Orthorectification of Data from the AHI Aboard the Himawari-8 Geostationary Satellite
Abstract
:1. Introduction
2. Materials
2.1. The Himawari-8 AHI
2.2. Height Data
3. Methods
3.1. Orthorectification
3.1.1. Output Image Frame to Latitude, Longitude, and Height
3.1.2. Latitude, Longitude, and Height to the Earth-Centered, Earth-Fixed Coordinates
3.1.3. Intersection of Line-of-Sight Vector and the Earth’s Ellipsoid
3.1.4. Latitude and Longitude of Intersection
3.1.5. Latitude and Longitude to Pixel Position in Input Image
3.2. Operational Georectification
3.3. Orthorectification of the Himawari-8 AHI and Its Generalization
4. Results
4.1. Comparison with Sentinel-2 MSI
4.2. Change in Pixel Positions from Orthorectification
4.3. Generalization
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Toutin, T. Review article: Geometric processing of remote sensing images: Models, algorithms and methods. Int. J. Remote Sens. 2004, 25, 1893–1924. [Google Scholar] [CrossRef]
- Nishihama, M.; Wolfe, R.; Solomon, D.; Patt, F.; Blanchette, J.; Fleig, A.; Masuoka, E. MODIS Level 1A Earth Location: Algorithm Theoretical Basis Document Version 3.0. 1997. Available online: https://modis.gsfc.nasa.gov/data/atbd/atbd_mod28_v3.pdf (accessed on 30 August 2022).
- Matsuoka, M.; Honda, R.; Nonomura, A.; Moriya, H.; Akatsuka, S.; Yoshioka, H.; Takagi, M. A method to improve geometric accuracy of Himawari-8/AHI “Japan area” data. Jpn. Soc. Photogramm. Remote Sens. 2016, 54, 280–289, (In Japanese with English Summary). [Google Scholar] [CrossRef]
- Takenaka, H.; Sakashita, T.; Higuchi, A.; Nakajima, T. Geolocation correction for geostationary satellite observations by a phase-only correlation method using a visible channel. Remote Sens. 2020, 12, 2472. [Google Scholar] [CrossRef]
- Yamamoto, Y.; Ichii, K.; Higuchi, A.; Takenaka, H. Geolocation accuracy assessment of Himawari-8/AHI imagery for application to terrestrial monitoring. Remote Sens. 2020, 12, 1372. [Google Scholar] [CrossRef]
- Kocaman, S.; Debaecker, V.; Bas, S.; Saunier, S.; Garcia, K.; Just, D. A comprehensive geometric quality assessment approach for MSG SEVIRI imagery. Adv. Space Res. 2022, 69, 1462–1480. [Google Scholar] [CrossRef]
- Pestana, S.; Lundquist, J.D. Evaluating GOES-16 ABI surface brightness temperature observation biases over the central Sierra Nevada of California. Remote Sens. Environ. 2022, 281, 113221. [Google Scholar] [CrossRef]
- Greve, C.W.; Molander, C.W.; Gordon, D.K. Image processing on open systems. Photogramm. Eng. Remote Sens. 1992, 58, 85–89. [Google Scholar]
- Dowman, I.; Dolloff, J.T. An evaluation of rational functions for photogrammetric restitution. Int. Arch. Photogramm. Remote Sens. 2000, 33, 254–266. [Google Scholar]
- Tao, C.V.; Hu, Y. A comprehensive study of the rational function model for photogrammetric processing. Photogramm. Eng. Remote Sens. 2001, 67, 1347–1358. [Google Scholar]
- Dowman, I.; Tao, V. An update on the use of rational functions for photogrammetric restitution. ISPRS Highlights 2002, 7, 22–29. [Google Scholar]
- Hu, Y.; Tao, V.; Croitoru, A. Understanding the rational function model: Methods and applications. Int. Arch. Photogramm. Remote Sens. 2004, 20, 119–124. [Google Scholar]
- Sadeghian, S.; Zoej, M.J.V.; Delavar, M.R.; Abootalebi, A. Precision rectification of high resolution satellite imagery without ephemeris data. Int. J. Appl. Earth Obs. Geoinf. 2001, 3, 366–371. [Google Scholar] [CrossRef]
- Gerlach, F. Characteristics of Space Imaging’s one-meter resolution satellite imagery products. Int. Arch. Photogramm. Remote Sens. 2000, 33, 128–135. [Google Scholar]
- Baltsavias, E.P.; Pateraki, M.N.; Zhang, L. Radiometric and geometric evaluation of Ikonos GEO images and their use for 3D building modelling. In Proceedings of the Joint Workshop of ISPRS Working Groups I/2, I/5 and IV/7 High Resolution Mapping from Space 2001. ETH Hönggerberg, Institute of Geodesy and Photogrammetry, Hanover, Germany, 19–21 September 2001. [Google Scholar]
- Wiesel, J. Digital image processing for orthophoto generation. Photogrammetria 1985, 40, 69–76. [Google Scholar] [CrossRef]
