Geophysical Surveys for Geotechnical Model Reconstruction and Slope Stability Modelling
Abstract
:1. Introduction
2. Study Area and Landslide Description
3. Methods
- processing and integration of geological, geophysical and spatial data;
- stability analysis of two representative sections of the geotechnical model (Figure 2).
3.1. Geophysical Survey
3.1.1. H/V Measurements
3.1.2. GPR Measurements
3.2. Empirical Equations and N-SPT
3.3. Geotechnical Surveys
3.4. Slope Stability
4. Results
4.1. Geophysical Results
4.2. Geotechnical Results
4.3. Landslide Modelling
4.4. Filtration Analysis
4.5. Stability Analysis
5. Discussion
5.1. VS-N-SPT-φ′ Correlation and Evaluation
5.2. Effect of Vegetation on Slope Stability
6. Conclusions
- the slope, due to the steepness of the slope and the nature of the materials, was in limit equilibrium conditions even in dry ground conditions;
- the filtration analyses conducted for the 2016, 2019 and 2020 events revealed a dynamic of soil saturation from top to bottom, which led to the generation of positive interstitial pressures in the first few metres of soil, and the formation of a saturated front with a maximum thickness of 5 m;
- the stability analyses conducted for the 2016, 2019 and 2020 events showed the development of surface landslides affecting the first few metres of saturated soil;
- the analyses also showed that the presence of the gabion walls played no beneficial role in slope stability, as the FS values in the presence of the works were slightly lower than the values in the absence of the works.
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Alimohammadlou, Y.; Najafi, A.; Yalcin, A. Landslide Process and Impacts: A Proposed Classification Method. Catena 2013, 104, 219–232. [Google Scholar] [CrossRef]
- Cepeda, J.; Höeg, K.; Nadim, F. Landslide-Triggering Rainfall Thresholds: A Conceptual Framework. Q. J. Eng. Geol. Hydrogeol. 2010, 43, 69–84. [Google Scholar] [CrossRef]
- Winter, M.G. Landslide Hazards and Risks to Road Users, Road Infrastructure and Socio-Economic Activity. In Proceedings of the 17th European Conference on Soil Mechanics and Geotechnical Engineering, ECSMGE, Reykjavík, Iceland, 1–6 September 2019; pp. 196–228. [Google Scholar]
- Milne Cruden, D. Landslide Types and Processes; USGS: Reston, VA, USA, 1996; Volume 247. [Google Scholar]
- Hungr, O.; Leroueil, S.; Picarelli, L. The Varnes Classification of Landslide Types, an Update. Landslides 2014, 11, 167–194. [Google Scholar] [CrossRef]
- Chae, B.G.; Park, H.J.; Catani, F.; Simoni, A.; Berti, M. Landslide Prediction, Monitoring and Early Warning: A Concise Review of State-of-the-Art. Geosci. J. 2017, 21, 1033–1070. [Google Scholar] [CrossRef]
- Gariano, S.L.; Melillo, M.; Peruccacci, S.; Brunetti, M.T. How Much Does the Rainfall Temporal Resolution Affect Rainfall Thresholds for Landslide Triggering? Nat. Hazards 2020, 100, 655–670. [Google Scholar] [CrossRef]
- Troncone, A.; Pugliese, L.; Conte, E. Rainfall Threshold for Shallow Landslide Triggering Due to Rising Water Table. Water 2022, 14, 2966. [Google Scholar] [CrossRef]
- Iverson, R.M. Landslide Triggering by Rain Infiltration. Water Resour. Res. 2000, 36, 1897–1910. [Google Scholar] [CrossRef]
- Yi, X.; Feng, W.; Bai, H.; Shen, H.; Li, H. Catastrophic Landslide Triggered by Persistent Rainfall in Sichuan, China: August 21, 2020, Zhonghaicun Landslide. Landslides 2021, 18, 2907–2921. [Google Scholar] [CrossRef]
- Duncan, J.M. State of the Art: Limit Equilmrium and Finite-Element Analysis of Slopes 8. J. Geotech. Eng. 1996, 122, 577–596. [Google Scholar] [CrossRef]
- Memon, Y.A. Comparison Between Limit Equilibrium and Finite Element Methods for Slope Stability Analysis. 2011. Available online: https://www.researchgate.net/publication/329697782_A_Comparison_Between_Limit_Equilibrium_and_Finite_Element_Methods_for_Slope_Stability_Analysis (accessed on 18 March 2022).
