Pointwise Modelling and Prediction for Ground Surface Uplifts in Abandoned Coal Mines from InSAR Observations
Abstract
:1. Introduction
2. Methods
2.1. Pointwise Modelling for Surface Uplifts with a Varied Weibull Distribution Function
2.2. Parameter Inversion of the Varied Weibull CDF
2.2.1. Retrieval of Surface Historical Uplift Using InSAR
2.2.2. Parameter Inversion with InSAR Observations of Surface Historical Uplifts
2.3. Prediction for Surface Uplift Using the Varied Weibull CDF
3. Study Area and SAR Data
3.1. Study Area
3.2. SAR Data
4. Results
4.1. InSAR-Based Detection of Ground Surface Uplift
4.2. Pointwise Modelling for Surface Time-Series Uplifts
4.3. Prediction for Surface Uplift Induced by Groundwater Rebound
4.4. Accuracy Evaluation of the Predicted Surface Uplifts
5. Discussions
5.1. Analysis on the Spatial Pattern of Ground Surface Uplifts
5.2. Modelling Comparison between the Varied Weibull CDF and a Varied Exponential CDF
5.3. Influence of InSAR Observations on the Parameter Inversion of the Varied Weibull CDF
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhang, H.; Xu, G.; Zhan, H.; Chen, X.; Liu, M.; Wang, M. Identification of hydrogeochemical processes and transport paths of a multi-aquifer system in closed mining regions. J. Hydrol. 2020, 589, 125344. [Google Scholar] [CrossRef]
- Younger, P.L. A simple, low-cost approach to predicting the hydrogeological consequences of coalfield closure as a basis for best practice in long-term management. Int. J. Coal Geol. 2016, 164, 25–34. [Google Scholar] [CrossRef]
- Heitfeld, M.; Mainz, M.; Schetelig, M. Ground heave induced by mine water recovery. In Eurock 2006: Multiphysics Coupling and Long Term Behaviour in Rock Mechanics; Taylor & Francis Group: London, UK, 2006; pp. 315–320. [Google Scholar]
- Hooper, A.; Zebker, H.; Segall, P.; Kampes, B. A new method for measuring deformation on volcanoes and other natural terrains using InSAR persistent scatterers. Geophys. Res. Lett. 2004, 31. [Google Scholar] [CrossRef]
- Ferretti, A.; Fumagalli, A.; Novali, F.; Prati, C.; Rocca, F.; Rucci, A.J. A new algorithm for processing interferometric data-stacks: SqueeSAR. IEEE Trans. Geosci. Remote Sens. 2011, 49, 3460–3470. [Google Scholar] [CrossRef]
- Berardino, P.; Fornaro, G.; Lanari, R.; Sansosti, E. A new algorithm for surface deformation monitoring based on small baseline differential SAR interferograms. IEEE Trans. Geosci. Remote Sens. 2002, 40, 2375–2383. [Google Scholar] [CrossRef]
- Osmanoğlu, B.; Sunar, F.; Wdowinski, S.; Cabral-Cano, E. Time series analysis of InSAR data: Methods and trends. ISPRS J. Photogramm. Remote Sens. 2016, 115, 90–102. [Google Scholar] [CrossRef]
- Xue, F.; Lv, X.; Dou, F.; Yun, Y. A review of time-series interferometric SAR techniques: A tutorial for surface deformation analysis. IEEE Geosci. Remote Sens. Mag. 2020, 8, 22–42. [Google Scholar] [CrossRef]
- Eriksen, H.Ø.; Lauknes, T.R.; Larsen, Y.; Corner, G.D.; Bergh, S.G.; Dehls, J.; Kierulf, H.P. Visualizing and interpreting surface displacement patterns on unstable slopes using multi-geometry satellite SAR interferometry (2D InSAR). Remote Sens. Environ. Interdiscip. J. 2017, 191, 297–312. [Google Scholar] [CrossRef]
- Ryder, I.; Parsons, B.; Wright, T.J.; Funning, G.J. Post-seismic motion following the 1997 Manyi (Tibet) earthquake: InSAR observations and modelling. Geophys. J. Int. 2007, 169, 1009–1027. [Google Scholar] [CrossRef]
- Henderson, S.T.; Pritchard, M.E. Decadal volcanic deformation in the Central Andes Volcanic Zone revealed by InSAR time series. Geochem. Geophys. Geosystems 2013, 14, 1358–1374. [Google Scholar] [CrossRef]
- Kim, J.; Lin, S.Y.; Singh, R.P.; Lan, C.W.; Yun, H.W. Underground Burning of Jharia Coal Mine (India) and Associated Surface Deformation Using InSAR Data. Int. J. Appl. Earth Obs. Geoinf. 2021, 103, 102524. [Google Scholar] [CrossRef]