- O’Neill, M.; Dowman, I. The generation of epipolar synthetic stereo mates for SPOT images using a DEM. Int. Arcives Photogramm. Remote Sens. 1988, 27, 587–598. [Google Scholar]
- Mayr, W.; Heipke, C. A contribution to digital orthophoto generation. Int. Arch. Photogramm. Remote Sens. 1988, 27, 430–439. [Google Scholar]
- Sheng, Y. Comparative evaluation of iterative and non-iterative methods to ground coordinate determination from single aerial images. Comput. Geosci. 2004, 30, 267–279. [Google Scholar] [CrossRef]
- Sheng, Y. Theoretical analysis of the iterative photogrammetric method to determining ground coordinates from photo coordinates and a DEM. Photogramm. Eng. Remote Sens. 2005, 71, 863–871. [Google Scholar] [CrossRef]
- Chen, L.C.; Lee, L.H. Rigorous generation of digital orthophotos from SPOT images. Photogramm. Eng. Remote Sens. 1993, 59, 655–661. [Google Scholar]
- Kim, T.; Shin, D.; Lee, Y.R. Development of a robust algorithm for transformation of a 3D object point onto a 2D image point for linear pushbroom imagery. Photogramm. Eng. Remote Sens. 2001, 67, 449–452. [Google Scholar]
- Marsetič, A.; Oštir, K.; Fras, M.K. Automatic Orthorectification of High-Resolution Optical Satellite Images Using Vector Roads. IEEE Trans. Geosci. Remote Sens. 2015, 53, 6035–6047. [Google Scholar] [CrossRef]
- Miura, T.; Nagai, S. Monitoring terrestrial vegetation and the environment with new-generation geostationary satellites. J. Remote Sens. Soc. Jpn. 2019, 39, 377–383. [Google Scholar] [CrossRef]
- Takeuchi, W.; Yasuoka, Y. Precise geometric correction of MTSAT imagery. In Proceedings of the Asian Conference on Remote Sensing (ACRS), Kuala Lumpur, Malaysia, 12–16 November 2007. [Google Scholar]
- Tucker, C.J.; Grant, D.M.; Dykstra, J.D. NASA’s global orthorectified Landsat data set. Photogramm. Eng. Remote Sens. 2004, 70, 313–322. [Google Scholar] [CrossRef]
- Aksakal, S.K.; Baltsavias, E.; Schindler, K. Analysis of the geometric accuracy of MSG-SEVIRI imagery with focus on estimation of climate variables. In Proceedings of the 34th Asian Conference on Remote Sensing 2013, Bali, Indonesia, 20–24 October 2013. [Google Scholar]
- Aksakal, S.K. Geometric accuracy investigations of SEVIRI High Resolution Visible (HRV) Level 1.5 imagery. Remote Sens. 2013, 5, 2475–2491. [Google Scholar] [CrossRef]
- Kocaman, S.; Debaecker, V.; Bas, S.; Saunier, S.; Garcia, K.; Just, D. Investigations on the global image datasets for the absolute geometric quality assemement of MSG SEVIRI imagery. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2020, 43, 1339–1346. [Google Scholar] [CrossRef]
- Debaecker, V.; Kocaman, S.; Saunier, S.; Garcia, K.; Bas, S.; Just, D. On the geometric accuracy and stability of MSG SEVIRI images. Atmos. Environ. 2021, 262, 118645. [Google Scholar] [CrossRef]
- Yasukawa, M.; Takagi, M. Geometric Correction Considering the Elevation for GMS S-VISSR Data. J. Jpn. Soc. Photogramm. Remote Sens. 2004, 42, 33–41, (In Japanese with English Summary). [Google Scholar] [CrossRef]
- Takeuchi, W.; Oyoshi, K.; Akatsuka, S. Precise geometric correction of Himawari-8 (AHI). In Proceedings of the International Stereotactic Radiosurgery Society (ISRS2015), Tainan, Taiwan, 22–24 April 2015; pp. 45–46. [Google Scholar]
- Takeuchi, W. Assessment of geometric errors of Advanced Himawari-8 Imager (AHI) over one year operation. In Proceedings of the IOP Conference Series: Earth and Environmental Science, Kuala Lumpur, Malaysia, 13–14 April 2016; Volume 37, p. 012004. [Google Scholar] [CrossRef]
- Wang, W.; Li, S.; Hashimoto, H.; Takenaka, H.; Higuchi, A.; Kalluri, S.; Nemani, R. An introduction to the Geostationary-NASA Earth Exchange (GeoNEX) products: 1. Top-of-atmosphere reflectance and brightness temperature. Remote Sens. 2020, 12, 1267. [Google Scholar] [CrossRef]
- Pestana, S.; Lundquist, J. Orthorectifying GOES ABI imagery for mountain surface temperature observations. In Proceedings of the AGU Fall Meeting Abstracts, New Orleans, LA, USA, 13–17 December 2021; Volume 2021, p. A22B–03. Available online: https://www.youtube.com/watch?v=MNX-abbf6TE (accessed on 30 August 2022).
