Hybrid BBO-DE Optimized SPAARCTree Ensemble for Landslide Susceptibility Mapping
Abstract
:1. Introduction
2. Background of Methods Used
2.1. SPAARC Decision Tree Algorithm
2.2. Subbagging and Random Subspacing
2.3. Hybrid BBO-DE Optimization
3. Study Area and Landslide Data
3.1. Description of the Study Area
3.2. Landslide Data
3.2.1. Historical Landslides
3.2.2. Influencing Factors
4. The Proposed Hybrid BBO-DE Optimized SPAARC Tree Ensemble for Landslide Susceptibility Mapping
4.1. Building the Landslide Database
4.2. Cost Function and Hyperparameter Optimization
4.3. Performance Assessment
4.4. Benchmark Models and Comparison
5. Results and Analysis
5.1. Model Results and Assessment
5.2. The Role of the Landslide Influencing Factors
5.3. Landslide Susceptibility Map
6. Discussion
7. Conclusions
- The combination of BBO-DE, SPAARC, subbagging, and random subspacing formed a powerful new ensemble model for accurate landslide susceptibility mapping.
- The BBO-DE-StreeEns model demonstrated superior performance compared to benchmark models such as LRegr, MLPNeuNet, SVM, and SPAARC. This highlights its potential as a highly accurate solution for landslide susceptibility mapping.
- Ten landslide influencing factors, namely, elevation, slope, curvature, aspect, relief amplitude, soil type, geology, distance to faults, distance to roads, and distance to rivers, were selected based on the analysis of the landslide inventory and the geo-environmental characteristics of the study area. As all these factors had a score value of importance greater than zero and the landslide model performed well, these factors are all significant in predicting landslide occurrence in the study area.
- Among the ten factors considered, slope and distance to roads were identified as the most significant factors contributing to landslide occurrences in Than Uyen district.
- The landslide susceptibility map generated by our study provides valuable information for authorities and policymakers in Than Uyen district for land-use planning and territory management decision-making.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Petrucci, O. Landslide Fatality Occurrence: A Systematic Review of Research Published between January 2010 and March 2022. Sustainability 2022, 14, 9346. [Google Scholar] [CrossRef]
- Sim, K.B.; Lee, M.L.; Wong, S.Y. A review of landslide acceptable risk and tolerable risk. Geoenvironmental Disasters 2022, 9, 3. [Google Scholar] [CrossRef]
- Thirugnanam, H.; Uhlemann, S.; Reghunadh, R.; Ramesh, M.V.; Rangan, V.P. Review of landslide monitoring techniques with IoT integration opportunities. IEEE J. Se-Lected Top. Appl. Earth Obs. Remote Sens. 2022, 15, 5317–5338. [Google Scholar] [CrossRef]
- Araújo, J.R.; Ramos, A.M.; Soares, P.M.M.; Melo, R.; Oliveira, S.C.; Trigo, R.M. Impact of extreme rainfall events on landslide activity in Portugal under climate change scenarios. Landslides 2022, 19, 2279–2293. [Google Scholar] [CrossRef]
- Marc, O.; Gosset, M.; Saito, H.; Uchida, T.; Malet, J.-P. Spatial Patterns of Storm-Induced Landslides and Their Relation to Rainfall Anomaly Maps. Geophys. Res. Lett. 2019, 46, 11167–11177. [Google Scholar] [CrossRef]
- Bozzolan, E.; Holcombe, E.A.; Pianosi, F.; Marchesini, I.; Alvioli, M.; Wagener, T. A mechanistic approach to include climate change and unplanned urban sprawl in landslide suscepti-bility maps. Sci. Total Environ. 2023, 858, 159412. [Google Scholar] [CrossRef]
- He, Q.; Jiang, Z.; Wang, M.; Liu, K. Landslide and Wildfire Susceptibility Assessment in Southeast Asia Using Ensemble Machine Learning Methods. Remote Sens. 2021, 13, 1572. [Google Scholar] [CrossRef]
