Backscattering Characteristics of SAR Images in Damaged Buildings Due to the 2016 Kumamoto Earthquake
Abstract
:1. Introduction
2. Kumamoto Earthquake and ALOS-2 Observation
3. Methodology
3.1. Classification of the Damaged Buildings
- The building collapsed;
- The standard value of the unequal settlement due to the fact of ground subsidence or liquefaction was exceeded;
- Seventy-five percent of the circumference of the foundation was destroyed or the building is distorted significantly;
- The standard value of the building inclination without unequal settlement was exceeded.
3.2. Backscattering Coefficient
3.3. Coherence
3.4. Extraction of Indices
4. Results
4.1. Correlation Coefficient of the Backscatter Coefficient R
4.2. Coherence Differential Value γdif
4.3. Relationship between Earthquake Faults and the Coherence Differential Value γdif
5. Discussion
5.1. Factors Affecting the Correlation Coefficient R and Sensitivity to Building Damage
5.2. Factors Causing Changes in the Coherence Differential Value γdif and Sensitivity to Building Damage
5.3. Influence of Earthquake Fault on the Coherence Differential Value γdif
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Doocy, S.; Daniels, A.; Packer, C.; Dick, A.; Kirsch, T.D. The human impact of earthquakes: A historical review of events 1980-2009 and systematic literature review. PLoS Curr. 2013, 5. [Google Scholar] [CrossRef] [PubMed]
- Que, Y.; Dai, Y.; Ji, X.; Kwan Leung, A.; Chen, Z.; Jiang, Z.; Tang, Y. Automatic classification of asphalt pavement cracks using a novel integrated generative adversarial networks and improved VGG model. Eng. Struct. 2023, 277, 115406. [Google Scholar] [CrossRef]
- Tang, Y.; Huang, Z.; Chen, Z.; Chen, M.; Zhou, H.; Zhang, H.; Sun, J. Novel visual crack width measurement based on backbone double-scale features for improved detection automation. Eng. Struct. 2023, 274, 115158. [Google Scholar] [CrossRef]
- Sahar, S.M.; Pradhan, B. Challenges and limitations of earthquake-induced building damage mapping techniques using remote sensing images—A systematic review. Geocarto Int. 2021, 37, 6186–6212. [Google Scholar]
- Kucharczyk, M.; Hugenholtz, C.H. Remote sensing of natural hazard-related disasters with small drones: Global trends, biases, and research opportunities. Remote Sens. Environ. 2021, 264, 112577. [Google Scholar] [CrossRef]
- Kakku, K. Satellite remote sensing for disaster management support: A holistic and staged approach based on case studies in Sentinel Asia. Int. J. Disaster Risk Reduct. 2019, 33, 417–432. [Google Scholar] [CrossRef]
- Cabinet Office, Manual for Implementation System of Residential Damage Recognition Work Related to Disasters. Available online: http://www.bousai.go.jp/taisaku/pdf/h3003saigai_tebiki_full.pdf (accessed on 27 November 2022). (In Japanese)
- Plank, S. Rapid Damage Assessment by Means of Multi-Temporal SAR—A Comprehensive Review and Outlook to Sentinel-1. Remote Sens. 2014, 6, 4870–4906. [Google Scholar] [CrossRef]
- Xie, S.; Duan, J.; Liu, S.; Dai, Q.; Liu, W.; Ma, Y.; Guo, R.; Ma, C. Crowdsourcing Rapid Assessment of Collapsed Buildings Early after the Earthquake Based on Aerial Remote Sensing Image: A Case Study of Yushu Earthquake. Remote Sens. 2016, 8, 759. [Google Scholar] [CrossRef]
