SAR Based Sea Surface Complex Wind Fields Estimation: An Analysis over the Northern Adriatic Sea
Abstract
:1. Introduction
2. Materials and Methods
2.1. Test Site
2.2. Sensor and Dataset
2.3. Doppler Centroid Anomaly Extraction
2.4. Wind Retrieval from SAR
3. Results
- (a)
- , the SAR NRCS;
- (b)
- , the background wind vector from ECMWF dataset CDS-ERA5 hourly data on single levels reanalysis model [48];
- (c)
- , the SAR inverted wind vector obtained with , Equation (14);
- (d)
- , the SAR inverted wind vector obtained with , Equation (15);
- (e)
- , the SAR estimated surface radial velocity map as defined in Equation (2);
- (f)
- , the modelled surface radial velocity map using the ECMWF wind vector (panel (b)) as input to the CDOP model;
- (g)
- , the modelled surface radial velocity map using the SAR inverted wind vector, which accounts only for the (panel (c)) as input to the CDOP model;
- (h)
- , the modelled surface radial velocity map using the SAR inverted wind vector, which accounts for both the and the (panel (d)) as input to the CDOP model;
3.1. 18 November 2005
3.2. 16 January 2009
3.3. 3 November 2006
3.4. 12 December 2008
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
ATI | Along-Track Interferometry |
DC | Doppler Centroid |
DCA | Doppler Centroid Anomaly |
ECMWF | European Center for Medium-Range Weather Forecast |
GMF | Geophysical Model Function |
LOS | Line Of Sight |
MAP | Maximum A Posteriori |
NRCS | Normalized Radar Cross Section |
PRF | the Pulse Repetition Frequency |
SAR | Synthetic Aperture Radar |
SLC | Single Look Complex |
References
- Jarmalavičius, D.; Šmatas, V.; Stankūnavičius, G.; Pupienis, D.; Žilinskas, G. Factors controlling coastal erosion during storm events. J. Coast. Res. 2016, 75, 1112–1116. [Google Scholar] [CrossRef]
- Kim, T.H.; Yang, C.S.; Oh, J.H.; Ouchi, K. Analysis of the contribution of wind drift factor to oil slick movement under strong tidal condition: Hebei Spirit oil spill case. PLoS ONE 2014, 9, e87393. [Google Scholar] [CrossRef] [PubMed]
- Kinsman, B. Wind Waves: Their Generation and Propagation on the Ocean Surface; Courier Corporation: Chelmsford, MA, USA, 1984. [Google Scholar]
- Brown, B.G.; Katz, R.W.; Murphy, A.H. Time series models to simulate and forecast wind speed and wind power. J. Appl. Meteorol. Climatol. 1984, 23, 1184–1195. [Google Scholar] [CrossRef]
- Castino, F.; Festa, R.; Ratto, C. Stochastic modelling of wind velocities time series. J. Wind. Eng. Ind. Aerodyn. 1998, 74, 141–151. [Google Scholar] [CrossRef]
- Stoffelen, A.; Anderson, D. Scatterometer data interpretation: Estimation and validation of the transfer function CMOD4. J. Geophys. Res. Ocean. 1997, 102, 5767–5780. [Google Scholar] [CrossRef]
- Monaldo, F.; Kerbaol, V.; Clemente-Colon, P.; Furevik, B.; Horstann, J.; Johannessen, J.; Li, X.; Pichel, W.; Sikora, T.; Thompson, D.; et al. The SAR measurement of ocean surface winds: An overview. ESA Spec. Publ. 2004, 565, 2. [Google Scholar]
- Amadori, M.; Zamparelli, V.; De Carolis, G.; Fornaro, G.; Toffolon, M.; Bresciani, M.; Giardino, C.; De Santi, F. Monitoring Lakes Surface Water Velocity with SAR: A Feasibility Study on Lake Garda, Italy. Remote Sens. 2021, 13, 2293. [Google Scholar] [CrossRef]
- Chapron, B.; Collard, F.; Ardhuin, F. Direct measurements of ocean surface velocity from space: Interpretation and validation. J. Geophys. Res. Ocean. 2005, 110. [Google Scholar] [CrossRef]
- Goldstein, R.M.; Zebker, H.A.; Barnett, T.P. Remote Sensing of Ocean Currents. Science 1989, 246, 1282–1285. [Google Scholar] [CrossRef]
- Romeiser, R.; Alpers, W. An improved composite surface model for the radar backscattering cross section of the ocean surface: 2. Model response to surface roughness variations and the radar imaging of underwater bottom topography. J. Geophys. Res. Ocean. 1997, 102, 25251–25267. [Google Scholar] [CrossRef]
- Kudryavtsev, V.; Akimov, D.; Johannessen, J.; Chapron, B. On radar imaging of current features: 1. Model and comparison with observations. J. Geophys. Res. Ocean. 2005, 110. [Google Scholar] [CrossRef]