- Liu, L.-L.; Zhang, J.; Li, J.-Z.; Huang, F.; Wang, L.-C. A bibliometric analysis of the landslide susceptibility research (1999–2021). Geocarto Int. 2022, 37, 14309–14334. [Google Scholar] [CrossRef]
- Liu, S.; Wang, L.; Zhang, W.; He, Y.; Pijush, S. A comprehensive review of machine learning-based methods in landslide susceptibility mapping. Geol. J. 2023. [Google Scholar] [CrossRef]
- Merghadi, A.; Yunus, A.P.; Dou, J.; Whiteley, J.; ThaiPham, B.; Bui, D.T.; Avtar, R.; Abderrahmane, B. Machine learning methods for landslide susceptibility studies: A comparative overview of algorithm performance. Earth Sci. Rev. 2020, 207, 103225. [Google Scholar] [CrossRef]
- Martínez-Álvarez, F.; Bui, D.T. Advanced Machine Learning and Big Data Analytics in Remote Sensing for Natural Hazards Management. Remote Sens. 2020, 12, 301. [Google Scholar] [CrossRef]
- Yaghoubzadeh-Bavandpour, A.; Bozorg-Haddad, O.; Zolghadr-Asli, B.; Martínez-Álvarez, F. Deep Learning Application in Water and Environmental Sciences. In Computational Intelligence for Water and Environmental Sciences; Springer: Singapore, 2022; pp. 273–290. [Google Scholar]
- Pourghasemi, H.R.; Sadhasivam, N.; Amiri, M.; Eskandari, S.; Santosh, M. Landslide susceptibility assessment and mapping using state-of-the art machine learning techniques. Nat. Hazards 2021, 108, 1291–1316. [Google Scholar] [CrossRef]
- Hong, H. Assessing landslide susceptibility based on hybrid Best-first decision tree with ensemble learning model. Ecol. Indic. 2023, 147, 109968. [Google Scholar] [CrossRef]
- Beckham, C.; Hall, M.; Frank, E. WekaPyScript: Classification, Regression, and Filter Schemes for WEKA Implemented in Python. J. Open Res. Softw. 2016, 4, e33. [Google Scholar] [CrossRef]
- Gundersen, O.E.; Shamsaliei, S.; Isdahl, R.J. Do machine learning platforms provide out-of-the-box reproducibility? Futur. Gener. Comput. Syst. 2021, 126, 34–47. [Google Scholar] [CrossRef]
- Zenodo. TensorFlow. Available online: https://zenodo.org/record/7604226#.ZD6-YXZBw2w (accessed on 17 November 2022).
- Kavzoglu, T.; Colkesen, I.; Sahin, E.K. Machine learning techniques in landslide susceptibility mapping: A survey and a case study. In Landslides: Theory, Practice and Modelling; Springer: Berlin/Heidelberg, Germany, 2019; pp. 283–301. [Google Scholar]
- Pourghasemi, H.R.; Pouyan, S.; Bordbar, M.; Golkar, F.; Clague, J.J. Flood, landslides, forest fire, and earthquake susceptibility maps using machine learning techniques and their combination. Nat. Hazards 2023, 116, 3797–3816. [Google Scholar] [CrossRef]
- Youssef, A.M.; Mahdi, A.M.; Pourghasemi, H.R. Landslides and flood multi-hazard assessment using machine learning techniques. Bull. Eng. Geol. Environ. 2022, 81, 1–23. [Google Scholar] [CrossRef]
- Fang, Z.; Wang, Y.; Peng, L.; Hong, H. A comparative study of heterogeneous ensemble-learning techniques for landslide susceptibility mapping. Int. J. Geogr. Inf. Sci. 2020, 35, 321–347. [Google Scholar] [CrossRef]
- Di Napoli, M.; Carotenuto, F.; Cevasco, A.; Confuorto, P.; Di Martire, D.; Firpo, M.; Pepe, G.; Raso, E.; Calcaterra, D. Machine learning ensemble modelling as a tool to improve landslide susceptibility mapping reliability. Landslides 2020, 17, 1897–1914. [Google Scholar] [CrossRef]
- Chen, X.; Tianfield, H.; Du, W.; Liu, G. Biogeography-based optimization with covariance matrix based migration. Appl. Soft Comput. 2016, 45, 71–85. [Google Scholar] [CrossRef]
- Fang, Z.; Wang, Y.; Duan, G.; Peng, L. Landslide Susceptibility Mapping Using Rotation Forest Ensemble Technique with Different Decision Trees in the Three Gorges Reservoir Area, China. Remote Sens. 2021, 13, 238. [Google Scholar] [CrossRef]
