repeated patterns in snow distribution modeling: An Arctic example. Water Resour Res 2010, 46, W12549. [Google Scholar] [CrossRef] [Green Version]
- Sturm, M.; Holmgren, J.; Liston, G.E. A Seasonal Snow Cover Classification-System for Local to Global Applications. J Clim. 1995, 8, 1261–1283. [Google Scholar] [CrossRef]
- Bormann, K.J.; Westra, S.; Evans, J.P.; McCabe, M.F. Spatial and temporal variability in seasonal snow density. J Hydrol 2013, 484, 63–73. [Google Scholar] [CrossRef]
- Hawley, R.L.; Brandt, O.; Morris, E.M.; Kohler, J.; Shepherd, A.P.; Wingham, D.J. Techniques for measuring high-resolution firn density profiles: Case study from Kongsvegen, Svalbard. J. Glaciol. 2008, 54, 463–468. [Google Scholar] [CrossRef] [Green Version]
- Wilhelms, F. Explaining the dielectric properties of firn as a density-and-conductivity mixed permittivity (DECOMP). Geophys. Res. Lett. 2005, 32, L16501. [Google Scholar] [CrossRef] [Green Version]
- Schneebeli, M.; Sokratov, S.A. Tomography of temperature gradient metamorphism of snow and associated changes in heat conductivity. Hydrol. Process. 2004, 18, 3655–3665. [Google Scholar] [CrossRef]
- Lundy, C.C.; Edens, M.Q.; Brown, R.L. Measurement of snow density and microstructure using computed tomography. J. Glaciol. 2002, 48, 312–316. [Google Scholar] [CrossRef] [Green Version]
- Gergely, M.; Schneebeli, M.; Roth, K. First experiments to determine snow density from diffuse near-infrared transmittance. Cold Reg. Sci. Technol. 2010, 64, 81–86. [Google Scholar] [CrossRef]
- Shenvi, M.N.; Sandu, C.; Untaroiu, C. Review of compressed snow mechanics: Testing methods. J. Terramech. 2022, 100, 25–37. [Google Scholar] [CrossRef]
- Proksch, M.; Rutter, N.; Fierz, C.; Schneebeli, M. Intercomparison of snow density measurements: Bias, precision, and vertical resolution. Cryosphere 2016, 10, 371–384. [Google Scholar] [CrossRef]
- Hao, J.S.; Mind’je, R.; Feng, T.; Li, L.H. Performance of snow density measurement systems in snow stratigraphies. Hydrol. Res. 2021, 52, 834–846. [Google Scholar] [CrossRef]
- Shi, J.C.; Dozier, J. Estimation of snow water equivalence using SIR-C/X-SAR, part I: Inferring snow density and subsurface properties. IEEE Trans. Geosci. Remote Sens. 2000, 38, 2465–2474. [Google Scholar]
- Fung, A.K. Microwave Scattering and Emission Models and their Applications; Artech House: Boston, MA, USA, 1994. [Google Scholar]
- Awasthi, S.; Thakur, P.K.; Kumar, S.; Kumar, A.; Jain, K.; Mani, S. Snow Density Retrieval Using Hybrid Polarimetric RISAT-1 Datasets. Ieee J. Sel. Top. Appl. Earth Obs. Remote Sens. 2020, 13, 3058–3065. [Google Scholar] [CrossRef]
- Varade, D.; Manickam, S.; Dikshit, O.; Singh, G. Modelling of early winter snow density using fully polarimetric C-band SAR data in the Indian Himalayas. Remote Sens. Environ. 2020, 240, 111699. [Google Scholar] [CrossRef]
- Surendar, M.; Bhattacharya, A.; Singh, G.; Venkataraman, G. Estimation of snow density using full-polarimetric Synthetic Aperture Radar (SAR) data. Phys. Chem. Earth 2015, 83–84, 156–165. [Google Scholar] [CrossRef]
