Improving LandTrendr Forest Disturbance Mapping in China Using Multi-Season Observations and Multispectral Indices
Abstract
:1. Introduction
2. Data and Methods
2.1. Study Area
2.2. Data
2.2.1. Reference Disturbance Samples
2.2.2. Landsat Time Series Data
2.3. Methods
2.4. Evaluation Methods
3. Results
3.1. Forest Disturbance Detection at the Reference Samples
3.2. Forest Disturbance Detection at the MGRS Tiles
4. Discussions
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Compositing Periods | Commission Error (%) | Omission Error (%) | F1 Score (%) |
---|---|---|---|
03/21–06/23 | 55.59 | 64.66 | 39.36 |
06/20–08/31 | 30.96 | 64.40 | 46.98 |
06/21–09/23 | 34.26 | 62.83 | 47.49 |
10/01–12/31 | 40.93 | 59.95 | 47.74 |
12/21–03/23 | 48.04 | 61.78 | 44.04 |
Index Combinations | Commission Error (%) | Omission Error (%) | F1 Score (%) | Tc |
---|---|---|---|---|
C12345 | 34.51 | 31.69 | 66.87 | 0.999 |
C1234 | 32.43 | 30.77 | 68.39 | 0.999 |
C1235 | 30.58 | 30.15 | 69.63 | 0.999 |
C1245 | 35.57 | 38.15 | 63.11 | 0.999 |
C1345 | 34.13 | 32.31 | 66.77 | 0.999 |
C2345 | 34.45 | 33.84 | 65.85 | 0.999 |
C123 | 31.6 | 31.38 | 68.51 | 0.999 |
C124 | 33.77 | 39.07 | 63.46 | 0.999 |
C125 | 31.97 | 38.46 | 64.62 | 0.999 |
C134 | 36.06 | 34.55 | 64.68 | 0.99 |
C135 | 33.42 | 35.86 | 65.33 | 0.99 |
C145 | 40.1 | 39.79 | 60.05 | 0.95 |
C234 | 32.17 | 33.84 | 66.98 | 0.999 |
C235 | 30.19 | 33.85 | 67.93 | 0.999 |
C245 | 39.71 | 35.6 | 62.28 | 0.99 |
C345 | 41.82 | 41.36 | 58.41 | 0.99 |
C12 | 33.04 | 39.68 | 63.47 | 0.99 |
C13 | 29.85 | 38.87 | 65.33 | 0.99 |
C14 | 29.05 | 43.7 | 62.78 | 0.99 |
C15 | 24.18 | 44.5 | 64.09 | 0.99 |
C23 | 32.24 | 39.14 | 64.12 | 0.99 |
C24 | 42.28 | 42.9 | 57.41 | 0.95 |
C25 | 27.74 | 46.92 | 61.21 | 0.99 |
C34 | 37.89 | 46.38 | 57.55 | 0.95 |
C35 | 34.53 | 46.11 | 59.12 | 0.95 |
C45 | 37.12 | 61.39 | 47.84 | 0.9 |
C1 | 43.04 | 39.68 | 58.59 | 0.95 |
C2 | 40.22 | 42.63 | 58.55 | 0.9 |
C3 | 32.75 | 48.26 | 58.48 | 0.9 |
C4 | 30.37 | 64.34 | 47.16 | 0.9 |
C5 | 29.67 | 60.59 | 50.52 | 0.9 |
Tn | Commission Error (%) | Omission Error (%) | F1 Score (%) |
---|---|---|---|
1 | 30.58 | 30.15 | 69.63 |
2 | 18.87 | 44.84 | 65.67 |
3 | 13.30 | 51.85 | 61.91 |
maxSegments | Commission Error (%) | Omission Error (%) | F1 Score (%) |
---|---|---|---|
4 | 23.20 | 74.87 | 37.87 |
6 | 34.26 | 62.83 | 47.49 |
8 | 32.08 | 71.73 | 39.93 |
10 | 33.14 | 69.90 | 41.52 |
pvalThreshold | Commission Error (%) | Omission Error (%) | F1 Score (%) |
---|---|---|---|
0.01 | 31.43 | 62.30 | 48.65 |
0.05 | 34.26 | 62.83 | 47.49 |
0.1 | 34.72 | 63.09 | 47.16 |
spikeThreshold | Commission Error (%) | Omission Error (%) | F1 Score (%) |
---|---|---|---|
0.75 | 34.43 | 63.61 | 46.80 |
0.85 | 34.68 | 62.04 | 48.01 |
0.9 | 34.26 | 62.83 | 47.49 |
1 | 30.69 | 63.35 | 47.95 |
recoveryThreshold | Commission Error (%) | Omission Error (%) | F1 Score (%) |
---|---|---|---|
0.25 | 34.26 | 62.83 | 47.49 |
0.5 | 44.94 | 54.45 | 49.86 |
1 | 59.64 | 64.40 | 37.83 |
bestModelProportion | Commission Error (%) | Omission Error (%) | F1 Score (%) |
---|---|---|---|
0.5 | 34.55 | 62.30 | 47.84 |
0.75 | 34.26 | 62.83 | 47.49 |
1 | 33.80 | 62.57 | 47.83 |
Index | Commission Error (%) | Omission Error (%) | F1 Score (%) |