- Ge, P.; Gokon, H.; Meguro, K. A review on synthetic aperture radar-based building damage assessment in disasters. Remote Sens. Environ. 2020, 240, 111693. [Google Scholar] [CrossRef]
- Polli, D.A.; Dell’Acqua, F.; Lisini, G. Automatic mapping of earthquake damage using post-event radar satellite data: The story goes on. In Proceedings of the 30th EARSeL Symposium, Paris, France, 31 May–3 June 2010; pp. 565–572. [Google Scholar]
- Graves, R. Using a grid-search approach to validate the Graves–Pitarka broadband simulation method. Earth Planets Space 2022, 74, 186. [Google Scholar] [CrossRef]
- Stramondo, S.; Bignami, C.; Chini, M.; Pierdicca, N.; Tertulliani, A. Satellite radar and optical remote sensing for earthquake damage detection: Results from different case studies. Int. J. Remote Sens. 2006, 27, 4433–4447. [Google Scholar] [CrossRef]
- Brunner, D.; Lemoine, G.; Bruzzone, L. Earthquake Damage Assessment of Buildings Using VHR Optical and SAR Imagery. IEEE Trans. Geosci. Remote Sens. 2010, 48, 2403–2420. [Google Scholar] [CrossRef]
- Nojima, N.; Matsuoka, M.; Sugito, M.; Ezaki, K. Quantitative estimation of building damage based on data integration of seismic intensities and satellite SAR imagery. J. Struct. Mech. Earthq. Eng. 2006, 62, 808–821. (In Japanese) [Google Scholar] [CrossRef]
- Liu, W.; Yamazaki, F. Extraction of Collapsed Buildings in the 2016 Kumamoto Earthquake Using Multi-Temporal PALSAR-2 Data. J. Disaster Res. 2017, 12, 2. [Google Scholar] [CrossRef]
- Miura, H.; Midorikawa, S.; Matsuoka, M. Building Damage Assessment Using High-Resolution Satellite SAR Images of the 2010 Haiti Earthquake. Earthq. Spectra 2016, 32, 591–610. [Google Scholar] [CrossRef]
- Matsuoka, M.; Yamazaki, F. Use of Satellite SAR Intensity Imagery for Detecting Building Areas Damaged due to Earthquakes. Earthq. Spectra 2004, 20, 975–994. [Google Scholar] [CrossRef]
- Liu, W.; Yamazaki, F. Urban change monitoring from multi-temporal TerraSAR-X images. In 2011 Joint Urban Remote Sensing Event; IEEE: Munich, Germany, 2011; pp. 277–280. [Google Scholar]
- Tamura, M.; ElGharbawi, T. Mapping damage in Ishinomaki city due to the 2011 Tohoku Earthquake using. In: SAR coherence change. In Proceedings of the 58th Spring Conference of the Remote Sensing Society of Japan, Chiba, Japan, 2–3 June 2015; pp. 29–30. (In Japanese). [Google Scholar]
- Kobayashi, T.; Tobita, M.; Koarai, M.; Otoi, K.; Nakano, T. Liquefaction area associated with the 2011 off the Pacific coast of Tohoku earthquake inferred from interferometric SAR coherence change. J. Geosp. Inf. Auth. Jpn. 2011, 122, 143–151. [Google Scholar]
- Hoffmann, J. Mapping damage during the Bam (Iran) earthquake using interferometric coherence. Int. J. Remote Sens. 2007, 28, 1199–1216. [Google Scholar] [CrossRef]
- Fielding, E.J.; Talebian, M.; Rosen, P.A.; Nazari, H.; Jackson, J.A.; Ghorashi, M.; Walker, R. Surface ruptures and building damage of the 2003 Bam, Iran, earthquake mapped by satellite synthetic aperture radar interferometric correlation. J. Geophys. Res. 2005, 110, B03302. [Google Scholar] [CrossRef]