- Innocenti, A.; Pazzi, V.; Borselli, L.; Nocentini, M.; Lombardi, L.; Gigli, G.; Fanti, R. Reconstruction of the Evolution Phases of a Landslide by Using Multi-Layer Back-Analysis Methods. Landslides 2022, 20, 189–207. [Google Scholar] [CrossRef]
- Mreyen, A.S.; Cauchie, L.; Micu, M.; Onaca, A.; Havenith, H.B. Multiple Geophysical Investigations to Characterize Massive Slope Failure Deposits: Application to the Balta Rockslide, Carpathians. Geophys. J. Int. 2021, 225, 1032–1047. [Google Scholar] [CrossRef]
- Pazzi, V.; Ciani, L.; Cappuccini, L.; Mattia, C. ERT Investigation of Tumuli: Does the Errors in Locating Electrodes Influence the Resistivity? In Proceedings of the IMEKO TC4 International Conference on Metrology for Archaeology and Cultural Heritage, Florence, Italy, 4–6 December 2019. [Google Scholar]
- Perrone, A.; Lapenna, V.; Piscitelli, S. Electrical Resistivity Tomography Technique for Landslide Investigation: A Review. Earth Sci. Rev. 2014, 135, 65–82. [Google Scholar] [CrossRef]
- Pazzi, V.; Morelli, S.; Fanti, R. A Review of the Advantages and Limitations of Geophysical Investigations in Landslide Studies. Int. J. Geophys. 2019, 2019, 2983087. [Google Scholar] [CrossRef]
- Borecka, A.; Herzig, J.; Durjasz-Rybacka, M. Ground Penetrating Radar Investigations of Landslides: A Case Study in a Landslide in Radziszów. Stud. Geotech. Mech. 2015, 37, 11–18. [Google Scholar] [CrossRef]
- Hussain, Y.; Schlögel, R.; Innocenti, A.; Hamza, O.; Iannucci, R.; Martino, S.; Havenith, H.B. Review on the Geophysical and UAV-Based Methods Applied to Landslides. Remote Sens. 2022, 14, 4564. [Google Scholar] [CrossRef]
- Imani, P.; Abd El-Raouf, A.; Tian, G. Landslide Investigation Using Seismic Refraction Tomography Method: A Review. Ann. Geophys. 2021, 64, SE657. [Google Scholar] [CrossRef]
- Lapenna, V.; Perrone, A. Time-Lapse Electrical Resistivity Tomography (TL-ERT) for Landslide Monitoring: Recent Advances and Future Directions. Appl. Sci. 2022, 12, 1425. [Google Scholar] [CrossRef]
- Pazzi, V.; Tanteri, L.; Bicocchi, G.; D’Ambrosio, M.; Caselli, A.; Fanti, R. H/V Measurements as an Effective Tool for the Reliable Detection of Landslide Slip Surfaces: Case Studies of Castagnola (La Spezia, Italy) and Roccalbegna (Grosseto, Italy). Phys. Chem. Earth 2017, 98, 136–153. [Google Scholar] [CrossRef]
- Whiteley, J.S.; Chambers, J.E.; Uhlemann, S.; Boyd, J.; Cimpoiasu, M.O.; Holmes, J.L.; Inauen, C.M.; Watlet, A.; Hawley-Sibbett, L.R.; Sujitapan, C.; et al. Landslide Monitoring Using Seismic Refraction Tomography—The Importance of Incorporating Topographic Variations. Eng. Geol. 2020, 268. [Google Scholar] [CrossRef]
- Ullah, F.; Su, L.J.; Alam, M.; Cheng, L.; Rehman, M.U.; Asghar, A.; Hussain, G. Landslide Stability Investigation and Subsurface Deformation Mapping by Optimizing Low-Frequency GPR: A Mega Rainfall Susceptible Landslide Case Study (Gilgit Baltistan, Pakistan). Bull. Eng. Geol. Environ. 2022, 81, 373. [Google Scholar] [CrossRef]
- Rezaei, S.; Shooshpasha, I.; Rezaei, H. Empirical Correlation between Geotechnical and Geophysical Parameters in a Landslide Zone (Case Study: Nargeschal Landslide). Earth Sci. Res. J. 2018, 22, 195–204. [Google Scholar] [CrossRef]
- Nakamura, Y. A Method for Dynamic Characteristics Od Subsurface Using Microtremor on the Ground Surface; Quaterly Reports; Railway Technical Research Institute: Tokyo, Japan, 1989; Volume 30. [Google Scholar]
- Fiorucci, M.; Martino, S.; Della Seta, M.; Lenti, L.; Mancini, A. Seismic Response of Landslides to Natural and Man-Induced Ground Vibrations: Evidence from the Petacciato Coastal Slope (Central Italy). Eng. Geol. 2022, 309, 106826. [Google Scholar] [CrossRef]
- Hussain, Y.; Cardenas-Soto, M.; Uagoda, R.; Martino, S.; Sanchez, N.P.; Moreira, C.A.; Martinez-Carvajal, H. Shear Wave Velocity Estimation by a Joint Inversion of Hvsr and F-k Curves under Diffuse Field Assumption: A Case Study of Sobradinho Landslide. Anu. Inst. Geocienc. 2019, 42, 742–750. [Google Scholar] [CrossRef]
- Noguchi, T.; Nishimura, I.; Kagawa, T. Estimation of subsurface structure of landslide area based on microtremor observation in the hojoshima, nawashiro and amedaki area, Tottori, Japan. Int. J. GEOMATE 2021, 21, 48–53. [Google Scholar] [CrossRef]