---|---|---|---|
NBR | 51.12 | 51.57 | 48.62 |
NDMI | 60.70 | 57.64 | 40.77 |
TCW | 55.81 | 53.08 | 45.51 |
TCA | 61.29 | 62.30 | 38.20 |
Index | Commission Error (%) | Omission Error (%) | F1 Score (%) |
---|---|---|---|
NBR | 53.21 | 53.52 | 46.63 |
NDMI | 41.30 | 63.81 | 44.78 |
TCW | 41.67 | 66.22 | 42.78 |
TCA | 55.66 | 63.09 | 40.29 |
References
- Hislop, S.; Jones, S.; Soto-Berelov, M.; Skidmore, A.; Haywood, A.; Nguyen, T.H. A Fusion Approach to Forest Disturbance Mapping Using Time Series Ensemble Techniques. Remote Sens. Environ. 2019, 221, 188–197. [Google Scholar] [CrossRef]
- Baccini, A.; Goetz, S.J.; Walker, W.S.; Laporte, N.T.; Sun, M.; Sulla-Menashe, D.; Hackler, J.; Beck, P.S.A.; Dubayah, R.; Friedl, M.A.; et al. Estimated Carbon Dioxide Emissions from Tropical Deforestation Improved by Carbon-Density Maps. Nat. Clim. Chang. 2012, 2, 182–185. [Google Scholar] [CrossRef]
- Asner, G.P.; Clark, J.K.; Mascaro, J.; Galindo García, G.A.; Chadwick, K.D.; Navarrete Encinales, D.A.; Paez-Acosta, G.; Cabrera Montenegro, E.; Kennedy-Bowdoin, T.; Duque, Á.; et al. High-resolution mapping of forest carbon stocks in the Colombian Amazon. Biogeosciences 2012, 9, 2683–2696. [Google Scholar] [CrossRef]
- Tollerud, H.J.; Zhu, Z.; Smith, K.; Wellington, D.F.; Hussain, R.A.; Viola, D. Toward Consistent Change Detection across Irregular Remote Sensing Time Series Observations. Remote Sens. Environ. 2023, 285, 113372. [Google Scholar] [CrossRef]
- Qiu, S.; Lin, Y.K.; Shang, R.; Zhang, J.X.; Ma, L.; Zhu, Z. Making Landsat Time Series Consistent: Evaluating and Improving Landsat Analysis Ready Data. Remote Sens. 2019, 11, 51. [Google Scholar] [CrossRef]
- Zhang, J.; Shang, R.; Rittenhouse, C.; Witharana, C.; Zhu, Z. Evaluating the Impacts of Models, Data Density and Irregularity on Reconstructing and Forecasting Dense Landsat Time Series. Sci. Remote Sens. 2021, 4, 100023. [Google Scholar] [CrossRef]
- Shang, R.; Zhu, Z.; Zhang, J.; Qiu, S.; Yang, Z.; Li, T.; Yang, X. Near-Real-Time Monitoring of Land Disturbance with Harmonized Landsats 7–8 and Sentinel-2 Data. Remote Sens. Environ. 2022, 278, 113073. [Google Scholar] [CrossRef]
- Zhu, Z.; Zhang, J.X.; Yang, Z.Q.; Aljaddani, A.H.; Cohen, W.B.; Qiu, S.; Zhou, C.L. Continuous Monitoring of Land Disturbance Based on Landsat Time Series. Remote Sens. Environ. 2020, 238, 111116. [Google Scholar] [CrossRef]
- Kennedy, R.E.; Yang, Z.G.; Cohen, W.B. Detecting Trends in Forest Disturbance and Recovery Using Yearly Landsat Time Series: 1. LandTrendr-Temporal Segmentation Algorithms. Remote Sens. Environ. 2010, 114, 2897–2910. [Google Scholar] [CrossRef]
- Huang, C.Q.; Goward, S.N.; Schleeweis, K.; Thomas, N.; Masek, J.G.; Zhu, Z.L. Dynamics of National Forests Assessed Using the Landsat Record: Case Studies in Eastern United States. Remote Sens. Environ. 2009, 113, 1430–1442. [Google Scholar] [CrossRef]
- Zhu, Z.; Woodcock, C.E. Continuous Change Detection and Classification of Land Cover Using All Available Landsat Data. Remote Sens. Environ. 2014, 144, 152–171. [Google Scholar] [CrossRef]