- Johannessen, J.A.; Chapron, B.; Collard, F.; Kudryavtsev, V.; Mouche, A.; Akimov, D.; Dagestad, K.F. Direct ocean surface velocity measurements from space: Improved quantitative interpretation of Envisat ASAR observations. Geophys. Res. Lett. 2008, 35. [Google Scholar] [CrossRef]
- Romeiser, R.; Runge, H.; Suchandt, S.; Kahle, R.; Rossi, C.; Bell, P.S. Quality Assessment of Surface Current Fields From TerraSAR-X and TanDEM-X Along-Track Interferometry and Doppler Centroid Analysis. IEEE Trans. Geosci. Remote Sens. 2014, 52, 2759–2772. [Google Scholar] [CrossRef]
- Ardhuin, F.; Chapron, B.; Maes, C.; Romeiser, R.; Gommenginger, C.; Cravatte, S.; Morrow, R.; Donlon, C.; Bourassa, M. Satellite Doppler Observations for the Motions of the Oceans. Bull. Am. Meteorol. Soc. 2019, 100, ES215–ES219. [Google Scholar] [CrossRef]
- Mouche, A.A.; Collard, F.; Chapron, B.; Dagestad, K.F.; Guitton, G.; Johannessen, J.A.; Kerbaol, V.; Hansen, M.W. On the use of Doppler shift for sea surface wind retrieval from SAR. IEEE Trans. Geosci. Remote Sens. 2012, 50, 2901–2909. [Google Scholar] [CrossRef]
- Alpers, W.; Mouche, A.; Horstmann, J.; Ivanov, A.Y.; Barabanov, V. Test of an advanced algorithm to retrieve complex wind fields over the black sea from Envisat SAR images. In Proceedings of the 2013 IEEE International Geoscience and Remote Sensing Symposium, IGARSS 2013, Melbourne, Australia, 21–26 July 2013; pp. 1262–1265. [Google Scholar]
- Zamparelli, V.; De Santi, F.; Cucco, A.; Zecchetto, S.; De Carolis, G.; Fornaro, G. Surface Currents Derived from SAR Doppler Processing: An Analysis over the Naples Coastal Region in South Italy. J. Mar. Sci. Eng. 2020, 8, 203. [Google Scholar] [CrossRef]
- Monaldo, F.; Kerbaol, V.; Clemente-Colon, P.; Furevik, B.; Horstmann, J.; Johannessen, J.; Li, X.; Pichel, W.; Sikora, T.; Thompson, D.; et al. The SAR Measurements of Ocean Surface Winds: A White Paper for the 2nd Workshop on Coastal and Marine Applications of SAR, Longyearbyen, Spitsbergen, Norway, 8–12 September 2003; ESA: Sao Paulo, Brazil, 2003; Volume 565. [Google Scholar]
- Portabella, M.; Stoffelen, A.; Johannessen, J.A. Toward an optimal inversion method for synthetic aperture radar wind retrieval. J. Geophys. Res. Ocean. 2002, 107, 1. [Google Scholar] [CrossRef]
- Choisnard, J.; Laroche, S. Properties of variational data assimilation for synthetic aperture radar wind retrieval. J. Geophys. Res. Ocean. 2008, 113. [Google Scholar] [CrossRef]
- Koch, W. Directional analysis of SAR images aiming at wind direction. IEEE Trans. Geosci. Remote Sens. 2004, 42, 702–710. [Google Scholar] [CrossRef]
- Wackerman, C.C.; Rufenach, C.L.; Shuchman, R.A.; Johannessen, J.A.; Davidson, K.L. Wind vector retrieval using ERS-1 synthetic aperture radar imagery. IEEE Trans. Geosci. Remote Sens. 1996, 34, 1343–1352. [Google Scholar] [CrossRef]
- Zecchetto, S.; De Biasio, F. A wavelet-based technique for sea wind extraction from SAR images. IEEE Trans. Geosci. Remote Sens. 2008, 46, 2983–2989. [Google Scholar] [CrossRef]
- Zecchetto, S. Wind direction extraction from SAR in coastal areas. Remote Sens. 2018, 10, 261. [Google Scholar] [CrossRef]
- Zecchetto, S.; Zanchetta, A. Structure of High-Resolution SAR Winds Over the Venice Lagoon Area. IEEE Trans. Geosci. Remote Sens. 2022, 60, 1–9. [Google Scholar] [CrossRef]
- Bertotti, L.; Cavaleri, L. Wind and wave predictions in the Adriatic Sea. J. Mar. Syst. 2009, 78, S227–S234. [Google Scholar] [CrossRef]
- Umgiesser, G.; Sclavo, M.; Carniel, S.; Bergamasco, A. Exploring the bottom stress variability in the Venice Lagoon. J. Mar. Syst. 2004, 51, 161–178. [Google Scholar] [CrossRef]
- Bertotti, L.; Cavaleri, L. Coastal set-up and wave breaking. Oceanol. Acta 1985, 8, 237–242. [Google Scholar]
- Alpers, W.; Mouche, A.; Horstmann, J.; Ivanov, A.Y.; Barabanov, V.S. Application of a new algorithm using Doppler information to retrieve complex wind fields over the Black Sea from ENVISAT SAR images. Int. J. Remote Sens. 2015, 36, 863–881. [Google Scholar] [CrossRef]