- Pazzi, V.; Di Filippo, M.; Di Nezza, M.; Carlà, T.; Bardi, F.; Marini, F.; Fontanelli, K.; Intrieri, E.; Fanti, R. Integrated Geophysical Survey in a Sinkhole-Prone Area: Microgravity, Electrical Resistivity Tomographies, and Seismic Noise Measurements to Delimit Its Extension. Eng. Geol. 2018, 243, 282–293. [Google Scholar] [CrossRef]
- Kannaujiya, S.; Chattoraj, S.L.; Jayalath, D.; Champati ray, P.K.; Bajaj, K.; Podali, S.; Bisht, M.P.S. Integration of Satellite Remote Sensing and Geophysical Techniques (Electrical Resistivity Tomography and Ground Penetrating Radar) for Landslide Characterization at Kunjethi (Kalimath), Garhwal Himalaya, India. Nat. Hazards 2019, 97, 1191–1208. [Google Scholar] [CrossRef]
- Levashov, S.P.; Bozhezha, D. 21001 Groundwater Flow Studies by EM and GPR Methods for Landslide Zones Prediction. Geoinformatics 2021, 2021, 1–7. [Google Scholar]
- Stumpf, T.; Bigman, D.P.; Day, D.J. Mapping Complex Land Use Histories and Urban Renewal Using Ground Penetrating Radar: A Case Study from Fort Stanwix. Remote Sens. 2021, 13, 2478. [Google Scholar] [CrossRef]
- Tandon, R.S.; Gupta, V.; Venkateshwarlu, B.; Joshi, P. An Assessment of Dungale Landslide Using Remotely Piloted Aircraft System (RPAS), Ground Penetration Radar (GPR), and Slide & RS2 Softwares. Nat. Hazards 2022, 113, 1017–1042. [Google Scholar] [CrossRef]
- Velayudham, J.; Kannaujiya, S.; Sarkar, T.; Champati ray, P.K.; Taloor, A.K.; Singh Bisht, M.P.; Chawla, S.; Pal, S.K. Comprehensive Study on Evaluation of Kaliasaur Landslide Attributes in Garhwal Himalaya by the Execution of Geospatial, Geotechnical and Geophysical Methods. Quat. Sci. Adv. 2021, 3, 100025. [Google Scholar] [CrossRef]
- Sestras, P.; Bilașco, Ș.; Roșca, S.; Veres, I.; Ilies, N.; Hysa, A.; Spalević, V.; Cîmpeanu, S.M. Multi-Instrumental Approach to Slope Failure Monitoring in a Landslide Susceptible Newly Built-Up Area: Topo-Geodetic Survey, UAV 3D Modelling and Ground-Penetrating Radar. Remote Sens. 2022, 14, 5822. [Google Scholar] [CrossRef]
- Zhang, D.; Li, J.; Liu, S.; Wang, G. Multi-Frequencies GPR Measurements for Delineating the Shallow Subsurface Features of the Yushu Strike Slip Fault. Acta Geophys. 2019, 67, 501–515. [Google Scholar] [CrossRef]
- Xie, P.; Wen, H.; Xiao, P.; Zhang, Y. Evaluation of Ground-Penetrating Radar (GPR) and Geology Survey for Slope Stability Study in Mantled Karst Region. Env. Earth Sci. 2018, 77, 122. [Google Scholar] [CrossRef]
- GeoStudio, 2020. SEEP/W Model and User Manual; Geo-Slope International: Calgary, AB, Canada, 2020. [Google Scholar]
- GeoStudio, 2020. SLOPE/W Model and User Manual; Geo-Slope International: Calgary, AB, Canada, 2020. [Google Scholar]
- Morgenstern, N.R.; Price, V.E.; George, G.; London, S. The Analysis of the Stability of General Slip Surfaces the Institution of Civil Engineers the Rights of Publication and of Translation are Reserved. Géotechnique 1965, 15, 79–93. [Google Scholar] [CrossRef]
- Agostini, A.; Tofani, V.; Nolesini, T.; Gigli, G.; Tanteri, L.; Rosi, A.; Cardellini, S.; Casagli, N. A New Appraisal of the Ancona Landslide Based on Geotechnical Investigations and Stability Modelling. Q. J. Eng. Geol. Hydrogeol. 2014, 47, 29–44. [Google Scholar] [CrossRef]
- Casagli, N.; Dapporto, S.; Ibsen, M.L.; Tofani, V.; Vannocci, P. Analysis of the Landslide Triggering Mechanism during the Storm of 20th-21st November 2000, in Northern Tuscany. Landslides 2006, 3, 13–21. [Google Scholar] [CrossRef]
- Nocentini, M.; Tofani, V.; Gigli, G.; Fidolini, F.; Casagli, N. Modeling Debris Flows in Volcanic Terrains for Hazard Mapping: The Case Study of Ischia Island (Italy). Landslides 2015, 12, 831–846. [Google Scholar] [CrossRef]
- Comune di Fontaneimore. Available online: https://www.comune.fontainemore.ao.it/it-it/home (accessed on 19 January 2023).
- Segoni, S.; Barbadori, F.; Gatto, A.; Casagli, N. Application of Empirical Approaches for Fast Landslide Hazard Management: The Case Study of Theilly (Italy). Water 2022, 14, 3485. [Google Scholar] [CrossRef]
- GeoNavigatore SCT. Available online: https://mappe.partout.it/pub/geocartageo/index.html (accessed on 19 January 2023).