- Brooks, E.B.; Wynne, R.H.; Thomas, V.A.; Blinn, C.E.; Coulston, J.W. On-the-Fly Massively Multitemporal Change Detection Using Statistical Quality Control Charts and Landsat Data. IEEE Trans. Geosci. Remote Sens. 2014, 52, 3316–3332. [Google Scholar] [CrossRef]
- Yin, H.; Prishchepov, A.V.; Kuemmerle, T.; Bleyhl, B.; Buchner, J.; Radeloff, V.C. Mapping Agricultural Land Abandonment from Spatial and Temporal Segmentation of Landsat Time Series. Remote Sens. Environ. 2018, 210, 12–24. [Google Scholar] [CrossRef]
- Zhu, Z. Change Detection Using Landsat Time Series: A Review of Frequencies, Preprocessing, Algorithms, and Applications. ISPRS J. Photogramm. Remote Sens. 2017, 130, 370–384. [Google Scholar] [CrossRef]
- Runge, A.; Nitze, I.; Grosse, G. Remote Sensing Annual Dynamics of Rapid Permafrost Thaw Disturbances with LandTrendr. Remote Sens. Environ. 2022, 268, 112752. [Google Scholar] [CrossRef]
- de Jong, S.M.; Shen, Y.C.; de Vries, J.; Bijnaar, G.; van Maanen, B.; Augustinus, P.; Verweij, P. Mapping Mangrove Dynamics and Colonization Patterns at the Suriname Coast Using Historic Satellite Data and the LandTrendr Algorithm. Int. J. Appl. Earth Obs. Geoinf. 2021, 97, 102293. [Google Scholar] [CrossRef]
- Cohen, W.B.; Healey, S.P.; Yang, Z.Q.; Zhu, Z.; Gorelick, N. Diversity of Algorithm and Spectral Band Inputs Improves Landsat Monitoring of Forest Disturbance. Remote Sens. 2020, 12, 1673. [Google Scholar] [CrossRef]
- Tamiminia, H.; Salehi, B.; Mahdianpari, M.; Quackenbush, L.; Adeli, S.; Brisco, B. Google Earth Engine for Geo-Big Data Applications: A Meta-Analysis and Systematic Review. ISPRS J. Photogramm. Remote Sens. 2020, 164, 152–170. [Google Scholar] [CrossRef]
- Kennedy, R.E.; Yang, Z.Q.; Gorelick, N.; Braaten, J.; Cavalcante, L.; Cohen, W.B.; Healey, S. Implementation of the LandTrendr Algorithm on Google Earth Engine. Remote Sens. 2018, 10, 691. [Google Scholar] [CrossRef]
- Estes, L.; Chen, P.; Debats, S.; Evans, T.; Ferreira, S.; Kuemmerle, T.; Ragazzo, G.; Sheffield, J.; Wolf, A.; Wood, E.; et al. A Large-Area, Spatially Continuous Assessment of Land Cover Map Error and Its Impact on Downstream Analyses. Glob. Chang. Biol. 2018, 24, 322–337. [Google Scholar] [CrossRef]
- Zhu, L.H.; Liu, X.N.; Wu, L.; Tang, Y.B.; Meng, Y.Y. Long-Term Monitoring of Cropland Change near Dongting Lake, China, Using the LandTrendr Algorithm with Landsat Imagery. Remote Sens. 2019, 11, 1234. [Google Scholar] [CrossRef]
- Bright, B.C.; Hudak, A.T.; Kennedy, R.E.; Braaten, J.D.; Khalyani, A.H. Examining Post-Fire Vegetation Recovery with Landsat Time Series Analysis in Three Western North American Forest Types. FIRE Ecol. 2019, 15, 8. [Google Scholar] [CrossRef]
- Griffiths, P.; Kuemmerle, T.; Kennedy, R.E.; Abrudan, I.V.; Knorn, J.; Hostert, P. Using Annual Time-Series of Landsat Images to Assess the Effects of Forest Restitution in Post-Socialist Romania. Remote Sens. Environ. 2012, 118, 199–214. [Google Scholar] [CrossRef]
- Harris, N.L.; Hagen, S.C.; Saatchi, S.S.; Pearson, T.R.H.; Woodall, C.W.; Domke, G.M.; Braswell, B.H.; Walters, B.F.; Brown, S.; Salas, W.; et al. Attribution of Net Carbon Change by Disturbance Type across Forest Lands of the Conterminous United States. Carbon Balance Manag. 2016, 11, 24. [Google Scholar] [CrossRef]