- Singh, G.; Verma, A.; Kumar, S.; Ganju, A.; Yamaguchi, Y.; Kulkarni, A.V. Snowpack Density Retrieval Using Fully Polarimetric TerraSAR-X Data in the Himalayas. IEEE Trans. Geosci. Remote Sens. 2017, 55, 6320–6329. [Google Scholar] [CrossRef]
- Kerr, Y.H.; Waldteufel, P.; Wigneron, J.P.; Delwart, S.; Cabot, F.; Boutin, J.; Escorihuela, M.J.; Font, J.; Reul, N.; Gruhier, C.; et al. The SMOS Mission: New Tool for Monitoring Key Elements ofthe Global Water Cycle. Proc. IEEE 2010, 98, 666–687. [Google Scholar] [CrossRef] [Green Version]
- Roy, A.; Toose, P.; Williamson, M.; Rowlandson, T.; Derksen, C.; Royer, A.; Berg, A.A.; Lemmetyinen, J.; Arnold, L. Response of L-Band brightness temperatures to freeze/thaw and snow dynamics in a prairie environment from ground-based radiometer measurements. Remote Sens. Environ. 2017, 191, 67–80. [Google Scholar] [CrossRef]
- Schwank, M.; Naderpour, R. Snow Density and Ground Permittivity Retrieved from L-Band Radiometry: Melting Effects. Remote Sens. 2018, 10, 354. [Google Scholar] [CrossRef] [Green Version]
- O’Neill, P.E.; Hsu, A.Y.; Kim, E.J.; Peters-Lidard, C.; England, A.W. Performance comparison of a point-scale LSP model and the NOAH distributed SVAT model for soil moisture estimation using microwave remote sensing. In Proceedings of the IGARSS 2001, Scanning the Present and Resolving the Future, IEEE 2001 International Geoscience and Remote Sensing Symposium (Cat. No.01CH37217), Sydney, NSW, Australia, 9–13 July 2001; pp. 34–36. [Google Scholar]
- Rodell, M.; Houser, P.R.; Jambor, U.; Gottschalck, J.; Mitchell, K.; Meng, C.J.; Arsenault, K.; Cosgrove, B.; Radakovich, J.; Bosilovich, M.; et al. The global land data assimilation system. B Am. Meteorol. Soc. 2004, 85, 381–394. [Google Scholar] [CrossRef] [Green Version]
- Wu, S.; Zhao, T.; Pan, J.; Xue, H.; Zhao, L.; Shi, J. Improvement in Modeling Soil Dielectric Properties During Freeze-Thaw Transitions. IEEE Geosci. Remote Sens. Lett. 2022, 19, 1–5. [Google Scholar] [CrossRef]
- Coops, N.C.; Wulder, M.A.; Iwanicka, D. An environmental domain classification of Canada using earth observation data for biodiversity assessment. Ecol. Inform. 2009, 4, 8–22. [Google Scholar] [CrossRef]
- Brown, R.D. Analysis of snow cover variability and change in Quebec, 1948–2005. Hydrol. Process. 2010, 24, 1929–1954. [Google Scholar] [CrossRef]
- Zishka, K.M.; Smith, P.J. The Climatology of Cyclones and Anticyclones over North-America and Surrounding Ocean Environs for January and July, 1950–1977. Mon. Weather Rev. 1980, 108, 387–401. [Google Scholar] [CrossRef]
- Kerr, Y.H.; Waldteufel, P.; Richaume, P.; Wigneron, J.P.; Ferrazzoli, P.; Mahmoodi, A.; Al Bitar, A.; Cabot, F.; Gruhier, C.; Juglea, S.E.; et al. The SMOS Soil Moisture Retrieval Algorithm. IEEE Trans. Geosci. Remote Sens. 2012, 50, 1384–1403. [Google Scholar] [CrossRef]
- Zhao, T.; Shi, J.; Bindlish, R.; Jackson, T.J.; Kerr, Y.H.; Cosh, M.H.; Cui, Q.; Li, Y.; Xiong, C.; Che, T. Refinement of SMOS Multiangular Brightness Temperature Toward Soil Moisture Retrieval and Its Analysis Over Reference Targets. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2015, 8, 589–603. [Google Scholar] [CrossRef]
