Assessment of a New Solar Radiation Nowcasting Method Based on FY-4A Satellite Imagery, the McClear Model and SHapley Additive exPlanations (SHAP)
Abstract
:1. Introduction
2. Data and Methodology
2.1. Introduction of the Research Process
2.2. Data
2.2.1. FY-4A Satellite
2.2.2. McClear Data
2.2.3. Observation
2.3. Methods
2.3.1. Machine Learning
- SVR model
- 2.
- RF model
- 3.
- Reference model (Clim-Pers, combination of climatology and persistence model)
2.3.2. Performance Evaluation
3. Results and Discussion
3.1. Assessing the Applicability of Machine Learning Methods
3.2. Comparison of the Accuracy Achieved by the RF, SVR and Reference Models
3.3. Importance Analysis and Lightweight Model Discussion
3.4. Discussion
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Chen, H.; Qi, S.; Tan, X. Decomposition and prediction of China’s carbon emission intensity towards carbon neutrality: From perspectives of national, regional and sectoral level. Sci. Total Environ. 2022, 825, 153839. [Google Scholar] [CrossRef] [PubMed]
- UNEP. The Emissions Gap Report 2019 [R/OL]. Available online: https://wedocs.unep.org/bitstream/handle/20.500.11822/30797/EGR2019.pdf?sequence=1&isAllowed=y (accessed on 26 November 2019).
- Jia, D.; Yang, L.; Lv, T.; Liu, W.; Gao, X.; Zhou, J. Evaluation of machine learning models for predicting daily global and diffuse solar radiation under different weather/pollution conditions. Renew. Energy 2022, 187, 896–906. [Google Scholar] [CrossRef]
- Zhang, Y.X.; Luo, H.L.; Can, W. Progress and trends of global carbon neutrality pledges. Clim. Chang. Res. 2021, 17, 88–97. [Google Scholar]
- Rodríguez-Benítez, F.J.; López-Cuesta, M.; Arbizu-Barrena, C.; Fernández-León, M.M.; Pamos-Ureña, M.Á.; Tovar-Pescador, J.; Santos-Alamillos, F.J.; Pozo-Vázquez, D. Assessment of new solar radiation nowcasting methods based on sky-camera and satellite imagery. Appl. Energy 2021, 292, 116838. [Google Scholar] [CrossRef]
- Brouwer, A.S.; Van Den Broek, M.; Seebregts, A.; Faaij, A. Impacts of large-scale intermittent renewable energy sources on electricity systems, and how these can be modeled. Renew. Sustain. Energy Rev. 2014, 33, 443–466. [Google Scholar] [CrossRef]
- Ela, E.; Tuohy, A.; Entriken, R.; Lannoye, E.; Philbrick, R. Using probabilistic renewable forecasts to determine reserve requirements. In Proceedings of the 7th Solar Integration Workshop. International Workshop on Integration of Solar Power into Power Systems, EPRI, Berlin, Germany, 24–25 October 2017; EPRI, Electric Power Research Institute: Singapore, 2017. [Google Scholar]
- Yang, D.; Kleissl, J.; Gueymard, C.A.; Pedro, H.T.; Coimbra, C.F. History and trends in solar irradiance and PV power forecasting: A preliminary assessment and review using text mining. Sol. Energy 2018, 168, 60–101. [Google Scholar] [CrossRef]
- Yagli, G.M.; Yang, D.; Srinivasan, D. Automatic hourly solar forecasting using machine learning models. Renew. Sustain. Energy Rev. 2019, 105, 487–498. [Google Scholar] [CrossRef]
- Yang, D. Ultra-fast preselection in lasso-type spatio-temporal solar forecasting problems. Sol. Energy 2018, 176, 788–796. [Google Scholar] [CrossRef]
- Mejia, F.A.; Kurtz, B.; Levis, A.; de la Parra, Í.; Kleissl, J. Cloud tomography applied to sky images: A virtual testbed. Sol. Energy 2018, 176, 287–300. [Google Scholar] [CrossRef]
- Kuhn, P.; Wilbert, S.; Prahl, C.; Schüler, D.; Haase, T.; Hirsch, T.; Wittmann, M.; Ramirez, L.; Zarzalejo, L.; Meyer, A.; et al. Shadow camera system for the generation of solar irradiance maps. Sol. Energy 2017, 157, 157–170. [Google Scholar] [CrossRef]