- Yang, Y.J.; Erskine, P.D.; Lechner, A.M.; Mulligan, D.; Zhang, S.L.; Wang, Z.Y. Detecting the Dynamics of Vegetation Disturbance and Recovery in Surface Mining Area via Landsat Imagery and LandTrendr Algorithm. J. Clean. Prod. 2018, 178, 353–362. [Google Scholar] [CrossRef]
- Meigs, G.W.; Kennedy, R.E.; Gray, A.N.; Gregory, M.J. Spatiotemporal Dynamics of Recent Mountain Pine Beetle and Western Spruce Budworm Outbreaks across the Pacific Northwest Region, USA. For. Ecol. Manag. 2015, 339, 71–86. [Google Scholar] [CrossRef]
- Frazier, R.J.; Coops, N.C.; Wulder, M.A. Boreal Shield Forest Disturbance and Recovery Trends Using Landsat Time Series. Remote Sens. Environ. 2015, 170, 317–327. [Google Scholar] [CrossRef]
- Pflugmacher, D.; Cohen, W.B.; Kennedy, R.E. Using Landsat-Derived Disturbance History (1972-2010) to Predict Current Forest Structure. Remote Sens. Environ. 2012, 122, 146–165. [Google Scholar] [CrossRef]
- De Marzo, T.; Pflugmacher, D.; Baumann, M.; Lambin, E.F.; Gasparri, I.; Kuemmerle, T. Characterizing Forest Disturbances across the Argentine Dry Chaco Based on Landsat Time Series. Int. J. Appl. Earth Obs. Geoinf. 2021, 98, 102310. [Google Scholar] [CrossRef]
- Shimizu, K.; Ota, T.; Mizoue, N.; Yoshida, S. A Comprehensive Evaluation of Disturbance Agent Classification Approaches: Strengths of Ensemble Classification, Multiple Indices, Spatio-Temporal Variables, and Direct Prediction. ISPRS J. Photogramm. Remote Sens. 2019, 158, 99–112. [Google Scholar] [CrossRef]
- Grogan, K.; Pflugmacher, D.; Hostert, P.; Kennedy, R.; Fensholt, R. Cross-Border Forest Disturbance and the Role of Natural Rubber in Mainland Southeast Asia Using Annual Landsat Time Series. Remote Sens. Environ. 2015, 169, 438–453. [Google Scholar] [CrossRef]
- Cohen, W.B.; Healey, S.P.; Yang, Z.; Stehman, S.V.; Brewer, C.K.; Brooks, E.B.; Gorelick, N.; Huang, C.; Hughes, M.J.; Kennedy, R.E.; et al. How Similar Are Forest Disturbance Maps Derived from Different Landsat Time Series Algorithms? Forests 2017, 8, 98. [Google Scholar] [CrossRef]
- Wulder, M.A.; Loveland, T.R.; Roy, D.P.; Crawford, C.J.; Masek, J.G.; Woodcock, C.E.; Allen, R.G.; Anderson, M.C.; Belward, A.S.; Cohen, W.B.; et al. Current Status of Landsat Program, Science, and Applications. Remote Sens. Environ. 2019, 225, 127–147. [Google Scholar] [CrossRef]
- Wulder, M.A.; Masek, J.G.; Cohen, W.B.; Loveland, T.R.; Woodcock, C.E. Opening the Archive: How Free Data Has Enabled the Science and Monitoring Promise of Landsat. Remote Sens. Environ. 2012, 122, 2–10. [Google Scholar] [CrossRef]
- Zhu, Z.; Wulder, M.A.; Roy, D.P.; Woodcock, C.E.; Hansen, M.C.; Radeloff, V.C.; Healey, S.P.; Schaaf, C.; Hostert, P.; Strobl, P.; et al. Benefits of the Free and Open Landsat Data Policy. Remote Sens. Environ. 2019, 224, 382–385. [Google Scholar] [CrossRef]
- Roy, D.P.; Wulder, M.A.; Loveland, T.R.; Woodcock, C.E.; Allen, R.G.; Anderson, M.C.; Helder, D.; Irons, J.R.; Johnson, D.M.; Kennedy, R.; et al. Landsat-8: Science and Product Vision for Terrestrial Global Change Research. Remote Sens. Environ. 2014, 145, 154–172. [Google Scholar] [CrossRef]
- Shang, R.; Zhu, Z. Harmonizing Landsat 8 and Sentinel-2: A Time-Series-Based Reflectance Adjustment Approach. Remote Sens. Environ. 2019, 235, 111439. [Google Scholar] [CrossRef]