- Okada, H.; Suto, K. The Microtremor Survey Methods; Society of Exploration Geophysicists: Houston, TX, USA, 2003. [Google Scholar]
- del Gaudio, V.; Muscillo, S.; Wasowski, J. What We Can Learn about Slope Response to Earthquakes from Ambient Noise Analysis: An Overview. Eng. Geol. 2014, 182, 182–200. [Google Scholar] [CrossRef]
- Molnar, S.; Sirohey, A.; Assaf, J.; Bard, P.Y.; Castellaro, S.; Cornou, C.; Cox, B.; Guillier, B.; Hassani, B.; Kawase, H.; et al. A Review of the Microtremor Horizontal-to-Vertical Spectral Ratio (MHVSR) Method. J. Seism. 2022, 26, 653–685. [Google Scholar] [CrossRef]
- Castellaro, S.; Mulargia, F. The Effect of Velocity Inversions on H/V. Pure Appl. Geophys. 2009, 166, 567–592. [Google Scholar] [CrossRef]
- Al-Fares, W.; Bakalowicz, M.; Guérin, R.; Dukhan, M. Analysis of the Karst Aquifer Structure of the Lamalou Area (Hérault, France) with Ground Penetrating Radar. J. Appl. Geophys. 2002, 51, 97–106. [Google Scholar] [CrossRef]
- Huisman, J.A.; Snepvangers, J.J.J.C.; Bouten, W.; Heuvelink, G.B.M. Mapping Spatial Variation in Surface Soil Water Content: Comparison of Ground-Penetrating Radar and Time Domain Reflectometry. J. Hydrol. 2002, 269, 194–207. [Google Scholar] [CrossRef]
- Nichol, D.; Lenham, J.W.; Reynolds, J.M. Application of ground-penetrating radar to investigate the effects of badger setts on slope stability at St Asaph Bypass, North Wales. Q. J. Eng. Geol. Hydrogeol. 2003, 36, 143–153. [Google Scholar] [CrossRef]
- Sass, O.; Bell, R.; Glade, T. Comparison of GPR, 2D-Resistivity and Traditional Techniques for the Subsurface Exploration of the Öschingen Landslide, Swabian Alb (Germany). Geomorphology 2008, 93, 89–103. [Google Scholar] [CrossRef]
- Zajc, M.; Pogačnik, Ž.; Gosar, A. Ground Penetrating Radar and Structural Geological Mapping Investigation of Karst and Tectonic Features in Flyschoid Rocks as Geological Hazard for Exploitation. Int. J. Rock Mech. Min. Sci. 2014, 67, 78–87. [Google Scholar] [CrossRef]
- Martínez, J.; Rey, J.; Gutiérrez, L.M.; Novo, A.; Ortiz, A.J.; Alejo, M.; Galdón, J.M. Electrical Resistivity Imaging (ERI) and Ground-Penetrating Radar (GPR) Survey at the Giribaile Site (Upper Guadalquivir Valley; Southern Spain). J. Appl. Geophy. 2015, 123, 218–226. [Google Scholar] [CrossRef]
- Baryshnikov, V.D.; Khmelin, A.P.; Denisova, E.V. GPR Detection of Inhomogeneities in Concrete Lining of Underground Tunnels. J. Min. Sci. 2014, 50, 25–32. [Google Scholar] [CrossRef]
- Alsharahi, G.; Faize, A.; Maftei, C.; Driouach, A. GPR Application for Risks Detection in Subsurface Engineering Construction Projects. Ovidius Univ. Ann. Constanta—Ser. Civ. Eng. 2019, 21, 51–58. [Google Scholar] [CrossRef]
- Grandjean, G.; Gourry, J.C.; Bitri, A. Evaluation of GPR Techniques for Civil-Engineering Applications: Study on a Test Site. J. Appl. Geophys. 2000, 45, 141–156. [Google Scholar] [CrossRef]
- Daniels, J.J. Fundamentals of Ground Penetrating Radar; Society of Exploration Geophysicists: Denver, CO, USA, 1989; pp. 62–142. [Google Scholar]
- Neal, A. Ground-Penetrating Radar and Its Use in Sedimentology: Principles, Problems and Progress. Earth Sci. Rev. 2004, 66, 261–330. [Google Scholar] [CrossRef]
- Rasol, M.; Pérez-Gracia, V.; Fernandes, F.M.; Pais, J.C.; Santos-Assunçao, S.; Roberts, J.S. Ground Penetrating Radar System: Principles. In Handbook of Cultural Heritage Analysis; Springer International Publishing: Cham, Switzerland, 2022; pp. 705–738. [Google Scholar]
- Schrott, L.; Sass, O. Application of Field Geophysics in Geomorphology: Advances and Limitations Exemplified by Case Studies. Geomorphology 2008, 93, 55–73. [Google Scholar] [CrossRef]
- Mellett, J.S. I FFLIEI GEI PI 51C5 Ground Penetrating Radar Applications in Engineering, Environmental Management, and Geology; Elsevier: Amsterdam, The Netherlands, 1995; Volume 33. [Google Scholar]
- Sonkamble, S.; Chandra, S. GPR for Earth and Environmental Applications: Case Studies from India. J. Appl. Geophy. 2021, 193, 104422. [Google Scholar] [CrossRef]
- Marto, A.; Soon, T.C.; Kasim, F.; Suhatril, M. A correlation of shear wave velocity and standard penetration resistance. Electron. J. Geotech. Eng. 2013, 18, 463–471. [Google Scholar]