- André, M.; Perez, R.; Soubdhan, T.; Schlemmer, J.; Calif, R.; Monjoly, S. Preliminary assessment of two spatio-temporal forecasting technics for hourly satellite-derived irradiance in a complex meteorological context. Sol. Energy 2019, 177, 703–712. [Google Scholar] [CrossRef]
- Harty, T.M.; Holmgren, W.F.; Lorenzo, A.T.; Morzfeld, M. Intra-hour cloud index forecasting with data assimilation. Sol. Energy 2019, 185, 270–282. [Google Scholar] [CrossRef] [Green Version]
- Wu, E.; Clemesha, R.E.; Kleissl, J. Coastal stratocumulus cloud edge forecasts. Sol. Energy 2018, 164, 355–369. [Google Scholar] [CrossRef]
- Marion, B.; Smith, B. Photovoltaic system derived data for determining the solar resource and for modeling the performance of other photovoltaic systems. Sol. Energy 2017, 147, 349–357. [Google Scholar] [CrossRef] [Green Version]
- Kisi, O.; Parmar, K.S. Application of least square support vector machine and multivariate adaptive regression spline models in long term prediction of river water pollution. J. Hydrol. 2016, 534, 104–112. [Google Scholar] [CrossRef]
- Deo, R.C.; Wen, X.; Qi, F. A wavelet-coupled support vector machine model for forecasting global incident solar radiation using limited meteorological dataset. Appl. Energy 2016, 168, 568–593. [Google Scholar] [CrossRef]
- Yagli, G.M.; Yang, D.; Gandhi, O.; Srinivasan, D. Can we justify producing univariate machine-learning forecasts with satellite-derived solar irradiance? Appl. Energy 2020, 259, 114122. [Google Scholar] [CrossRef]
- Yang, D. Choice of clear-sky model in solar forecasting. J. Renew. Sustain. Energy 2020, 12, 026101. [Google Scholar] [CrossRef]
- Jia, D.; Hua, J.; Wang, L.; Guo, Y.; Guo, H.; Wu, P.; Liu, M.; Yang, L. Estimations of Global Horizontal Irradiance and Direct Normal Irradiance by Using Fengyun-4A Satellite Data in Northern China. Remote Sens. 2021, 13, 790. [Google Scholar] [CrossRef]
- Voyant, C.; Notton, G.; Kalogirou, S.; Nivet, M.-L.; Paoli, C.; Motte, F.; Fouilloy, A. Machine learning methods for solar radiation forecasting: A review. Renew. Energy 2017, 105, 569–582. [Google Scholar] [CrossRef]
- Breiman, L. Bagging_Predictors. Mach. Learn. 1996, 24, 123–140. [Google Scholar] [CrossRef] [Green Version]
- Feng, Y.; Gong, D.; Zhang, Q.; Jiang, S.; Zhao, L.; Cui, N. Evaluation of temperature-based machine learning and empirical models for predicting daily global solar radiation. Energy Convers. Manag. 2019, 198, 111780. [Google Scholar] [CrossRef]
- Yang, D. Making reference solar forecasts with climatology, persistence, and their optimal convex combination. Sol. Energy 2019, 193, 981–985. [Google Scholar] [CrossRef]
- Yang, D. A universal benchmarking method for probabilistic solar irradiance forecasting. Sol. Energy 2019, 184, 410–416. [Google Scholar] [CrossRef]
- Deo, R.C.; Şahin, M.; Adamowski, J.F.; Mi, J. Universally deployable extreme learning machines integrated with remotely sensed MODIS satellite predictors over Australia to forecast global solar radiation: A new approach. Renew. Sustain. Energy Rev. 2019, 104, 235–261. [Google Scholar] [CrossRef]
Station Name | Latitude (°) | Longitude (°) | Elevation (m) | Mean GHI (W/m2) | Max GHI (W/m2) | Data Size |
---|---|---|---|---|---|---|
Yuzhong | 35.87 | 104.15 | 1874.4 | 460.36 | 1307 | 19,525 |
Minqin | 38.63 | 103.09 | 1367.5 | 520.22 | 1289 | 18,840 |
Dunhuang | 40.15 | 94.68 | 1139.0 | 548.17 | 1219 | 18,024 |