- Bai, Y.; Zhao, T.; Jia, L.; Cosh, M.H.; Shi, J.; Peng, Z.; Li, X.; Wigneron, J.-P. A multi-temporal and multi-angular approach for systematically retrieving soil moisture and vegetation optical depth from SMOS data. Remote Sens. Environ. 2022, 280, 113190. [Google Scholar] [CrossRef]
- Vionnet, V.; Mortimer, C.; Brady, M.; Arnal, L.; Brown, R. Canadian historical Snow Water Equivalent dataset (CanSWE, 1928–2020). Earth Syst. Sci. Data 2021, 13, 4603–4619. [Google Scholar] [CrossRef]
- Vionnet, V.; Mortimer, C.; Brady, M.; Arnal, L.; Brown, R. Canadian historical Snow Water Equivalent Dataset (CanSWE, 1928–2021) (Version v3); Zenodo: Geneva, Switzerland, 2022. [Google Scholar] [CrossRef]
- Friedl, M.; Sulla-Menashe, D. MCD12Q1 MODIS/Terra+Aqua Land Cover Type Yearly L3 Global 500m SIN Grid V006; NASA EOSDIS Land Processes DAAC: Sioux Falls, SD, USA, 2019. [Google Scholar] [CrossRef]
- Nachtergaele, F.O.; van Velthuizen, H.; Verelst, L.; Wiberg, D.; Batjes, N.H.; Dijkshoorn, J.A.; van Engelen, V.W.P.; Fischer, G.; Jones, A.; Montanarella, L.; et al. Harmonized World Soil Database (Version 1.2); Food and Agriculture Organization of the United Nations (FAO): Rome, Italy; International Institute for Applied Systems Analysis (IIASA): Laxenburg, Austria, 2012. [Google Scholar]
- DiMiceli, C.; Carroll, M.; Sohlberg, R.; Kim, D.; Kelly, M.; Townshend, J. MOD44B MODIS/Terra Vegetation Continuous Fields Yearly L3 Global 250m SIN Grid V006; NASA EOSDIS Land Processes DAAC: Sioux Falls, SD, USA, 2015. [Google Scholar] [CrossRef]
- Montpetit, B.; Royer, A.; Wigneron, J.P.; Chanzy, A.; Mialon, A. Evaluation of multi-frequency bare soil microwave reflectivity models. Remote Sens. Environ. 2015, 162, 186–195. [Google Scholar] [CrossRef]
- Mo, T.; Choudhury, B.J.; Schmugge, T.J.; Wang, J.R.; Jackson, T.J. A model for microwave emission from vegetation-covered fields. J. Geophys. Res. Oceans 1982, 87, 11229–11237. [Google Scholar] [CrossRef]
- Kurum, M. Quantifying scattering albedo in microwave emission of vegetated terrain. Remote Sens. Environ. 2013, 129, 66–74. [Google Scholar] [CrossRef]
- Roy, A.; Leduc-Leballeur, M.; Picard, G.; Royer, A.; Toose, P.; Derksen, C.; Lemmetyinen, J.; Berg, A.; Rowlandson, T.; Schwank, M. Modelling the L-Band Snow-Covered Surface Emission in a Winter Canadian Prairie Environment. Remote Sens. 2018, 10, 1451. [Google Scholar] [CrossRef] [Green Version]
- Wiesmann, A.; Mätzler, C. Microwave Emission Model of Layered Snowpacks. Remote Sens. Environ. 1999, 70, 307–316. [Google Scholar] [CrossRef]
- Mätzler, C.; Wiesmann, A. Extension of the Microwave Emission Model of Layered Snowpacks to Coarse-Grained Snow. Remote Sens. Environ. 1999, 70, 317–325. [Google Scholar] [CrossRef]
- Wang, J.R.; Choudhury, B.J. Remote sensing of soil moisture content, over bare field at 1.4 GHz frequency. J. Geophys. Res. 1981, 86, 5277–5282. [Google Scholar] [CrossRef]