- Signell, R.P.; Chiggiato, J.; Horstmann, J.; Doyle, J.D.; Pullen, J.; Askari, F. High-resolution mapping of Bora winds in the northern Adriatic Sea using synthetic aperture radar. J. Geophys. Res. Ocean. 2010, 115. [Google Scholar] [CrossRef]
- Belušić, D.; Hrastinski, M.; Večenaj, Ž.; Grisogono, B. Wind regimes associated with a mountain gap at the northeastern Adriatic coast. J. Appl. Meteorol. Climatol. 2013, 52, 2089–2105. [Google Scholar] [CrossRef]
- Beluši’c, D.; Pasarić, M.; Orlić, M. Quasi-periodic Bora gusts related to the structure of the troposphere. Q. J. R. Meteorol. Soc. J. Atmos. Sci. Appl. Meteorol. Phys. Oceanogr. 2004, 130, 1103–1121. [Google Scholar]
- Lazić, L.; Tošić, I. A real data simulation of the Adriatic bora and the impact of mountain height on bora trajectories. Meteorol. Atmos. Phys. 1998, 66, 143–155. [Google Scholar] [CrossRef]
- Available online: https://eocat.esa.int/sec/#data-services-area (accessed on 9 April 2023).
- Jackson, G.; Fornaro, G.; Berardino, P.; Esposito, C.; Lanari, R.; Pauciullo, A.; Reale, D.; Zamparelli, V.; Perna, S. Experiments of sea surface currents estimation with space and airborne SAR systems. In Proceedings of the 2015 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Milan, Italy, 26–31 May 2015; pp. 373–376. [Google Scholar]
- Zamparelli, V.; Jackson, G.; Cucco, A.; Fornaro, G.; Zecchetto, S. SAR based sea current estimation in the Naples coastal area. In Proceedings of the 2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Beijing, China, 10–15 July 2016; pp. 4665–4668. [Google Scholar]
- Zamparelli, V.; Fornaro, G. SAR Sea Surface Currents Estimation over Long Strips of the Adriatic Sea. In Proceedings of the 2022 IEEE 21st Mediterranean Electrotechnical Conference (MELECON), Palermo, Italy, 14–16 June 2022; pp. 605–608. [Google Scholar]
- Zamparelli, V.; Fornaro, G. SAR based sea surface currents estimation: Application to the Gulf of Trieste. In Proceedings of the International Symposium on Applied Geoinformatics (ISAG-2019), Istanbul, Turkey, 7–9 November 2019. [Google Scholar]
- Madsen, S. Estimating the Doppler centroid of SAR data. IEEE Trans. Aerosp. Electron. Syst. 1989, 25, 134–140. [Google Scholar] [CrossRef]
- Harris, F.J. On the use of windows for harmonic analysis with the discrete Fourier transform. Proc. IEEE 1978, 66, 51–83. [Google Scholar] [CrossRef]
- Stankwitz, H.; Dallaire, R.; Fienup, J. Nonlinear apodization for sidelobe control in SAR imagery. IEEE Trans. Aerosp. Electron. Syst. 1995, 31, 267–279. [Google Scholar] [CrossRef]
- Bamler, R. Doppler frequency estimation and the Cramer-Rao bound. IEEE Trans. Geosci. Remote Sens. 1991, 29, 385–390. [Google Scholar] [CrossRef]
- Zamparelli, V.; De Santi, F.; De Carolis, G.; Fornaro, G. On the Analysis of SAR Derived Wind and Sea Surface Currents. In Proceedings of the IGARSS 2020—2020 IEEE International Geoscience and Remote Sensing Symposium, Waikoloa, HI, USA, 26 September–2 October 2020; pp. 5721–5724. [Google Scholar]
- Kay, S.M. Fundamentals of Statistical Signal Processing: Estimation Theory; Prentice-Hall, Inc.: Hoboken, NJ, USA, 1993. [Google Scholar]
- Lorenc, A.C. Optimal nonlinear objective analysis. Q. J. R. Meteorol. Soc. 1988, 114, 205–240. [Google Scholar] [CrossRef]
- Hersbach, H.; Bell, B.; Berrisford, P.; Hirahara, S.; Horányi, A.; Muñoz-Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Schepers, D.; et al. The ERA5 global reanalysis. Q. J. R. Meteorol. Soc. 2020, 146, 1999–2049. [Google Scholar] [CrossRef]
- Hersbach, H.; Bell, B.; Berrisford, P.; Biavati, G.; Horányi, A.; Sabater, J.M.; Nicolas, J.; Peubey, C.; Radu, R.; Rozum, I.; et al. ERA5 Hourly Data on Single Levels from 1959 to Present. Copernicus Climate Change Service (C3S) Climate Data Store (CDS). Available online: https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-single-levels?tab=overview (accessed on 9 April 2023).