- Watanabe, M.; Thapa, R.B.; Ohsumi, T.; Fujiwara, H.; Yonezawa, C.; Tomii, N.; Suzuki, S. Detection of damaged urban areas using interferometric SAR coherence change with PALSAR-2. Earth Planet Sp. 2016, 68, 131. [Google Scholar] [CrossRef]
- Arciniegas, G.A.; Bijker, W.; Kerle, N.; Tolpekin, V.A. Coherence- and Amplitude-Based Analysis of Seismogenic Damage in Bam, Iran, Using ENVISAT ASAR Data. IEEE Trans. Geosci. Remote Sens. 2007, 45, 1571–1581. [Google Scholar] [CrossRef]
- Ito, Y.; Hosokawa, M. Damage estimation model using temporal coherence ratio. IEEE Int. Geosci. Remote Sens. Symp. 2002, 5, 2859–2861. [Google Scholar]
- Ito, Y.; Hosokawa, M.; Matsuoka, M. A degree estimation model of earthquake damage using temporal coherence ratio. IGARSS 2003. 2003 IEEE Int. Geosci. Remote Sens. Symposium. Proc. 2003, 4, 2410–2412. [Google Scholar]
- Sato, M.; Chen, S.W.; Satake, M. Polarimetric SAR analysis of tsunami damage following the March 11, 2011 East Japan Earthquake. Proc. IEEE 2012, 100, 2861–2875. [Google Scholar] [CrossRef]
- Watanabe, M.; Motohka, T.; Miyagi, Y.; Yonezawa, C.; Shimada, M. Analysis of urban areas affected by the 2011 off the pacific coast of Tohoku Earthquake and Tsunami with L-band SAR full-polarimetric mode. IEEE Geosci. Remote Sens. Lett. 2012, 9, 472–476. [Google Scholar] [CrossRef]
- Bouaraba, A.; Younsi, A.; Aissa, A.B.; Acheroy, M.; Milisavljevic, N.; Closson, D. Robust techniques for coherent change detection using COSMO-SkyMed SAR images. Prog. Electromagn. Res. M 2012, 22, 219–232. [Google Scholar] [CrossRef]
- Li, X.; Guo, H.; Zhang, L.; Chen, X.; Liang, L. A New Approach to Collapsed Building Extraction Using RADARSAT-2 Polarimetric SAR Imagery. IEEE Geosci. Remote Sens. Lett. 2012, 9, 677–681. [Google Scholar]
- Natsuaki, R.; Nagai, H.; Tomii, N.; Tadono, T. Sensitivity and Limitation in Damage Detection for Individual Buildings Using InSAR Coherence—A Case Study in 2016 Kumamoto Earthquakes. Remote Sens. 2018, 10, 245. [Google Scholar] [CrossRef]
- Mazzanti, P.; Scancella, S.; Virelli, M.; Frittelli, S.; Nocente, V.; Lombardo, F. Assessing the Performance of Multi-Resolution Satellite SAR Images for Post-Earthquake Damage Detection and Mapping Aimed at Emergency Response Management. Remote Sens. 2022, 14, 2210. [Google Scholar] [CrossRef]
- Geospatial Information Authority of Japan, Outline of 1:25,000 Active Fault Map “Kumamoto. Revised Edition”. Available online: https://www.gsi.go.jp/bousaichiri/afm_kouhyou201710_kumamoto.html (accessed on 27 November 2022).
- Formisano, A.; Chieffo, N. Seismic damage scenarios induced by site effects on masonry clustered buildings: A case study in south Italy. Int. J. Archit. Herit. 2022, 17, 262–283. [Google Scholar] [CrossRef]
- Mascort-Albea, E.J.; Canivell, J.; Jaramillo-Morilla, A.; Romero-Hernández, R.; Ruiz-Jaramillo, J.; Soriano-Cuesta, C. Action Protocols for Seismic Evaluation of Structures and Damage Restoration of Residential Buildings in Andalusia (Spain): “IT-Sismo” APP. Buildings 2019, 9, 104. [Google Scholar] [CrossRef]
- Grunthal, G. (Ed.) European Macroseismic Scale 1998; Centre Europeen de Geodynamique et de Seismologie: Luxembourg, 1998. [Google Scholar]
- JAXA, Calibration Result of ALOS-2. Available online: https://www.eorc.jaxa.jp/ALOS/jp/alos-2/a2_calval_j.htm (accessed on 1 December 2022).