- Russell, S.J. Artificial Intelligence: A Modern Approach, 4th ed.; Pearson: Hoboken, NJ, USA, 2021. [Google Scholar]
- Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Loh, W.Y. Classification and regression trees. WIREs Data Min. Knowl. Discov. 2011, 1, 14–23. [Google Scholar] [CrossRef]
- Yates, D.; Islam, M.Z.; Gao, J. SPAARC: A Fast Decision Tree Algorithm. In Australasian Conference on Data Mining; Springer: Brisbane, QLD, Australia, 2018. [Google Scholar]
- Chen, J.; Li, K.; Tang, Z.; Bilal, K.; Yu, S.; Weng, C.; Li, K. A Parallel Random Forest Algorithm for Big Data in a Spark Cloud Computing Environment. IEEE Trans. Parallel Distrib. Syst. 2016, 28, 919–933. [Google Scholar] [CrossRef]
- Yates, D.; Islam, M.Z. FastForest: Increasing random forest processing speed while maintaining accuracy. Inf. Sci. 2021, 557, 130–152. [Google Scholar] [CrossRef]
- Latinne, P.; Debeir, O.; Decaestecker, C. Limiting the number of trees in random forests. In International Workshop on Multiple Classifier Systems; Springer: Berlin/Heidelberg, Germany, 2001; pp. 178–187. [Google Scholar]
- Oshiro, T.M.; Perez, P.S.; Baranauskas, J.A. How many trees in a random forest? In International Workshop on Machine Learning and Data Mining in Pattern Recognition; Springer: Berlin/Heidelberg, Germany, 2012; pp. 154–168. [Google Scholar]
- Asuncion, A.; Newman, D. UCI Machine Learning Repository; University of California, School of Information and Computer Science: Irvine, CA, USA; Available online: http://archive.ics.uci.edu/ml/index.php (accessed on 8 December 2021).
- Ho, T.K. The random subspace method for constructing decision forests. IEEE Trans. Pattern Anal. Mach. Intell. 1998, 20, 832–844. [Google Scholar]
- Simon, D. Biogeography-based optimization. IEEE Trans. Evol. Comput. 2008, 12, 702–713. [Google Scholar] [CrossRef]
- Storn, R.; Price, K. Differential Evolution—A Simple and Efficient Adaptive Scheme for Global Optimization Over Continuous Spaces; International Science Computer Institute: Berkeley, CA, USA, 1995. [Google Scholar]
- Hall, M.; Frank, E.; Holmes, G.; Pfahringer, B.; Reutemann, P.; Witten, I.H. The weka data mining software: An update. ACM SIGKDD Explor. Newsl. 2009, 11, 10–18. [Google Scholar] [CrossRef]
- Dragoi, E.-N.; Dafinescu, V. Parameter control and hybridization techniques in differential evolution: A survey. Artif. Intell. Rev. 2015, 45, 447–470. [Google Scholar] [CrossRef]
- Das, S. Differential evolution a survey of the state-of-the-art. IEEE Trans. Evol. Comput. 2011, 15, 4–31. [Google Scholar] [CrossRef]
- Noman, N.; Iba, H. Accelerating Differential Evolution Using an Adaptive Local Search. IEEE Trans. Evol. Comput. 2008, 12, 107–125. [Google Scholar] [CrossRef]
- Gong, W.; Cai, Z.; Ling, C.X. DE/BBO: A hybrid differential evolution with biogeography-based optimization for global numerical optimization. Soft Comput. 2011, 15, 645–665. [Google Scholar] [CrossRef]
- Ma, H.; Simon, D. Evolutionary Computation with Biogeography-Based Optimization; John Wiley & Sons: Hoboken, NJ, USA, 2017. [Google Scholar] [CrossRef]
- Ma, H.; Simon, D.; Fei, M.; Shu, X.; Chen, Z. Hybrid biogeography-based evolutionary algorithms. Eng. Appl. Artif. Intell. 2014, 30, 213–224. [Google Scholar] [CrossRef]
- Ma, H.; Simon, D.; Fei, M. On the Convergence of Biogeography-Based Optimization for Binary Problems. Math. Probl. Eng. 2014, 2014, 147457. [Google Scholar] [CrossRef]
- Vietnam Institute of Geosciences and Mineral Resources. Landslide Warning Website. Available online: http://www.canhbaotruotlo.vn/hientrangcactinh.html (accessed on 8 December 2021).