- Zhu, Z.; Woodcock, C.E. Object-Based Cloud and Cloud Shadow Detection in Landsat Imagery. Remote Sens. Environ. 2012, 118, 83–94. [Google Scholar] [CrossRef]
- Key, C.; Benson, N. Landscape Assessment: Ground Measure of Severity, the Composite Burn Index; and Remote Sensing of Severity, the Normalized Burn Ratio. In Firemon: Fire Effects Monitoring and Inventory System; United States Department of Agriculture: Washington, DC, USA, 2006; pp. 1–51. [Google Scholar]
- Wilson, E.H.; Sader, S.A. Detection of Forest Harvest Type Using Multiple Dates of Landsat TM Imagery. Remote Sens. Environ. 2002, 80, 385–396. [Google Scholar] [CrossRef]
- Rouse, J.; Haas, R.; Schell, J.; Deering, D. Monitoring Vegetation Systems in the Great Plains with ERTS. NASA Spec. Publ. 1974, 351, 309. [Google Scholar]
- Crist, E.P. A TM Tasseled Cap Equivalent Transformation for Reflectance Factor Data. Remote Sens. Environ. 1985, 17, 301–306. [Google Scholar] [CrossRef]
- Powell, S.L.; Cohen, W.B.; Healey, S.P.; Kennedy, R.E.; Moisen, G.G.; Pierce, K.B.; Ohmann, J.L. Quantification of Live Aboveground Forest Biomass Dynamics with Landsat Time-Series and Field Inventory Data: A Comparison of Empirical Modeling Approaches. Remote Sens. Environ. 2010, 114, 1053–1068. [Google Scholar] [CrossRef]
- Hicke, J.A.; Allen, C.D.; Desai, A.R.; Dietze, M.C.; Hall, R.J.; Hogg, E.H.; Kashian, D.M.; Moore, D.; Raffa, K.F.; Sturrock, R.N.; et al. Effects of Biotic Disturbances on Forest Carbon Cycling in the United States and Canada. Glob. Chang. Biol. 2012, 18, 7–34. [Google Scholar] [CrossRef]
- Anderson-Teixeira, K.J.; Miller, A.D.; Mohan, J.E.; Hudiburg, T.W.; Duval, B.D.; DeLucia, E.H. Altered Dynamics of Forest Recovery under a Changing Climate. Glob. Chang. Biol. 2013, 19, 2001–2021. [Google Scholar] [CrossRef]
- Hansen, M.C.; Loveland, T.R. A Review of Large Area Monitoring of Land Cover Change Using Landsat Data. Remote Sens. Environ. 2012, 122, 66–74. [Google Scholar] [CrossRef]
- Nguyen, T.H.; Jones, S.D.; Soto-Berelov, M.; Haywood, A.; Hislop, S. A Spatial and Temporal Analysis of Forest Dynamics Using Landsat Time-Series. Remote Sens. Environ. 2018, 217, 461–475. [Google Scholar] [CrossRef]
- Cohen, W.B.; Yang, Z.Q.; Heale, S.P.; Kennedy, R.E.; Gorelic, N. A LandTrendr Multispectral Ensemble for Forest Disturbance Detection. Remote Sens. Environ. 2018, 205, 131–140. [Google Scholar] [CrossRef]
- Hansen, M.C.; Potapov, P.V.; Moore, R.; Hancher, M.; Turubanova, S.A.; Tyukavina, A.; Thau, D.; Stehman, S.V.; Goetz, S.J.; Loveland, T.R.; et al. High-Resolution Global Maps of 21st-Century Forest Cover Change. Science 2013, 342, 850–853. [Google Scholar] [CrossRef]
- Pasquarella, V.J.; Arévalo, P.; Bratley, K.H.; Bullock, E.L.; Gorelick, N.; Yang, Z.; Kennedy, R.E. Demystifying LandTrendr and CCDC Temporal Segmentation. Int. J. Appl. Earth Obs. Geoinf. 2022, 110, 102806. [Google Scholar] [CrossRef]
- Kennedy, R.E.; Yang, Z.Q.; Braaten, J.; Copass, C.; Antonova, N.; Jordan, C.; Nelson, P. Attribution of Disturbance Change Agent from Landsat Time-Series in Support of Habitat Monitoring in the Puget Sound Region, USA. Remote Sens. Environ. 2015, 166, 271–285. [Google Scholar] [CrossRef]