- Shi, J.; Yang, Z.; Wu, L.; Niu, J. Large-Gradient Interferometric Phase Unwrapping Over Coal Mining Areas Assisted by a 2-D Elliptical Gaussian Function. IEEE Geosci. Remote Sens. Lett. 2022, 19, 1–5. [Google Scholar] [CrossRef]
- Yang, Z.; Zhu, J.; Xie, J.; Li, Z.; Wu, L.; Ma, Z. Resolving 3-D Mining Displacements From Multi-Track InSAR by Incorporating With a Prior Model: The Dynamic Changes and Adaptive Estimation of the Model Parameters. IEEE Trans. Geosci. Remote Sens. 2022, 60, 1–10. [Google Scholar] [CrossRef]
- Tabish, R.; Yang, Z.; Wu, L.; Xu, Z.; Cao, Z.; Zheng, K.; Zhang, Y. Predicting the Settlement of Mine Waste Dump Using Multi-Source Remote Sensing and a Secondary Consolidation Model. Front. Environ. Sci. 2022, 10, 526. [Google Scholar] [CrossRef]
- Blachowski, J.; Ellefmo, S.L. Mining Ground Deformation Estimation Based on Pre-Processed InSAR Open Data—A Norwegian Case Study. Minerals 2023, 13, 328. [Google Scholar] [CrossRef]
- Yang, Z.; Xu, B.; Li, Z.; Wu, L.; Zhu, J. Prediction of Mining-Induced Kinematic 3-D Displacements From InSAR Using a Weibull Model and a Kalman Filter. IEEE Trans. Geosci. Remote Sens. 2022, 60, 1–12. [Google Scholar] [CrossRef]
- Miao, F.; Zhao, F.; Wu, Y.; Li, L.; Xue, Y.; Meng, J. A novel seepage device and ring-shear test on slip zone soils of landslide in the Three Gorges Reservoir area. Eng. Geol. 2022, 307, 106779. [Google Scholar] [CrossRef]
- Miao, F.; Zhao, F.; Wu, Y.; Li, L.; Török, Á. Landslide susceptibility mapping in Three Gorges Reservoir area based on GIS and boosting decision tree model. Stoch. Environ. Res. Risk Assess. 2023, 2, 1–21. [Google Scholar] [CrossRef]
- Cuenca, M.C.; Hooper, A.J.; Hanssen, R.F. Surface deformation induced by water influx in the abandoned coal mines in Limburg, The Netherlands observed by satellite radar interferometry. J. Appl. Geophys. 2013, 88, 1–11. [Google Scholar] [CrossRef]
- Blachowski, J.; Kopeć, A.; Milczarek, W.; Owczarz, K.J.S. Evolution of secondary deformations captured by satellite radar interferometry: Case study of an abandoned coal basin in SW Poland. Sustainability 2019, 11, 884. [Google Scholar] [CrossRef]
- Cigna, F.; Banks, V.J.; Donald, A.W.; Donohue, S.; Graham, C.; Hughes, D.; McKinley, J.M.; Parker, K.J.G. Mapping ground instability in areas of geotechnical infrastructure using satellite InSAR and Small UAV surveying: A case study in Northern Ireland. Geosciences 2017, 7, 51. [Google Scholar] [CrossRef]
- Gee, D.; Bateson, L.; Grebby, S.; Novellino, A.; Sowter, A.; Wyatt, L.; Marsh, S.; Morgenstern, R.; Athab, A. Modelling groundwater rebound in recently abandoned coalfields using DInSAR. Remote Sens. Environ. 2020, 249, 112021. [Google Scholar] [CrossRef]
- Vervoort, A.; Declercq, P.-Y. Upward surface movement above deep coal mines after closure and flooding of underground workings. Int. J. Min. Sci. Technol. 2018, 28, 53–59. [Google Scholar] [CrossRef]
- Yu, Z.; Huang, G.; Zhang, C. Monitoring and Characterization of Surface Deformation after the Closure of Coal Mines Based on Small Baseline Interferometric Synthetic Aperture Radar. Instrum. Mes. Métrologie 2020, 19, 141–150. [Google Scholar] [CrossRef]
- Gee, D.; Sowter, A.; Athab, A.; Grebby, S.; Wu, Z.; Boiko, K. Remote monitoring of minewater rebound and environmental risk using satellite radar interferometry. Sci. Total. Environ. 2023, 857, 159272. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Konietzky, H. An overview on flooding induced uplift for abandoned coal mines. Int. J. Rock Mech. Min. Sci. 2021, 148, 104955. [Google Scholar] [CrossRef]
- Zhao, J.; Konietzky, H. Numerical analysis and prediction of ground surface movement induced by coal mining and subsequent groundwater flooding. Int. J. Coal Geol. 2020, 229, 103565. [Google Scholar] [CrossRef]