- Hung, L.Q.; Van, N.T.H.; Van Son, P.; Ninh, N.H.; Tam, N.; Huyen, N.T. Landslide inventory mapping in the fourteen Northern provinces of Vietnam: Achievements and difficulties. In Advancing Culture of Living with Landslides; ISDR-ICL Sendai Partnerships 2015–2025; Spring: Berlin/Heidelberg, Germany, 2017; Volume 1, pp. 501–510. [Google Scholar] [CrossRef]
- General Statistic Office. Statistical Yearbook of Vietnam; General Statistic Office: Hanoi, Vietnam, 2018. [Google Scholar]
- Dai, F.; Lee, C.; Ngai, Y. Landslide risk assessment and management: An overview. Eng. Geol. 2002, 64, 65–87. [Google Scholar] [CrossRef]
- Bui, D.T.; Pradhan, B.; Lofman, O.; Revhaug, I.; Dick, O.B. Spatial prediction of landslide hazards in Hoa Binh province (Vietnam): A comparative assessment of the efficacy of evidential belief functions and fuzzy logic models. Catena 2012, 96, 28–40. [Google Scholar] [CrossRef]
- Dai, F.C.; Lee, C.F. Landslide characteristics and slope instability modeling using GIS, Lantau Island, Hong Kong. Geomorphology 2002, 42, 213–228. [Google Scholar] [CrossRef]
- Freund, C.A.; Clark, K.E.; Curran, J.F.; Asner, G.P.; Silman, M.R. Landslide age, elevation and residual vegetation determine tropical montane forest canopy recovery and biomass accumulation after landslide disturbances in the Peruvian Andes. J. Ecol. 2021, 109, 3555–3571. [Google Scholar] [CrossRef]
- Lee, C.F.; Li, J.; Xu, Z.W.; Dai, F.C. Assessment of landslide susceptibility on the natural terrain of Lantau Island, Hong Kong. Environ. Geol. 2001, 40, 381–391. [Google Scholar] [CrossRef]
- Pike, R.J. The geometric signature: Quantifying landslide-terrain types from digital elevation models. J. Int. Assoc. Math. Geol. 1988, 20, 491–511. [Google Scholar] [CrossRef]
- Magliulo, P.; Di Lisio, A.; Russo, F.; Zelano, A. Geomorphology and landslide susceptibility assessment using GIS and bivariate statistics: A case study in southern Italy. Nat. Hazards 2008, 47, 411–435. [Google Scholar] [CrossRef]
- Vergari, F.; Della Seta, M.; Del Monte, M.; Fredi, P.; Lupia Palmieri, E. Landslide susceptibility assessment in the Upper Orcia Valley (Southern Tuscany, Italy) through condi-tional analysis: A contribution to the unbiased selection of causal factors. Nat. Hazards Earth Syst. Sci. 2011, 11, 1475–1497. [Google Scholar] [CrossRef]
- Luino, F.; De Graff, J.; Biddoccu, M.; Faccini, F.; Freppaz, M.; Roccati, A.; Ungaro, F.; D’amico, M.; Turconi, L. The Role of Soil Type in Triggering Shallow Landslides in the Alps (Lombardy, Northern Italy). Land 2022, 11, 1125. [Google Scholar] [CrossRef]
- Kontoes, C.; Loupasakis, C.; Papoutsis, I.; Alatza, S.; Poyiadji, E.; Ganas, A.; Psychogyiou, C.; Kaskara, M.; Antoniadi, S.; Spanou, N. Landslide Susceptibility Mapping of Central and Western Greece, Combining NGI and WoE Methods, with Remote Sensing and Ground Truth Data. Land 2021, 10, 402. [Google Scholar] [CrossRef]
