MultiGAS Detection from Airborne Platforms on Italian Volcanic and Geothermal Areas
Abstract
:1. Introduction
2. Materials, Methods, and Sites Description
2.1. Miniature MultiGAS Sensing Payload
2.2. Unmanned Aerial System (UAS)
2.3. Field Campaigns
3. Results
3.1. Pisciarelli
3.2. Parco Naturalistico Delle Biancane
- (1)
- (2)
- Despite the different period, instrumentation and methodology used by the authors to measure CO2 and H2S, in respect to ours, concentration values are similar and comparable (Table 3). Specifically, Table 3 reports the CO2/H2S ratio for two representatives fumaroles (B4 and B6) measured by [34] and miniGAS, respectively.
3.3. Stromboli
4. Discussion and Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pieri, D.; Diaz, J.A. In Situ Sampling of Volcanic Emissions with a UAV Sensor web: Progress and Plans. In Dynamic Data-Driven Environmental Systems Science; Springer: Berlin/Heidelberg, Germany, 2015. [Google Scholar]
- Giudicepietro, F.; Calvari, S.; Alparone, S.; Bianco, F.; Bonaccorso, A.; Bruno, V.; Caputo, T.; Cristaldi, A.; D’Auria, L.; De Cesare, W.; et al. Integration of Ground-Based Remote-Sensing and In Situ Multidisciplinary Monitoring Data to Analyze the Eruptive Activity of Stromboli Volcano in 2017–2018. Remote Sens. 2019, 11, 1813. [Google Scholar] [CrossRef]
- Chiodini, G.; Cioni, R.; Guidi, M.; Raco, B.; Marini, L. Soil CO2 flux measurements in volcanic and geothermal areas. Appl. Geochem. 1998, 13, 543–552. [Google Scholar] [CrossRef]
- O’Dwyer, M.; Padgett, M.J.; McGonigle, A.J.S.; Oppenheimer, C.; Inguaggiato, S. Real-time measurement of volcanic H2S and SO2 concentrations by UV spectroscopy. Geophys. Res. Lett. 2003, 30, 12. [Google Scholar] [CrossRef]
- Enel Report. Available online: https://www.enel.com/investors/overview (accessed on 20 February 2023).
- Geothermal Electricity Production Statistics for Italy. Available online: https://www.terna.it/it/sistema-elettrico/statistiche/pubblicazioni-statistiche (accessed on 20 February 2023).
- Corradini, S.; Guerrieri, L.; Stelitano, D.; Salerno, G.; Scollo, S.; Merucci, L.; Prestifilippo, M.; Musacchio, M.; Silvestri, M.; Lombardo, V.; et al. Near real-time monitoring of the Christmas 2018 Etna eruption using SEVIRI and products validation. Remote Sens. 2020, 12, 1336. [Google Scholar] [CrossRef]
- Silvestri, M.; Cardellini, C.; Chiodini, G.; Buongiorno, M.F. Satellite-derived surface temperature and in situ measurement at Solfatara of Pozzuoli (Naples, Italy). Geochem. Geophys. Geosystems 2016, 17, 2095–2109. [Google Scholar] [CrossRef]
- SR-X4 UAS. Web Site. Available online: https://siralab.it/sr-x4/ (accessed on 18 April 2023).