- Adams, R. A Review of Mine Water Rebound Predictions from the VSS–NET Model. Mine Waterthe Environ. 2014, 33, 384. [Google Scholar] [CrossRef]
- Whitworth, K.R. The monitoring and modelling of mine water recovery in UK coalfields. Geol. Soc. Lond. Spec. Publ. 2002, 198, 61–73. [Google Scholar] [CrossRef]
- Younger, P.L.; Adams, R. Predicting Mine Water Rebound; Northumbrian Water Ltd.: Durham, UK, 1999. [Google Scholar]
- David, G.; Luke, B.; Andrew, S.; Stephen, G.; Alessandro, N.; Francesca, C.; Stuart, M.; Carl, B.; Lee, W. Ground Motion in Areas of Abandoned Mining: Application of the Intermittent SBAS (ISBAS) to the Northumberland and Durham Coalfield, UK. Geosciences 2017, 7, 85. [Google Scholar]
- Chang, L.; Hanssen, R.F. A probabilistic approach for InSAR time-series postprocessing. IEEE Trans. Geosci. Remote Sens. 2015, 54, 421–430. [Google Scholar] [CrossRef]
- Zhu, J.; Li, Z.; Hu, J. Research Progress and Methods of InSAR for Deformation Monitoring. Acta Geod. Et Cartogr. Sin. 2017, 46, 1717. [Google Scholar]
- Fialko, Y.; Simons, M.; Agnew, D. The complete (3-D) surface displacement field in the epicentral area of the 1999 Mw7. 1 Hector Mine earthquake, California, from space geodetic observations. Geophys. Res. Lett. 2001, 28, 3063–3066. [Google Scholar] [CrossRef]
- Li, Z.W.; Yang, Z.F.; Zhu, J.J.; Hu, J.; Wang, Y.J.; Li, P.X.; Chen, G.L. Retrieving three-dimensional displacement fields of mining areas from a single InSAR pair. J. Geod. 2015, 89, 17–32. [Google Scholar] [CrossRef]
- Sica, F.; Cozzolino, D.; Zhu, X.X.; Verdoliva, L.; Poggi, G. InSAR-BM3D: A nonlocal filter for SAR interferometric phase restoration. IEEE Trans. Geosci. Remote Sens. 2018, 56, 3456–3467. [Google Scholar] [CrossRef]
- Chen, C.W.; Zebker, H.A. Two-dimensional phase unwrapping with use of statistical models for cost functions in nonlinear optimization. J. Opt. Soc. Am. A 2001, 18, 338–351. [Google Scholar] [CrossRef]
- Kratzsch, H. Mining Subsidence Engineering; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2012. [Google Scholar]
- Chakrabarti, A.; Ghosh, J.K. AIC, BIC and recent advances in model selection. Philos. Stat. 2011, 7, 583–605. [Google Scholar]
Track | Observed Time | Number of Images | Heading | Incidence Angle |
---|---|---|---|---|
Ascending | 4 April 2017–4 October 2021 | 130 | −9.139 | 43.734 |
Descending | 3 April 2017–3 October 2021 | 122 | −169.886 | 39.184 |
Point | AIC | |||
---|---|---|---|---|
Exponential | Weibull | Exponential | Weibull | |
P1 | 0.92 | 0.99 | 244 | 17 |
P2 | 0.93 | 0.99 | 161 | 58 |
P3 | 0.89 | 099 | 313 | 119 |
P4 | 0.74 | 0.98 | 323 | 61 |
Mean | 0.87 | 0.99 | 260 | 64 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yin, X.; Chai, J.; Deng, W.; Yang, Z.; Tian, G.; Gao, C. Pointwise Modelling and Prediction for Ground Surface Uplifts in Abandoned Coal Mines from InSAR Observations. Remote Sens. 2023, 15, 2337. https://doi.org/10.3390/rs15092337
Yin X, Chai J, Deng W, Yang Z, Tian G, Gao C. Pointwise Modelling and Prediction for Ground Surface Uplifts in Abandoned Coal Mines from InSAR Observations. Remote Sensing. 2023; 15(9):2337. https://doi.org/10.3390/rs15092337
Chicago/Turabian StyleYin, Xiwen, Jiayao Chai, Weinan Deng, Zefa Yang, Guochan Tian, and Chao Gao. 2023. "Pointwise Modelling and Prediction for Ground Surface Uplifts in Abandoned Coal Mines from InSAR Observations" Remote Sensing 15, no. 9: 2337. https://doi.org/10.3390/rs15092337
APA StyleYin, X., Chai, J., Deng, W., Yang, Z., Tian, G., & Gao, C. (2023). Pointwise Modelling and Prediction for Ground Surface Uplifts in Abandoned Coal Mines from InSAR Observations. Remote Sensing, 15(9), 2337. https://doi.org/10.3390/rs15092337