Time Horizon | Input Data (McClear and Radiation Observations Are Not Listed) | nRMSE/% | nMAE/% | nMBE/% | R2 | T/s |
---|---|---|---|---|---|---|
10 min | FY-4A (Best 3 Channels) | 16.5793 | 9.3844 | 0.0079 | 0.9011 | 2328.9037 |
FY-4A (All 7 Channels) | 16.3420 | 9.0937 | 0.0057 | 0.9035 | 2914.8764 | |
Without FY-4A | 18.4221 | 10.7338 | −0.0131 | 0.8768 | 956.7337 | |
20 min | FY-4A (Best 3 Channels) | 18.9787 | 11.7958 | −0.0651 | 0.8669 | 1894.0174 |
FY-4A (All 7 Channels) | 18.3483 | 11.110 | −0.0905 | 0.8756 | 2896.0017 | |
Without FY-4A | 21.5889 | 14.2191 | −0.0153 | 0.8273 | 957.5262 | |
30 min | FY-4A (Best 3 Channels) | 20.8671 | 13.7970 | −0.2842 | 0.8335 | 1703.3047 |
FY-4A (All 7 Channels) | 19.7538 | 12.6537 | −0.1426 | 0.8510 | 2604.9350 | |
Without FY-4A | 23.8505 | 16.9326 | −0.1541 | 0.7821 | 1103.7431 | |
40 min | FY-4A (Best 3 Channels) | 22.5741 | 15.3859 | −0.0080 | 0.7956 | 1957.5106 |
FY-4A (All 7 Channels) | 21.1893 | 14.0615 | 0.0619 | 0.8204 | 2860.9892 | |
Without FY-4A | 26.2534 | 19.2950 | −0.0814 | 0.7244 | 995.3814 | |
50 min | FY-4A (Best 3 Channels) | 24.1419 | 16.8739 | 0.0046 | 0.7625 | 1870.1118 |
FY-4A (All 7 Channels) | 22.5737 | 15.4720 | 0.0763 | 0.7934 | 2895.8723 | |
Without FY-4A | 28.3193 | 21.4859 | 0.1587 | 0.6745 | 992.8946 | |
60 min | FY-4A (Best 3 Channels) | 26.0161 | 18.5139 | −0.0345 | 0.7341 | 1757.2776 |
FY-4A (All 7 Channels) | 23.8498 | 16.6696 | 0.0262 | 0.7669 | 2733.2219 | |
Without FY-4A | 29.8938 | 22.9646 | −0.0286 | 0.6166 | 959.7182 | |
90 min | FY-4A (Best 3 Channels) | 29.9375 | 21.6341 | −0.7624 | 0.6100 | 1641.0330 |
FY-4A (All 7 Channels) | 27.1105 | 19.4680 | −0.5865 | 0.6813 | 2641.0437 | |
Without FY-4A | 35.5776 | 28.0763 | −0.8342 | 0.4482 | 882.1576 | |
120 min | FY-4A (Best 3 Channels) | 32.7330 | 23.7999 | −0.3325 | 0.5351 | 1521.5579 |
FY-4A (All 7 Channels) | 29.7598 | 21.2222 | −0.2448 | 0.6165 | 2517.6641 | |
Without FY-4A | 39.6323 | 31.7468 | −0.3685 | 0.3163 | 872.8807 | |
150 min | FY-4A (Best 3 Channels) | 34.0138 | 24.9394 | −0.3265 | 0.5048 | 1430.8113 |
FY-4A (All 7 Channels) | 30.5469 | 21.9532 | −0.4497 | 0.5994 | 2170.4864 | |
Without FY-4A | 42.3607 | 34.5322 | −0.3514 | 0.2275 | 825.2293 | |
180 min | FY-4A (Best 3 Channels) | 34.1602 | 25.2437 | −0.3288 | 0.5145 | 1266.1396 |
FY-4A (All 7 Channels) | 30.3670 | 21.9811 | −0.3159 | 0.6142 | 1985.8447 | |
Without FY-4A | 44.1783 | 36.4969 | −0.7504 | 0.1795 | 740.1289 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jia, D.; Yang, L.; Gao, X.; Li, K. Assessment of a New Solar Radiation Nowcasting Method Based on FY-4A Satellite Imagery, the McClear Model and SHapley Additive exPlanations (SHAP). Remote Sens. 2023, 15, 2245. https://doi.org/10.3390/rs15092245
Jia D, Yang L, Gao X, Li K. Assessment of a New Solar Radiation Nowcasting Method Based on FY-4A Satellite Imagery, the McClear Model and SHapley Additive exPlanations (SHAP). Remote Sensing. 2023; 15(9):2245. https://doi.org/10.3390/rs15092245
Chicago/Turabian StyleJia, Dongyu, Liwei Yang, Xiaoqing Gao, and Kaiming Li. 2023. "Assessment of a New Solar Radiation Nowcasting Method Based on FY-4A Satellite Imagery, the McClear Model and SHapley Additive exPlanations (SHAP)" Remote Sensing 15, no. 9: 2245. https://doi.org/10.3390/rs15092245
APA StyleJia, D., Yang, L., Gao, X., & Li, K. (2023). Assessment of a New Solar Radiation Nowcasting Method Based on FY-4A Satellite Imagery, the McClear Model and SHapley Additive exPlanations (SHAP). Remote Sensing, 15(9), 2245. https://doi.org/10.3390/rs15092245