- Wigneron, J.-P.; Chanzy, A.; Kerr, Y.H.; Lawrence, H.; Shi, J.; Escorihuela, M.J.; Mironov, V.; Mialon, A.; Demontoux, F.; de Rosnay, P.; et al. Evaluating an Improved Parameterization of the Soil Emission in L-MEB. IEEE Trans. Geosci. Remote Sens. 2011, 49, 1177–1189. [Google Scholar] [CrossRef]
- Ulaby, F.T.; Moore, R.K.; Fung, A.K. Microwave Remote Sensing, Active and Passive; Artech House: Norwood, MA, USA, 1982. [Google Scholar]
- Li, Q.; Kelly, R.; Leppänen, L.; Vehviläinen, J.; Kontu, A.; Lemmetyinen, J.; Pulliainen, J. The Influence of Thermal Properties and Canopy-Intercepted Snow on Passive Microwave Transmissivity of a Scots Pine. IEEE Trans. Geosci. Remote Sens. 2019, 57, 5424–5433. [Google Scholar] [CrossRef]
- Broxton, P.D.; Zeng, X.; Dawson, N. Why Do Global Reanalyses and Land Data Assimilation Products Underestimate Snow Water Equivalent? J. Hydrometeorol. 2016, 17, 2743–2761. [Google Scholar] [CrossRef] [Green Version]
- Kumawat, D.; Olyaei, M.; Gao, L.; Ebtehaj, A. Passive Microwave Retrieval of Soil Moisture Below Snowpack at L-Band Using SMAP Observations. IEEE Trans. Geosci. Remote Sens. 2022, 60, 4415216. [Google Scholar] [CrossRef]
- Barrett, A.P. National Operational Hydrologic Remote Sensing Center SNOw Data Assimilation System (SNODAS) Products at NSIDC; National Snow and Ice Data Center: Boulder, CO, USA, 2003. [Google Scholar]
MCD12Q1 IGBP Classification | R | Bias (kg/m3) | RMSE (kg/m3) | ubRMSE (kg/m3) | Measurement Number | Station Number | |||||
---|---|---|---|---|---|---|---|---|---|---|---|
October – May | December – March | October – May | December – March | October – May | December – March | October – May | December – March | October – May | December – March | ||
evergreen needleleaf forest | 0.35 | −0.19 | −33.44 | −12.95 | 78.55 | 52.97 | 71.08 | 51.36 | 93 | 62 | 1 |
woody savannas | 0.55 | 0.39 | −16.81 | 22.27 | 85.81 | 77.07 | 84.15 | 73.78 | 1011 | 680 | 4 |
mixed forest | 0.47 | 0.48 | 12.5 | 3.67 | 76.59 | 49.53 | 75.56 | 49.39 | 393 | 258 | 10 |
savannas | 0.5 | 0.25 | −11.37 | 20.01 | 82.8 | 73.76 | 82.01 | 70.99 | 2664 | 1816 | 28 |
ALL SITES | 0.5 | 0.29 | 9.44 | 18.33 | 82.89 | 72.31 | 82.35 | 69.95 | 4161 | 2816 | 43 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gao, X.; Pan, J.; Peng, Z.; Zhao, T.; Bai, Y.; Yang, J.; Jiang, L.; Shi, J.; Husi, L. Snow Density Retrieval in Quebec Using Space-Borne SMOS Observations. Remote Sens. 2023, 15, 2065. https://doi.org/10.3390/rs15082065
Gao X, Pan J, Peng Z, Zhao T, Bai Y, Yang J, Jiang L, Shi J, Husi L. Snow Density Retrieval in Quebec Using Space-Borne SMOS Observations. Remote Sensing. 2023; 15(8):2065. https://doi.org/10.3390/rs15082065
Chicago/Turabian StyleGao, Xiaowen, Jinmei Pan, Zhiqing Peng, Tianjie Zhao, Yu Bai, Jianwei Yang, Lingmei Jiang, Jiancheng Shi, and Letu Husi. 2023. "Snow Density Retrieval in Quebec Using Space-Borne SMOS Observations" Remote Sensing 15, no. 8: 2065. https://doi.org/10.3390/rs15082065
APA StyleGao, X., Pan, J., Peng, Z., Zhao, T., Bai, Y., Yang, J., Jiang, L., Shi, J., & Husi, L. (2023). Snow Density Retrieval in Quebec Using Space-Borne SMOS Observations. Remote Sensing, 15(8), 2065. https://doi.org/10.3390/rs15082065