- Varnes, D.J. Landslide Hazard Zonation: A Review of Principles and Practice; UNESCO: Paris, France, 1984. [Google Scholar]
- Ayalew, L.; Yamagishi, H. The application of GIS-based logistic regression for landslide susceptibility mapping in the Kakuda-Yahiko Mountains, Central Japan. Geomorphology 2005, 65, 15–31. [Google Scholar] [CrossRef]
- Gökceoglu, C.; Aksoy, H. Landslide susceptibility mapping of the slopes in the residual soils of the Mengen region (Turkey) by deterministic stability analyses and image processing techniques. Eng. Geol. 1996, 44, 147–161. [Google Scholar] [CrossRef]
- Tien Bui, D.; Lofman, O.; Revhaug, I.; Dick, O. Landslide susceptibility analysis in the Hoa Binh province of Vietnam using statistical index and logistic regression. Nat. Hazards 2011, 59, 1413–1444. [Google Scholar] [CrossRef]
- Le, H.V.; Bui, Q.T.; Tien Bui, D.; Tran, H.H.; Hoang, N.D. A Hybrid Intelligence System Based on Relevance Vector Machines and Imperialist Competitive Optimi-zation for Modelling Forest Fire Danger Using GIS. J. Environ. Inform. 2020, 36, 43–57. [Google Scholar]
- Le, H.V.; Hoang, D.A.; Tran, C.T.; Nguyen, P.Q.; Hoang, N.D.; Amiri, M.; Ngo, T.P.T.; Nhu, H.V.; Van Hoang, T.; Tien Bui, D. A new approach of deep neural computing for spatial prediction of wildfire danger at tropical climate areas. Ecol. Inform. 2021, 63, 101300. [Google Scholar] [CrossRef]
- Tien Bui, D.; Le, H.V.; Hoang, N.-D. GIS-based spatial prediction of tropical forest fire danger using a new hybrid machine learning method. Ecol. Inform. 2018, 48, 104–116. [Google Scholar] [CrossRef]
- Powers, D.M.W. Evaluation: From Precision, Recall and F-Factorto ROC, Informedness, Markedness & Correlation. J. Mach. Learn. Technol. 2011, 2, 37–63. [Google Scholar]
- Peterson, A.T.; Papeş, M.; Soberón, J. Rethinking receiver operating characteristic analysis applications in ecological niche modeling. Ecol. Model. 2008, 213, 63–72. [Google Scholar] [CrossRef]
- Bui, D.T.; Tuan, T.A.; Klempe, H.; Pradhan, B.; Revhaug, I. Spatial prediction models for shallow landslide hazards: A comparative assessment of the efficacy of support vector machines, artificial neural networks, kernel logistic regression, and logistic model tree. Landslides 2015, 13, 361–378. [Google Scholar] [CrossRef]
- Dang, V.-H.; Hoang, N.-D.; Nguyen, L.-M.; Bui, D.T.; Samui, P. A Novel GIS-Based Random Forest Machine Algorithm for the Spatial Prediction of Shallow Landslide Susceptibility. Forests 2020, 11, 118. [Google Scholar] [CrossRef]
- Fix, E.; Hodges, J.L. Significance Probabilities of the Wilcoxon Test. Ann. Math. Stat. 1955, 26, 301–312. [Google Scholar] [CrossRef]
- Kohavi, R.; John, G.H. Wrappers for feature subset selection. Artif. Intell. 1997, 97, 273–324. [Google Scholar] [CrossRef]
- Nhu, V.-H.; Hoang, N.-D.; Amiri, M.; Bui, T.T.; Ngo, P.T.T.; Hoa, P.V.; Samui, P.; Thanh, L.N.; Quang, T.P.; Bui, D.T. An approach based on socio-politically optimized neural computing network for predicting shallow landslide susceptibility at tropical areas. Environ. Earth Sci. 2021, 80, 1–18. [Google Scholar] [CrossRef]