- Diaz, J.; Corrales, E.; Madrigal, Y.; Pieri, D.; Bland, G.; Miles, T.; Fladeland, M. Volcano Monitoring with small Unmanned Aerial Systems. In Proceedings of the Infotech@ Aerospace, Garden Grove, CA, USA, 19–21 June 2012; p. 2522. [Google Scholar]
- Pieri, D.; Diaz, J.A.; Bland, G.; Fladeland, M.; Madrigal, Y.; Corrales, E.; Alegria, O.; Alan, A.; Realmuto, V.; Miles, T.; et al. In situ observations and sampling of volcanic emissions with NASA and UCR unmanned aircraft, including a case study at Turrialba volcano, Costa Rica. Geol. Soc. Lond. 2013, 380, 321–352. [Google Scholar] [CrossRef]
- Diaz, J.A.; Pieri, D.; Wright, K.; Sorensen, P.; Kline-Shoder, R.; Arkin, C.R.; Fladeland, M.; Bland, G.; Buongiorno, M.F.; Ramirez, C.; et al. Unmanned aerial mass spectrometer systems for in-situ volcanic plume analysis. J. Am. Soc. Mass Spectrom. 2015, 26, 292–304. [Google Scholar] [CrossRef]
- Xi, X.; Johnson, M.; Jeon, S.; Fladeland, M.; Pieri, D.; Diaz, J.A.; Bland, G.L. Constraining the sulfur dioxide degassing flux from Turrialba volcano, Costa Rica using unmanned aerial system measurement. J. Volcanol. Geotherm. Research. 2016, 325, 110–118. [Google Scholar] [CrossRef]
- Silvestri, M.; Diaz, J.A.; Vita, F.; Musacchio, M.; Puchalla, J.; Falcone, S.; Buongiorno, M.F.; Doumaz, F.; Wright, K. Improved instruments for volcanic plume observation for monitoring purpose: Solfatara and Vulcano island preliminary result. Rapp. Tec. INGV 2016, 349, 1–44. [Google Scholar]
- Stix, J.; de Moor, J.M.; Rüdiger, J.; Alan, A.; Corrales, E.; D’Arcy, F.; Diaz, J.A.; Liotta, M. Degassing of Turrialba and Masaya volcanoes, Central America, measured by drone. J. Geophys. Res. Solid Earth 2018, 123, 6501–6520. [Google Scholar]
- Liu, E.J.; Wood, K.; Mason, E.; Edmonds, M.; Aiuppa, A.; Giudice, G.; Bitetto, M.; Francofonte, V.; Burrow, S.; Richardson, T.; et al. Dynamics of outgassing and plume transport revealed by proximal unmanned aerial system (UAS) measurements at Volcán Villarrica, Chile. Geochem. Geophys. Geosyst. 2019, 20, 730–750. [Google Scholar] [CrossRef]
- D’Arcy, F.; Alan, A.; Corrales, E.; Rüdiger, J.; de Moor, J.M.; Diaz, J.A.; Stix, J. Drones measure gases at volcanoes during international field campaign. EOS 2018. [Google Scholar]
- de Moor, J.M.; Stix, J.; Avard, G.; Muller, C.; Corrales, E.; Diaz, J.A.; Alan, A.; Brenes, J.; Pacheco, J.; Aiuppa, A.; et al. Insights on hydrothermal-magmatic interactions and eruptive processes at Poás volcano (Costa Rica) from high-frequency gas monitoring and drone measurements. Geophys. Res. Lett. 2019, 46, 1293–1302. [Google Scholar] [CrossRef]
- Vernier, J.-P.; Kalnajs, L.; Diaz, J.A.; Reese, T.; Corrales, E.; Alan, A.; Vernier, H.; Holland, L.; Patel, A.; Rastogi, N.; et al. Volcano Rapid Response Balloon Campaign during the 2018 Kilauea Eruption. Bull. Am. Meteorol. Soc. 2020, 101, E1602–E1618. [Google Scholar] [CrossRef]
- Liu, E.J.; Aiuppa, A.; Alan, A.; Arellano, S.; Bitetto, M.; Bobrowski, N.; Carn, S.; Clarke, R.; Corrales, E.; de Moor, J.M.; et al. Aerial strategies advance volcanic gas measurements at inaccessible, strongly degassing volcanoes. Sci. Adv. 2020, 60, eabb9103. [Google Scholar] [CrossRef]