- Xiu, H.; Shinohara, T.; Matsuoka, M.; Inoguchi, M.; Kawabe, K.; Horie, K. Collapsed Building Detection Using 3D Point Clouds and Deep Learning. Remote Sens. 2020, 12, 4057. [Google Scholar] [CrossRef]
- Mcknight, P.E.; Najab, J. Mann-Whitney U Test. Corsini Encycl. Psychol. 2010. [Google Scholar] [CrossRef]
- Kagawa, K.; Ogushi, F.; Matsuoka, M. Extraction of building damage from coherence and backscatter intensity of PALSAR-2 imagery observed in the affected areas of the 2016 Kumamoto earthquake. J. Soc. Saf. Sci. 2016, 38, 185–186. (In Japanese) [Google Scholar]
- Fujiwara, S.; Yarai, H.; Kobayashi, T.; Morishita, Y.; Nakano, T.; Miyahara, B.; Nakai, H.; Miura, Y.; Ueshiba, H.; Kakiage, Y.; et al. Small-displacement linear surface ruptures of the 2016 Kumamoto earthquake sequence detected by ALOS-2 SAR interferometry. Earth Planets Space 2016, 68, 160. [Google Scholar] [CrossRef]
Damage Class | Characteristics of Damage | Correspondence to Figure 3 | Number of Buildings | ||
---|---|---|---|---|---|
Mashiki Town | Uki City | ||||
Major damage | Class 5 | Collapsed | (a) | 399 | 21 |
Class 4 | Large interlayer deformation (not collapsed) | (b) | 132 | 22 | |
Class 3 | Large distortion or large inclination | (c) | 192 | 64 | |
Class 2 | Damage to roof and walls (including foundation) | (e) | 392 | 89 | |
Class 1 | Damage to walls (including foundation) | (d), (f) | 354 | 56 | |
Mod+ damage | 40~50% of economic damage to the building | - | 386 | 177 | |
Mod- damage | 20~40% of economic damage to the building | - | 1001 | 672 | |
Minor damage | Below 20% of economic damage to the building | - | 2695 | 5191 | |
Total | 4650 | 6292 |
Damage Class | Minor | Mod- | Mod+ | Class 1 | Class 2 | Class 3 | Class 4 | Class 5 |
---|---|---|---|---|---|---|---|---|
p-Value | 7.2 × 10−3 | 1.2 × 10−2 | 1.5 × 10−3 | 6.7 × 10−3 | 8.3 × 10−3 | 1.5 × 10−4 | 9.6 × 10−3 | 1.7 × 10−3 |
Mashiki Town | |||||||||
---|---|---|---|---|---|---|---|---|---|
Minor | Mod- | Mod+ | Class 1 | Class 2 | Class 3 | Class 4 | Class 5 | ||
Class 1 | 6.7 × 10−2 | 3.2 × 10−1 | 2.6 × 10−1 | Class 1 | - | 3.0 × 10−1 | 1.1 × 10−1 | 4.3 × 10−1 | 2.7 × 10−2 |
Class 2 | 1.6 × 10−2 | 1.2 × 10−1 | 1.1 × 10−1 | Class 2 | - | - | 2.7 × 10−1 | 2.8 × 10−1 | 6.0 × 10−2 |
Class 3 | 5.3 × 10−3 | 8.6 × 10−2 | 3.8 × 10−2 | Class 3 | - | - | - | 1.3 × 10−1 | 1.9 × 10−1 |
Class 4 | 6.3 × 10−2 | 3.1 × 10−1 | 2.7 × 10−1 | Class 4 | - | - | - | - | 1.9 × 10−2 |
Class 5 | 1.1 × 10−4 | 1.4 × 10−3 | 2.4 × 10−3 | Class 5 | - | - | - | - | - |
Uki City | |||||||||
Minor | Mod- | Mod+ | Class 1 | Class 2 | Class 3 | Class 4 | Class 5 | ||
Class 1 | 8.2 × 10−2 | 4.1 × 10−1 | 1.1 × 10−1 | Class 1 | - | 1.9 × 10−1 | 2.9 × 10−1 | 3.2 × 10−1 | 7.8 × 10−2 |