- Sarkar, S.; Kanungo, D. An integrated approach for landslide susceptibility mapping using remote sensing and GIS. Photogramm. Eng. Remote Sens. 2004, 70, 617–625. [Google Scholar] [CrossRef]
- Wu, R.; Zhang, Y.; Guo, C.; Yang, Z.; Tang, J.; Su, F. Landslide susceptibility assessment in mountainous area: A case study of Sichuan–Tibet railway, China. Environ. Earth Sci. 2020, 79, 1–16. [Google Scholar] [CrossRef]
- Chung, C.-J.F.; Fabbri, A.G. Validation of Spatial Prediction Models for Landslide Hazard Mapping. Nat. Hazards 2003, 30, 451–472. [Google Scholar] [CrossRef]
- Ozturk, U.; Bozzolan, E.; Holcombe, E.A.; Shukla, R.; Pianosi, F.; Wagener, T. How climate change and unplanned urban sprawl bring more landslides. Nature 2022, 608, 262–265. [Google Scholar] [CrossRef]
- Zhou, X.; Wen, H.; Zhang, Y.; Xu, J.; Zhang, W. Landslide susceptibility mapping using hybrid random forest with GeoDetector and RFE for factor optimization. Geosci. Front. 2021, 12, 101211. [Google Scholar] [CrossRef]
- Steger, S.; Brenning, A.; Bell, R.; Glade, T. The influence of systematically incomplete shallow landslide inventories on statistical susceptibility models and suggestions for improvements. Landslides 2017, 14, 1767–1781. [Google Scholar] [CrossRef]
- Lima, P.; Steger, S.; Glade, T. Counteracting flawed landslide data in statistically based landslide susceptibility modelling for very large areas: A national-scale assessment for Austria. Landslides 2021, 18, 3531–3546. [Google Scholar] [CrossRef]
- Lin, Q.; Lima, P.; Steger, S.; Glade, T.; Jiang, T.; Zhang, J.; Liu, T.; Wang, Y. National-scale data-driven rainfall induced landslide susceptibility mapping for China by accounting for in-complete landslide data. Geosci. Front. 2021, 12, 101248. [Google Scholar] [CrossRef]
- Lin, Q.; Steger, S.; Pittore, M.; Zhang, J.; Wang, L.; Jiang, T.; Wang, Y. Evaluation of potential changes in landslide susceptibility and landslide occurrence frequency in China under climate change. Sci. Total. Environ. 2022, 850, 158049. [Google Scholar] [CrossRef] [PubMed]
- Shou, K.-J.; Lin, J.-F. Evaluation of the extreme rainfall predictions and their impact on landslide susceptibility in a sub-catchment scale. Eng. Geol. 2019, 265, 105434. [Google Scholar] [CrossRef]
- Shou, K.-J.; Yang, C.-M. Predictive analysis of landslide susceptibility under climate change conditions—A study on the Chingshui River Watershed of Taiwan. Eng. Geol. 2015, 192, 46–62. [Google Scholar] [CrossRef]
Model | Performance Metrics | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
TP | TN | FN | FP | PPV (%) | NPV (%) | Sen (%) | Spe (%) | Acc (%) | Fscore | Kappa | AUC | |
BBO-DE-STreeEns | 77 | 73 | 3 | 7 | 91.7 | 96.1 | 96.3 | 91.3 | 93.8 | 0.939 | 0.875 | 0.987 |
LRegr | 60 | 63 | 20 | 17 | 77.9 | 75.9 | 75.0 | 78.8 | 76.9 | 0.764 | 0.538 | 0.855 |
MLPNeuNet | 61 | 63 | 19 | 17 | 78.2 | 76.8 | 76.3 | 78.8 | 77.5 | 0.772 | 0.550 | 0.859 |