- Brandenberg, S.J.; Bellana, N.; Shantz, T. Shear wave velocity as function of standard penetration test resistance and vertical effective stress at California bridge sites. Soil Dyn. Earthq. Eng. 2010, 30, 1026–1035. [Google Scholar] [CrossRef]
- Sil, A.; Haloi, J. Empirical correlations with standard penetration test (SPT)-N for estimating shear wave velocity applicable to any region. Int. J. Geosynth. Ground Eng. 2017, 3, 22 . [Google Scholar] [CrossRef]
- Ohsaki, Y.; Iwasaki, R. On Dynamic Shear Moduli and Poisson’s Ratios of Soil Deposits. Soils Found. 1973, 13, 61–73. [Google Scholar] [CrossRef]
- Ohta, Y.; Goto, N. Empirical Shear Wave Velocity Equations in Terms of Characteristic Soil Indexes. Earthq. Eng. Struct. Dyn. 1978, 6, 167–187. [Google Scholar] [CrossRef]
- Imai, T.; Yoshimura, Y. The Relation of Mechanical Properties of Soils to P and S-Wave Velocities for Ground in Japan; Technical Note OYO Corporation: Tokyo, Japan, 1975. [Google Scholar]
- Lee, S.H.H. Regression Models of Shear Wave Velocities in Taipei Basin. J. Chin. Inst. Eng. 1990, 13, 519–532. [Google Scholar] [CrossRef]
- Jafari, M.K.; Asghari, A.; Rahmani, I. Empirical Correlation between Shear Wave Velocity (Vs) and SPT-N Value for South of Tehran Soils. In Proceedings of the 4th International Conference on Civil Engineering, Tehran, Iran. 1997. [Google Scholar]
- Skempton, A.W. Standard Penetration Test Procedures and the Effects in Sands of Overburden Pressure, Relative Density, Particle Size, Ageing and Overconsolidation. Geotechnique 1986, 36, 425–447. [Google Scholar] [CrossRef]
- Mayne, P.W.; Rix, G.J. Correlations between shear wave velocity and cone tip resistance in natural clays. Soils Found. 1995, 35, 107–110. [Google Scholar] [CrossRef] [PubMed]
- Anbazhagan, P.; Parihar, A.; Rashmi, H.N. Review of Correlations between SPT N and Shear Modulus: A New Correlation Applicable to Any Region. Soil Dyn. Earthq. Eng. 2012, 36, 52–69. [Google Scholar] [CrossRef]
- Ataee, O.; Moghaddas, N.H.; Lashkaripour, G.R. Estimating Shear Wave Velocity of Soil Using Standard Penetration Test (SPT) Blow Counts in Mashhad City. J. Earth Syst. Sci. 2019, 128, 66. [Google Scholar] [CrossRef]
- Esfehanizadeh, M.; Nabizadeh, F.; Yazarloo, R. Correlation between Standard Penetration (N SPT) and Shear Wave Velocity (V S) for Young Coastal Sands of the Caspian Sea. Arab. J. Geosci. 2015, 8, 7333–7341. [Google Scholar] [CrossRef]
- Madun, A.; Tajuddin, S.A.A.; Abdullah, M.E.; Abidin, M.H.Z.; Sani, S.; Siang, A.J.L.M.; Yusof, M.F. Convertion Shear Wave Velocity to Standard Penetration Resistance. In Proceedings of the IOP Conference Series: Materials Science and Engineering ; Institute of Physics Publishing: Bristol, UK, 2016; Volume 136. [Google Scholar]
- Maheswari, R.U.; Boominathan, A.; Dodagoudar, G.R. Use of Surface Waves in Statistical Correlations of Shear Wave Velocity and Penetration Resistance of Chennai Soils. Geotech. Geol. Eng. 2010, 28, 119–137. [Google Scholar] [CrossRef]
- Sun, C.G.; Cho, C.S.; Son, M.; Shin, J.S. Correlations Between Shear Wave Velocity and In-Situ Penetration Test Results for Korean Soil Deposits. Pure Appl. Geophys. 2013, 170, 271–281. [Google Scholar] [CrossRef]
- Tsiambaos, G.; Sabatakakis, N. Empirical Estimation of Shear Wave Velocity from in Situ Tests on Soil Formations in Greece. Bull. Eng. Geol. Environ. 2011, 70, 291–297. [Google Scholar] [CrossRef]
- Madiai, C.; Simoni, G. Shear Wave Velocity-Penetration Resistance Correlation for Holocene and Pleistocene Soils of an Area in Central Italy. In Proceedings of the 2nd International Conference on Geotechnical and Geophysical Site Characterization, Porto, Portugal; 2004; pp. 1687–1694. [Google Scholar]
- Jamiolkowski, M.; Ghionna, V.N.; Lancellotta, R.; Pasqualini, E. New correlations of penetration tests for design practice. In Penetration Testing 1988: Proceedings of the First International Symposium on Penetration Testing 1988, ISOPT-1, Orlando, FL, USA, 20–24 March 1988; De Ruiter, J., Ed.; Brookfield: Rotterdam, The Netherlands; Volume 1, pp. 263–296.