- Chiodini, G.; Avino, R.; Caliro, S.; Minopoli, C. Temperature and pressure gas geoindicators at the Solfatara fumaroles (Campi Flegrei). Ann. Geophys. 2011, 54, 2. [Google Scholar]
- Chiodini, G.; Caliro, S.; Avino, R.; Bini, G.; Giudicepietro, F.; De Cesare, W.; Ricciolino, P.; Aiuppa, A.; Cardellini, C.; Petrillo, Z.; et al. Hydrothermal pressure-temperature control on CO2 emissions and seismicity at Campi Flegrei (Italy). J. Volcanol. Geotherm. Res. 2021, 414, 107245. [Google Scholar] [CrossRef]
- Tamburello, G.; Caliro, S.; Chiodini, G.; De Martino, P.; Avino, R.; Minopoli, C.; Carandente, A.; Rouwet, D.; Aiuppa, A.; Costa, A.; et al. Escalating CO2 degassing at the Pisciarelli fumarolic system, and implications for the ongoing Campi Flegrei unrest. J. Volcanol. Geotherm. Res. 2019, 384, 151–157. [Google Scholar] [CrossRef]
- Buono, G.; Caliro, S.; Paonita, A.; Pappalardo, L.; Chiodini, G. Discriminating carbon dioxide sources during volcanic unrest: The case of Campi Flegrei caldera (Italy). Geology 2023, 51, 397–401. [Google Scholar] [CrossRef]
- Romagnoli, P.; Arias, A.; Barelli, A.; Cei, M.; Casini, M. An updated numerical model of the Larderello–Travale geothermal system, Italy. Geothermics 2010, 39, 292–313. [Google Scholar] [CrossRef]
- Taussi, M.; Brogi, A.; Liotta, D.; Nisi, B.; Perrini, M.; Vaselli, O.; Zambrano, M.; Zucchi, M. CO2 and heat energy transport by enhanced fracture permeability in the Monterotondo Marittimo-Sasso Pisano transfer fault system (Larderello Geothermal Field, Italy). Geothermics 2022, 105, 102531. [Google Scholar] [CrossRef]
- Inguaggiato, S.; Vita, F.; Cangemi, M.; Inguaggiato, C.; Calderone, L. The monitoring of CO2 soil degassing as indicator of increasing volcanic activity: The paroxysmal activity at Stromboli volcano in 2019–2021. Geosciences 2021, 11, 169. [Google Scholar] [CrossRef]
- Burton, M.R.; Caltabiano, T.; Murè, F.; Salerno, G.; Randazzo, D. SO2 flux from Stromboli during the 2007 eruption: Results from the FLAME network and traverse measurements. J. Volcanol. Geotherm. Res. 2009, 182, 214–220. [Google Scholar] [CrossRef]
- Inguaggiato, S.; Vita, F.; Rouwet, D.; Bobrowski, N.; Morici, S.; Sollami, A. Geochemical evidence of the renewal of volcanic activity inferred from CO2 soil and SO2 plume fluxes: The 2007 Stromboli eruption (Italy). Bull. Volcanol. 2011, 9, 176. [Google Scholar] [CrossRef]
- Inguaggiato, S.; Vita, F.; Cangemi, M.; Calderone, L. Increasing Summit Degassing at the Stromboli Volcano and Relationships with Volcanic Activity (2016–2018). Geosciences 2019, 9, 176. [Google Scholar] [CrossRef]
- Aiuppa, A.; Federico, C.; Giudice, G.; Giuffrida, G.; Guida, R.; Gurrieri, S.; Liuzzo, M.; Moretti, R.; Papale, P. The 2007 eruption of Stromboli volcano: Insights from real-time measurement of the volcanic gas plume CO2/SO2 ratio. J. Volcanol. Geotherm. Res. 2009, 182, 221–230. [Google Scholar] [CrossRef]
- INGV UAS Based CAL/VAL Activities. Available online: https://cos.ingv.it/index.php/news-events/presentations/calibration-validation/15-uas-based-for-cal-val-activities/file (accessed on 18 April 2023).
- ECMWF Web Site. Available online: https://www.ecmwf.int/ (accessed on 18 April 2023).