Class 2 | 3.2 × 10−2 | 3.4 × 10−1 | 3.6 × 10−2 | Class 2 | - | - | 1.9 × 10−1 | 3.2 × 10−1 | 2.4 × 10−1 |
Class 3 | 7.4 × 10−2 | 2.1 × 10−1 | 1.2 × 10−1 | Class 3 | - | - | - | 2.4 × 10−1 | 7.4 × 10−2 |
Class 4 | 5.7 × 10−2 | 4.3 × 10−1 | 6.7 × 10−2 | Class 4 | - | - | - | - | 1.1 × 10−1 |
Class 5 | 1.0 × 10−2 | 1.4 × 10−1 | 9.0 × 10−3 | Class 5 | - | - | - | - | - |
Damage Class | Minor | Mod- | Mod+ | Class 1 | Class 2 | Class 3 | Class 4 | Class 5 |
---|---|---|---|---|---|---|---|---|
p-Value | 6.9 × 10−7 | 7.1 × 10−6 | 9.0 × 10−5 | 1.0 × 10−6 | 6.9 × 10−7 | 2.0 × 10−6 | 2.3 × 10−5 | 6.0 × 10−7 |
Mashiki Town | |||||||||
---|---|---|---|---|---|---|---|---|---|
Minor | Mod- | Mod+ | Class 1 | Class 2 | Class 3 | Class 4 | Class 5 | ||
Class 1 | 2.3 × 10−4 | 2.8 × 10−2 | 7.0 × 10−2 | Class 1 | - | 2.2 × 10−1 | 1.8 × 10−1 | 1.6 × 10−1 | 1.1 × 10−2 |
Class 2 | 1.0 × 10−4 | 8.6 × 10−2 | 1.6 × 10−1 | Class 2 | - | - | 1.3 × 10−2 | 1.3 × 10−2 | 1.2 × 10−3 |
Class 3 | 7.9 × 10−7 | 2.8 × 10−4 | 4.2 × 10−3 | Class 3 | - | - | - | 4.6 × 10−1 | 1.6 × 10−1 |
Class 4 | 3.5 × 10−7 | 1.7 × 10−4 | 2.2 × 10−3 | Class 4 | - | - | - | - | 1.6 × 10−1 |
Class 5 | 2.3 × 10−7 | 3.3 × 10−5 | 6.7 × 10−4 | Class 5 | - | - | - | - | - |
Uki City | |||||||||
Minor | Mod- | Mod+ | Class 1 | Class 2 | Class 3 | Class 4 | Class 5 | ||
Class 1 | 1.6 × 10−2 | 9.9 × 10−2 | 4.8 × 10−1 | Class 1 | - | 1.3 × 10−1 | 1.7 × 10−1 | 1.5 × 10−2 | 3.4 × 10−4 |
Class 2 | 1.0 × 10−4 | 2.0 × 10−3 | 7.4 × 10−2 | Class 2 | - | - | 4.8 × 10−1 | 9.0 × 10−2 | 3.3 × 10−3 |
Class 3 | 7.4 × 10−4 | 1.4 × 10−2 | 1.6 × 10−1 | Class 3 | - | - | - | 8.2 × 10−2 | 6.2 × 10−3 |
Class 4 | 1.7 × 10−4 | 1.5 × 10−3 | 1.5 × 10−2 | Class 4 | - | - | - | - | 7.0 × 10−2 |
Class 5 | 2.9 × 10−6 | 2.3 × 10−5 | 5.1 × 10−4 | Class 5 | - | - | - | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cho, S.; Xiu, H.; Matsuoka, M. Backscattering Characteristics of SAR Images in Damaged Buildings Due to the 2016 Kumamoto Earthquake. Remote Sens. 2023, 15, 2181. https://doi.org/10.3390/rs15082181
Cho S, Xiu H, Matsuoka M. Backscattering Characteristics of SAR Images in Damaged Buildings Due to the 2016 Kumamoto Earthquake. Remote Sensing. 2023; 15(8):2181. https://doi.org/10.3390/rs15082181
Chicago/Turabian StyleCho, Shinki, Haoyi Xiu, and Masashi Matsuoka. 2023. "Backscattering Characteristics of SAR Images in Damaged Buildings Due to the 2016 Kumamoto Earthquake" Remote Sensing 15, no. 8: 2181. https://doi.org/10.3390/rs15082181
APA StyleCho, S., Xiu, H., & Matsuoka, M. (2023). Backscattering Characteristics of SAR Images in Damaged Buildings Due to the 2016 Kumamoto Earthquake. Remote Sensing, 15(8), 2181. https://doi.org/10.3390/rs15082181