- Quilfen, Y.; Chapron, B.; Elfouhaily, T.; Katsaros, K.; Tournadre, J. Observation of tropical cyclones by high-resolution scatterometry. J. Geophys. Res. Ocean. 1998, 103, 7767–7786. [Google Scholar] [CrossRef]
- Attema, E.P. The active microwave instrument on-board the ERS-1 satellite. Proc. IEEE 1991, 79, 791–799. [Google Scholar] [CrossRef]
- Hersbach, H.; Stoffelen, A.; de Haan, S. An improved C-band scatterometer ocean geophysical model function: CMOD5. J. Geophys. Res. Ocean. 2007, 112. [Google Scholar] [CrossRef]
- Hersbach, H. CMOD5. N: A C-Band Geophysical Model Function for Equivalent Neutral Wind; European Centre for Medium-Range Weather Forecasts Reading, 2008. [Google Scholar]
- Stoffelen, A.; Verspeek, J.A.; Vogelzang, J.; Verhoef, A. The CMOD7 geophysical model function for ASCAT and ERS wind retrievals. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2017, 10, 2123–2134. [Google Scholar] [CrossRef]
- Lu, Y.; Zhang, B.; Perrie, W.; Mouche, A.A.; Li, X.; Wang, H. A C-band geophysical model function for determining coastal wind speed using synthetic aperture radar. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2018, 11, 2417–2428. [Google Scholar] [CrossRef]
- Portabella, M. ERS-2 SAR Wind Retrievals Versus HIRLAM Output: A Two Way Validation-By-Comparison 1998. Available online: https://digital.csic.es/handle/10261/257175 (accessed on 9 April 2023).
- Hansen, M.W.; Collard, F.; Dagestad, K.F.; Johannessen, J.A.; Fabry, P.; Chapron, B. Retrieval of sea surface range velocities from Envisat ASAR Doppler centroid measurements. IEEE Trans. Geosci. Remote Sens. 2011, 49, 3582–3592. [Google Scholar] [CrossRef]
- Available online: https://www.osmer.fvg.it/archivio.php?ln=&p=dati (accessed on 9 April 2023).
- Alpers, W.; Ivanov, A.; Horstmann, J. Observations of bora events over the Adriatic Sea and Black Sea by spaceborne synthetic aperture radar. Mon. Weather. Rev. 2009, 137, 1150–1161. [Google Scholar] [CrossRef]
Date | Orbit | Track | Number of Swaths | Acquisition Time (UTC) |
---|---|---|---|---|
18/11/2005 | ASC | 358 | 5 | 20.47 |
16/01/2009 | ASC | 358 | 5 | 20.47 |
03/11/2006 | DESC | 351 | 3 | 9.26 |
12/12/2008 | DESC | 351 | 3 | 9.26 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zamparelli, V.; De Santi, F.; De Carolis, G.; Fornaro, G. SAR Based Sea Surface Complex Wind Fields Estimation: An Analysis over the Northern Adriatic Sea. Remote Sens. 2023, 15, 2074. https://doi.org/10.3390/rs15082074
Zamparelli V, De Santi F, De Carolis G, Fornaro G. SAR Based Sea Surface Complex Wind Fields Estimation: An Analysis over the Northern Adriatic Sea. Remote Sensing. 2023; 15(8):2074. https://doi.org/10.3390/rs15082074
Chicago/Turabian StyleZamparelli, Virginia, Francesca De Santi, Giacomo De Carolis, and Gianfranco Fornaro. 2023. "SAR Based Sea Surface Complex Wind Fields Estimation: An Analysis over the Northern Adriatic Sea" Remote Sensing 15, no. 8: 2074. https://doi.org/10.3390/rs15082074
APA StyleZamparelli, V., De Santi, F., De Carolis, G., & Fornaro, G. (2023). SAR Based Sea Surface Complex Wind Fields Estimation: An Analysis over the Northern Adriatic Sea. Remote Sensing, 15(8), 2074. https://doi.org/10.3390/rs15082074