- Kennedy, R.E.; Yang, Z.Q.; Cohen, W.B.; Pfaff, E.; Braaten, J.; Nelson, P. Spatial and Temporal Patterns of Forest Disturbance and Regrowth within the Area of the Northwest Forest Plan. Remote Sens. Environ. 2012, 122, 117–133. [Google Scholar] [CrossRef]
Index | Equation | Reference |
---|---|---|
NBR | (NIR − SWIR2)/(NIR + SWIR2) | [39] |
NDMI | (NIR − SWIR1)/(NIR + SWIR1) | [40] |
NDVI | (NIR − Red)/(NIR + Red) | [41] |
TCW | 0.0315 × Blue + 0.2021 × Green + 0.3102 × Red + 0.1594 × NIR − 0.6806 × SWIR1 − 0.6109 × SWIR2 | [42] |
TCA | Arctan[(0.2043 × Blue + 0.4158 × Green + 0.5524 × Red + 0.5741 × NIR − 0.3124 × SWIR1 + 0.2303 × SWIR2)/(−0.1603 × Blue − 0.2819 × Green − 0.4934 × Red + 0.7940 × NIR − 0.0002 × SWIR1 − 0.1446 × SWIR2)] | [43] |
Parameter | Meaning | Optimal Threshold | Sensitivity Analysis |
---|---|---|---|
Compositing periods | One observation value is selected to represent the annual spectral value | 1 October to 31 December | Table A1 |
Indices | Spectral indices combinations are used to monitor forest disturbance | NBR, NDMI, TCW, TCA | Table A2 |
Tn | Several consecutive normalized change matrices | 1 | Table A3 |
Tc | Change threshold used in the chi-squared distribution to measure the normalized change matrix | 0.999 | Figure 6 |
maxSegments | Maximum number of segments to be fitted on the time series | 6 | Table A4 |
pvalThreshold | If the p-value of the fitted model exceeds this threshold, then the current model is discarded and another one is fitted using the Levenberg–Marquardt optimizer | 0.01 | Table A5 |
spikeThreshold | Threshold for dampening the spikes (1.0 means no dampening) | 0.85 | Table A6 |
recoveryThreshold | If a segment has a recovery rate faster than 1/recoveryThreshold (in years), then the segment is disallowed | 0.5 | Table A7 |
bestModelProportion | Takes the model with the most vertices that have a p-value that is at most this proportion away from the model with the lowest p-value | 0.5 | Table A8 |
Detection | Reference | Accuracy | |
---|---|---|---|
No Disturbance | Disturbance | ||
No disturbance | 1516 | 122 | 92.6% |
Disturbance | 105 | 260 | 71.2% |
Accuracy | 93.5% | 68.1% | 88.7% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qiu, D.; Liang, Y.; Shang, R.; Chen, J.M. Improving LandTrendr Forest Disturbance Mapping in China Using Multi-Season Observations and Multispectral Indices. Remote Sens. 2023, 15, 2381. https://doi.org/10.3390/rs15092381
Qiu D, Liang Y, Shang R, Chen JM. Improving LandTrendr Forest Disturbance Mapping in China Using Multi-Season Observations and Multispectral Indices. Remote Sensing. 2023; 15(9):2381. https://doi.org/10.3390/rs15092381
Chicago/Turabian StyleQiu, Dean, Yunjian Liang, Rong Shang, and Jing M. Chen. 2023. "Improving LandTrendr Forest Disturbance Mapping in China Using Multi-Season Observations and Multispectral Indices" Remote Sensing 15, no. 9: 2381. https://doi.org/10.3390/rs15092381
APA StyleQiu, D., Liang, Y., Shang, R., & Chen, J. M. (2023). Improving LandTrendr Forest Disturbance Mapping in China Using Multi-Season Observations and Multispectral Indices. Remote Sensing, 15(9), 2381. https://doi.org/10.3390/rs15092381