- Nassaji, F.; Kalantari, B. SPT Capability to Estimate Undrained Shear Strength of Fine-Grained Soils of Tehran, Iran. Electron. J. Geotech. Eng. 2011, 16, 1229–1238. [Google Scholar]
- Duong, T.H. Effects of Spt Numbers on Liquefaction Potential Assessment of Fine Soil. In Proceedings of the Lecture Notes in Civil Engineering; Springer: Cham, Switzerland, 2020; Volume 80, pp. 691–699. [Google Scholar]
- ASTM D2217-85; Standard Practice for Wet Preparation of Soil Samples for Particle-Size Analysis and Determination of Soil Constants (Withdrawn 2007). ASTM International: West Conshohocken, PA, USA, 1998.
- Amoozegar, A. Compact Constant Head Permeameter: A Convenient Device for Measuring Hydraulic Conductivity. In Advances in Measurement of Soil Physical Properties: Bringing Theory into Practice; Wiley: Hoboken, NJ, USA, 2012; pp. 31–42. ISBN 9780891189251. [Google Scholar]
- Bicocchi, G.; Tofani, V.; D’Ambrosio, M.; Tacconi-Stefanelli, C.; Vannocci, P.; Casagli, N.; Lavorini, G.; Trevisani, M.; Catani, F. Geotechnical and Hydrological Characterization of Hillslope Deposits for Regional Landslide Prediction Modeling. Bull. Eng. Geol. Environ. 2019, 78, 4875–4891. [Google Scholar] [CrossRef]
- Tofani, V.; Bicocchi, G.; Rossi, G.; Segoni, S.; D’Ambrosio, M.; Casagli, N.; Catani, F. Soil Characterization for Shallow Landslides Modeling: A Case Study in the Northern Apennines (Central Italy). Landslides 2017, 14, 755–770. [Google Scholar] [CrossRef]
- Philip, J.R. Approximate Analysis of the Borehole Permeameter in Unsaturated Soil. Water Resour. Res. 1985, 21, 1025–1033. [Google Scholar] [CrossRef]
- ASTM D3080/D3080M; Direct Shear Test of Soils under Consolidated Drained Conditions. ASTM International: West Conshohocken, PA, USA, 2011.
- Vannocci, P.; Segoni, S.; Masi, E.B.; Cardi, F.; Nocentini, N.; Rosi, A.; Bicocchi, G.; D’Ambrosio, M.; Nocentini, M.; Lombardi, L.; et al. Towards a National-Scale Dataset of Geotechnical and Hydrological Soil Parameters for Shallow Landslide Modeling. Data 2022, 7, 37. [Google Scholar] [CrossRef]
- ASTM-D1586; Standard Test Method for Standard Penetration Test (SPT) and Split-Barrel Sampling of Soils. ASTM International: West Conshohocken, PA, USA, 2011.
- Kruse, E.; Eslamian, S.; Ostad-Ali-Askari, K.; Hosseini-Teshnizi, S.Z. Borehole Investigations. Encycl. Earth Sci. Ser. 2018, PartF3. [Google Scholar] [CrossRef]
- Darcy, H. Les Fontaines Publiques de La Ville de Dijon Exposition et Application; Victor Dalmont.: Paris, France, 1856. [Google Scholar]
- Childs, E.C.; Collis-George, N. The Permeability of Porous Materiald. Proc. R. Soc. London. Ser. A. Math. Phys. Sci. 1950, 201, 392–405. [Google Scholar]
- Richards, L.A. Capillary Conduction of Liquids through Porous Mediums. Physics 1931, 1, 318–333. [Google Scholar] [CrossRef]
- Fredlund, D.G.R.H. Soil Mechanics for Unsaturated Soils; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 1993. [Google Scholar]
- Vanapalli, S.K.; Fredlund, D.G.; Pufahl, D.E.; Clifton, A.W. Model for the Prediction of Shear Strength with Respect to Soil Suction. Can. Geotech. J. 1996, 33, 379–392. [Google Scholar] [CrossRef]
- Kanai, K. Improved Empirical Formula for the Characteristics of Strong Earthquake Motions, Proceedings; Japan Earthquake Engineering Symposium: Tokyo, Japan, 1966; pp. 1–4. [Google Scholar]
- Shibata, T. Analysis of Liquefaction of Saturated Sand during Cyclic Loading. Disaster Prevention Res. Inst. Bull. 1970, 13, 563–570. [Google Scholar]
- Ohba, S.; Toriumi, I. Dynamic Response Characteristics of Osaka Plain. In Proceedings of the Annual Meeting, A.I.J. (in Japanese), Tokyo, Japan, 5–7 December 1970. [Google Scholar]