SPAARC | 78 | 72 | 2 | 8 | 90.7 | 97.3 | 97.5 | 90.0 | 93.8 | 0.940 | 0.875 | 0.950 |
SVM | 57 | 67 | 23 | 13 | 81.4 | 74.4 | 71.3 | 83.8 | 77.5 | 0.760 | 0.550 | 0.855 |
Model | Prediction Metrics | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
TP | TN | FN | FP | PPV (%) | NPV (%) | Sen (%) | Spe (%) | Acc (%) | Fscore | Kappa | AUC | |
BBO-DE-STreeEns | 28 | 31 | 6 | 3 | 90.3 | 83.8 | 82.4 | 91.2 | 86.8 | 0.862 | 0.735 | 0.940 |
LRegr | 24 | 28 | 10 | 6 | 80.0 | 73.7 | 70.6 | 82.4 | 76.5 | 0.750 | 0.529 | 0.853 |
MLPNeuNet | 26 | 18 | 8 | 16 | 61.9 | 69.2 | 76.5 | 52.9 | 64.7 | 0.684 | 0.294 | 0.748 |
SPAARC | 28 | 29 | 6 | 5 | 84.8 | 82.9 | 82.4 | 85.3 | 83.8 | 0.836 | 0.676 | 0.915 |
SVM | 24 | 28 | 10 | 6 | 80.0 | 73.7 | 70.6 | 82.4 | 76.5 | 0.750 | 0.529 | 0.767 |
No. | Pairwise Comparison | z-Value | p-Value | Significance |
---|---|---|---|---|
1 | BBO-DE-STreeEns vs. LRegr | 2.528 | 0.011 | Yes |
2 | BBO-DE-STreeEns vs. MLPNeuNet | 3.962 | <0.001 | Yes |
3 | BBO-DE-STreeEns vs. SPAARC | 5.719 | <0.001 | Yes |
4 | BBO-DE-STreeEns vs. SVM | 4.740 | <0.001 | Yes |
5 | LRegr vs. MLPNeuNet | 5.635 | <0.001 | Yes |
6 | LRegr vs. SPAARC | 2.719 | 0.005 | Yes |
7 | LRegr vs. SVM | 0.364 | 0.716 | No |
8 | MLPNeuNet vs. SPAARC | 4.175 | <0.001 | Yes |
9 | MLPNeuNet vs. SVM | 3.919 | <0.001 | Yes |
10 | SPAARC vs. SVM | 7.253 | <0.001 | Yes |
No. | Ranking | Score Value |
---|---|---|
1 | Slope | 0.299 |
2 | Distance to Road | 0.224 |
3 | Elevation | 0.142 |
4 | Distance to Fault | 0.084 |
5 | Relief Amplitude | 0.063 |
6 | Soil Type | 0.049 |
7 | Geology | 0.047 |
8 | Curvature | 0.036 |
9 | Aspect | 0.029 |
10 | Distance to River | 0.026 |
No | Susceptibility Index | Landslide Location (%) | Verbal Description | Susceptibility Map (%) | Areas (km2) |
---|---|---|---|---|---|
1 | 0.062–0.508 | 12.28 | Low | 50.00 | 394.5 |
2 | 0.508–0.606 | 4.39 | Moderate | 20.00 | 157.8 |
3 | 0.606–0.737 | 20.17 | High | 20.00 | 157.8 |
4 | 0.737–0.910 | 63.16 | Very High | 10.00 | 78.9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hoang, D.A.; Le, H.V.; Pham, D.V.; Hoa, P.V.; Tien Bui, D. Hybrid BBO-DE Optimized SPAARCTree Ensemble for Landslide Susceptibility Mapping. Remote Sens. 2023, 15, 2187. https://doi.org/10.3390/rs15082187
Hoang DA, Le HV, Pham DV, Hoa PV, Tien Bui D. Hybrid BBO-DE Optimized SPAARCTree Ensemble for Landslide Susceptibility Mapping. Remote Sensing. 2023; 15(8):2187. https://doi.org/10.3390/rs15082187
Chicago/Turabian StyleHoang, Duc Anh, Hung Van Le, Dong Van Pham, Pham Viet Hoa, and Dieu Tien Bui. 2023. "Hybrid BBO-DE Optimized SPAARCTree Ensemble for Landslide Susceptibility Mapping" Remote Sensing 15, no. 8: 2187. https://doi.org/10.3390/rs15082187
APA StyleHoang, D. A., Le, H. V., Pham, D. V., Hoa, P. V., & Tien Bui, D. (2023). Hybrid BBO-DE Optimized SPAARCTree Ensemble for Landslide Susceptibility Mapping. Remote Sensing, 15(8), 2187. https://doi.org/10.3390/rs15082187