- Granieri, D.; Mazzarini, F.; Cerminara, M.; Calusi, B.; Scozzari, A.; Menichini, M.; Lelli, M. Shallow portion of an active geothermal system revealed by multidisciplinary studies: The case of Le Biancane (Larderello, Italy). Geothermics 2023, 108, 102616. [Google Scholar] [CrossRef]
- FIRST Project. Available online: https://progetti.ingv.it/it/progetti-dipartimentali/vulcani/first (accessed on 14 March 2023).
- Tarquini, S.; Nannipieri, L. The 10 m-resolution TINITALY DEM as a trans-disciplinary basis for the analysis of the Italian territory: Current trends and new perspectives. Geomorphology 2017, 281, 108–115. [Google Scholar] [CrossRef]
- Lopinto, E.; Ananasso, C. The Prisma hyperspectral mission. In Proceedings of the 33rd EARSeL Symposium, Towards Horizon 2020, Matera, Italy, 3–6 June 2013; pp. 3–7. [Google Scholar]
- Romaniello, V.; Spinetti, C.; Silvestri, M.; Buongiorno, M.F. A Methodology for CO2 Retrieval Applied to Hyperspectral PRISMA Data. Remote Sens. 2021, 13, 4502. [Google Scholar] [CrossRef]
- Carn, S.A.; Fioletov, V.E.; McLinden, C.A.; Li, C.; Krotkov, N.A. A decade of global volcanic SO2 emissions measured from space. Sci. Rep. 2017, 7, 44095. [Google Scholar] [CrossRef]
Description | Value |
---|---|
Endurance | Up to 40 min |
Range | 15 km |
Payload capacity | up to 2 kg |
Wind tolerance | Up to 28 knots |
Climb rate | Up to 5 m/s |
Speed | 20 m/s (manual); 12 m/s (GPS) |
Case | Waterproof IPX5 |
Temperature | −20 °C to 45 °C |
Materials | Single fiver carbon frame. Fiver carbon blades and rods. |
Site | Date | UAS/Ground |
---|---|---|
Pisciarelli | November 2021, July 2022 | UAS |
Parco Naturalistico delle Biancane | May 2022 | Ground (hand) |
Stromboli | September 2022 | UAS |
Methodology | B4 | B6 |
---|---|---|
Granieri et al., 2023 [34] | 40.6 | 34.1 |
miniGAS PRO | 29.9 | 33.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Silvestri, M.; Diaz, J.A.; Rabuffi, F.; Romaniello, V.; Musacchio, M.; Corrales, E.; Fox, J.; Marotta, E.; Belviso, P.; Avino, R.; et al. MultiGAS Detection from Airborne Platforms on Italian Volcanic and Geothermal Areas. Remote Sens. 2023, 15, 2390. https://doi.org/10.3390/rs15092390
Silvestri M, Diaz JA, Rabuffi F, Romaniello V, Musacchio M, Corrales E, Fox J, Marotta E, Belviso P, Avino R, et al. MultiGAS Detection from Airborne Platforms on Italian Volcanic and Geothermal Areas. Remote Sensing. 2023; 15(9):2390. https://doi.org/10.3390/rs15092390
Chicago/Turabian StyleSilvestri, Malvina, Jorge Andres Diaz, Federico Rabuffi, Vito Romaniello, Massimo Musacchio, Ernesto Corrales, James Fox, Enrica Marotta, Pasquale Belviso, Rosario Avino, and et al. 2023. "MultiGAS Detection from Airborne Platforms on Italian Volcanic and Geothermal Areas" Remote Sensing 15, no. 9: 2390. https://doi.org/10.3390/rs15092390
APA StyleSilvestri, M., Diaz, J. A., Rabuffi, F., Romaniello, V., Musacchio, M., Corrales, E., Fox, J., Marotta, E., Belviso, P., Avino, R., Avvisati, G., & Buongiorno, M. F. (2023). MultiGAS Detection from Airborne Platforms on Italian Volcanic and Geothermal Areas. Remote Sensing, 15(9), 2390. https://doi.org/10.3390/rs15092390