- Ohta, T.; Hara, A.; Niwa, M.; Sakano, T. Elastic Shear Moduli as Estimated from N-Value. In Proceedings of the Proc. 7th Ann. Convention of Japan Society of Soil Mechanics and Foundation Engineering, Tokyo, Japan, July 1972; pp. 265–268. [Google Scholar]
- Imai, T.; Fumoto, H.; Yokota, K. The Relation of Mechanical Properties of Soils to P-and S-Wave Velocities in Japan. In Proceedings of the Fourth Japanese Earthquake Engineering Symposium, Tokyo, Japan, 19 January 1975; pp. 86–96. [Google Scholar]
- Imai, T.P.; Wave, S. Velocities of the Ground in Japan. In Proceedings of the International Conference on Soil Mechanics and Foundation Engineering, Tokyo, Japan, 10–15 July 1977; pp. 127–132. [Google Scholar]
- Japan Road Association. Specification and Interpretation of Bridge Design for Highway; Part V Resilient Des; Japan Road Association: Tokyo, Japan, 1980; p. 14. [Google Scholar]
- Seed, H.; Idriss, I. Evaluation of Liquefaction Potential of Sand Deposits Based on Observations of Performance in Previous Earthquakes. In Proceedings of the Conference on In Situ Testing to Evaluate Liquefaction Susceptibility; ASCE: St. Louis, MO, USA, 1981. preprint. pp. 81–544. [Google Scholar]
- Sykora, D.W.; Stokoe, K.H., II. Correlations of In Situ Measurements in Sands of Shear Wave Velocity, Soil Characteristics, and Site Conditions. In Report GR83–3; Civil Engineering Department, University of Texas: Austin, TX, USA, 1983. [Google Scholar]
- Lin, J.S.; Deng, J.G.; Su, Y.A. Application of Finite Element Method in the Analysis of Deep Excavation. Res. Rep. Taiwan Constr. Technol. Res. 1984. [Google Scholar]
- Leed, S.H.-H. Analysis of the multicollinearity of regression equations of shear wave velocities. Soils Found. 1992, 32, 205–214. [Google Scholar]
- Jianguo, C.H. Japan Road Association Correlation Analysis of SPT N Values and Cohesion and Internal Angle of a Clay. Soil Eng. Found. 1990, 26, 91–93. [Google Scholar]
- de Mello, V.F.B. The Standard Penetration Test State of the Art Review. In Proceedings of the 4th Pan-American Conference SMFE Puerto Rico, San Juan, PR, USA, 1971; Volume 1, pp. 1–86. [Google Scholar]
- Sowers, G.F. Introductory Soil Mechanics and Foundations, 4th ed.; Macmillan, 621: New York, NY, USA, 1979. [Google Scholar]
- Peck, R.B.; Hanson, W.E.; Thorburn, T.H. Foundation Engineering, 2nd ed.; John Wiley and Sons: New York, NY, USA, 1974; pp. I 13–I 15. [Google Scholar]
- Meyerhof, G.G. Penetration Tests and Bearing Capacity of Cohesionless Soils. ASCE J. Geotech. Eng. 1956, 82, 866-1–866-19. [Google Scholar] [CrossRef]
- Hatanaka, M.; Uchida, A. Empirical Correlation between Penetration Resistance and Internal Friction Angle of Sandy Soils. Soils Found. 1996, 36, 1. [Google Scholar] [CrossRef] [PubMed]
- Wolff, T.F. Pile Capacity Prediction Using Parameter Functions. Predicted and Observed Axial Behavior of Piles, Results of a Pile Prediction Symposium, sponsored by Geotechnical Engineering Division, ASCE, Evanston, Ill., June 1989. ASCE Geotech. Spec. Publ. 1989, 23, 96–106. [Google Scholar]
- Schmertmann, J.H. Use the SPT to Measure Dynamic Soil Properties?—Yes, But; ASTM International: West Conshohocken, PA, USA, 1978; pp. 341–355. [Google Scholar]
- De Baets, S.; Poesen, J.; Reubens, B.; Wemans, K.; De Baerdemaeker, J.; Muys, B. Root Tensile Strength and Root Distribution of Typical Mediterranean Plant Species and Their Contribution to Soil Shear Strength. Plant Soil 2008, 305, 207–226. [Google Scholar] [CrossRef]
- Masi, E.B.; Segoni, S.; Tofani, V. Root Reinforcement in Slope Stability Models: A Review. Geosciences 2021, 11, 212. [Google Scholar] [CrossRef]
Seismo-Layer | f (Hz) | h (m) | Vs (m/s) |
---|---|---|---|
1 | 20–35 | 2–4 | 298 |
2 | 3.3–4.3 | 18–35 | 433 |
3 | / | ∞ | 832 |
Sample | T1 | T2 | T3 | T4 |
---|---|---|---|---|
Depth (m) | 0.25 | 0.37 | 0.2 | 0.25 |
Gravel (%) | 31.2 | 20.7 | 35.5 | 41.8 |
Sand (%) | 36.8 | 40.2 | 48.5 | 34.1 |
Silt (%) | 30.4 | 39 | 16 | 23.4 |
Clay (%) | 1.6 | 0.1 | / | 0.7 |
USCS Classification | SM | SM | SM | SM |
K (m/sec) | / | 8.87 × 10−6 | / | / |
K Hazen (m/s) | 2.56 × 10−6 | 9.02 × 10−7 | / | 3.24 × 10−6 |
w (%) | 8.6 | 33 | 1 | 2.8 |
φ′ (°) | 35 | / | 39.4 | 38.4 |
c′ (kPa) | 5.5 | / | 0 | 0 |
Sample | C1 | C2 | C3 | C4 | C5 | C6 | C7 |
---|---|---|---|---|---|---|---|
Depth (m) | 4.5–4.8 | 10.0–10.2 | 14.5–14.7 | 18.20–18.50 | 20.0–20.40 | 30.0–30.3 | 33.3–33.6 |
Pebble (%) | 19.4 | 31.5 | / | / | / | / | / |
Gravel (%) | 35.2 | 30.1 | 9.8 | 52.2 | 34.4 | 47.2 | 23.9 |
Sand (%) | 30.6 | 23.3 | 88.8 | 36.4 | 49.1 | 32.8 | 62.3 |
Silt/Clay (%) | 14.8 | 15.1 | 1.4 | 11.4 | 15.5 | 18.8 | 13.8 |
USCS Classification | GM-GC | GM-GC | SW | GW-GM | SM-SC | SM-SC | SM-SC |
K (m/s) | / | 6.9 × 10−6 | / | / | 2.14 × 10−5 | 4.94 × 10−6 | 1.08 × 10−5 |
Seismo-Layer 1 | Seismo-Layer 2 | |||||||
---|---|---|---|---|---|---|---|---|
Authors | a | b | N-SPT | Nnorm | φ′ | N-SPT | Nnorm | φ′ |
[71] | 85.35 | 0.348 | 38 | 55 | 43 | 45 | 25 | 34 |
[102] | 18.9 | 0.6 | 83 | 132 | 56 | 90 | 54 | 43 |
[103] | 31.7 | 0.6 | 42 | 62 | 45 | 63 | 31 | 36 |
[104] | 84 | 0.31 | 58 | 87 | 51 | 61 | 35 | 38 |
[105] | 87.2 | 0.36 | 31 | 46 | 41 | 44 | 23 | 33 |
[70] | 81.4 | 0.39 | 29 | 42 | 40 | 44 | 23 | 33 |
[70] | 59.4 | 0.47 | 31 | 46 | 41 | 60 | 29 | 35 |
[72] | 92 | 0.329 | 37 | 54 | 43 | 45 | 24 | 34 |
[106] | 89.9 | 0.341 | 35 | 51 | 42 | 42 | 23 | 33 |
[107] | 91 | 0.337 | 35 | 51 | 42 | 42 | 23 | 33 |
[108] | 80 | 0.333 | 54 | 79 | 49 | 53 | 30 | 36 |
[109] | 61 | 0.5 | 24 | 36 | 38 | 53 | 22 | 33 |
[110] | 100.5 | 0.29 | 45 | 65 | 46 | 44 | 25 | 34 |
Muzzi (1984)1 | 80.6 | 0.331 | 54 | 79 | 49 | 53 | 30 | 36 |
[111] | 65.58 | 0.502 | 21 | 30 | 36 | 45 | 19 | 32 |
[73] | 157.4 | 0.49 | 29 | 43 | 40 | 61 | 28 | 35 |
[112] | 104.7 | 0.296 | 36 | 53 | 43 | 35 | 20 | 32 |
Mean | 40 | 59 | 44 | 52 | 27 | 35 | ||
Standard deviation | 15.3 | 24.2 | 4.9 | 12.8 | 8.1 | 2.8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Innocenti, A.; Rosi, A.; Tofani, V.; Pazzi, V.; Gargini, E.; Masi, E.B.; Segoni, S.; Bertolo, D.; Paganone, M.; Casagli, N. Geophysical Surveys for Geotechnical Model Reconstruction and Slope Stability Modelling. Remote Sens. 2023, 15, 2159. https://doi.org/10.3390/rs15082159
Innocenti A, Rosi A, Tofani V, Pazzi V, Gargini E, Masi EB, Segoni S, Bertolo D, Paganone M, Casagli N. Geophysical Surveys for Geotechnical Model Reconstruction and Slope Stability Modelling. Remote Sensing. 2023; 15(8):2159. https://doi.org/10.3390/rs15082159
Chicago/Turabian StyleInnocenti, Agnese, Ascanio Rosi, Veronica Tofani, Veronica Pazzi, Elisa Gargini, Elena Benedetta Masi, Samuele Segoni, Davide Bertolo, Marco Paganone, and Nicola Casagli. 2023. "Geophysical Surveys for Geotechnical Model Reconstruction and Slope Stability Modelling" Remote Sensing 15, no. 8: 2159. https://doi.org/10.3390/rs15082159
APA StyleInnocenti, A., Rosi, A., Tofani, V., Pazzi, V., Gargini, E., Masi, E. B., Segoni, S., Bertolo, D., Paganone, M., & Casagli, N. (2023). Geophysical Surveys for Geotechnical Model Reconstruction and Slope Stability Modelling. Remote Sensing, 15(8), 2159. https://doi.org/10.3390/rs15082159