- ESA. Sentinel-2 User Handbook. 2015. Available online: https://sentinel.esa.int/documents/247904/685211/sentinel-2_user_handbook (accessed on 31 October 2022).
- Bessho, K.; Date, K.; Hayashi, M.; Ikeda, A.; Imai, T.; Inoue, H.; Kumagai, Y.; Miyakawa, T.; Murata, H.; Ohno, T.; et al. An introduction to Himawari-8/9-Japan’s new-generation geostationary meteorological satellites. J. Meteorol. Soc. Jpn. Ser. II 2016, 94, 151–183. [Google Scholar] [CrossRef]
- Japan Meteorological Agency. Himawari–8/9 Himawari Standard Data User’s Guide (Version 1.3). 2017. Available online: https://www.data.jma.go.jp/mscweb/en/support/support.html (accessed on 30 August 2022).
- Coordination Group for Meteorological Satellites. LRIT/HRIT Global Specification (Issue 2.8). 2013. Available online: https:118//www.cgms-info.org/wp-content/uploads/2021/10/cgms-lrit-hrit-global-specification-(v2-8-of-30-oct-2013).pdf (accessed on 30 August 2022).
- National Satellite Meteorological Center. FENGYUN Satellite Data Center Home Page. Available online: http://satellite.nsmc.org.cn/PortalSite/Data/Satellite.aspx (accessed on 30 August 2022).
- NOAA; NASA. GOES R Series Product Definition and Users’ Guide (Revision 2.2). 2019. Available online: https://www.goes-r.gov/users/docs/PUG-L1b-vol3.pdf (accessed on 30 August 2022).
- Danielson, J.J.; Gesch, D.B. Global Multi-Resolution Terrain Elevation Data 2010 (GMTED2010). 2011. Available online: https://www.usgs.gov/publications/global-multi-resolution-terrain-elevation-data-2010-gmted2010 (accessed on 30 August 2022).
- Pavlis, N.K.; Holmes, S.A.; Kenyon, S.C.; Factor, J.K. The development and evaluation of the Earth Gravitational Model 2008 (EGM2008). J. Geophys. Res. Soild Earth 2012, 117, B04406. [Google Scholar] [CrossRef]
- Meteorological Satellite Center of Japan Meteorological Agency. Sample Source Code (C Programming Language). Available online: https://www.data.jma.go.jp/mscweb/en/himawari89/space_segment/spsg_sample.html (accessed on 30 August 2022).
- Wessel, P.; Smith, W.H. A global, self-consistent, hierarchical, high-resolution shoreline database. J. Geophys. Res. Soild Earth 1996, 101, 8741–8743. [Google Scholar] [CrossRef]
- Meteorological Satellite Center of Japan Meteorological Agency. Himawari Series Satellite Image Navigation and Registration (INR). Available online: https://www.data.jma.go.jp/mscweb/data/monitoring/navigation.html (accessed on 1 September 2022).
- Kim, H.G.; Son, J.H.; Kim, T. Geometric correction for the geostationary ocean color imager from a combination of shoreline matching and frequency matching. Sensors 2018, 18, 3599. [Google Scholar] [CrossRef]
- Adachi, Y.; Kikuchi, R.; Obata, K.; Yoshioka, H. Relative azimuthal-angle matching (RAM): A screening method for GEO-LEO reflectance comparison in middle latitude forests. Remote Sens. 2019, 11, 1095. [Google Scholar] [CrossRef]
- Obata, K.; Yoshioka, H. A Simple Algorithm for Deriving an NDVI-Based Index Compatible between GEO and LEO Sensors: Capabilities and Limitations in Japan. Remote Sens. 2020, 12, 2417. [Google Scholar] [CrossRef]
- Obata, K.; Taniguchi, K.; Matsuoka, M.; Yoshioka, H. Development and Demonstration of a Method for GEO-to-LEO NDVI Transformation. Remote Sens. 2021, 13, 4085. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Matsuoka, M.; Yoshioka, H. Orthorectification of Data from the AHI Aboard the Himawari-8 Geostationary Satellite. Remote Sens. 2023, 15, 2403. https://doi.org/10.3390/rs15092403
Matsuoka M, Yoshioka H. Orthorectification of Data from the AHI Aboard the Himawari-8 Geostationary Satellite. Remote Sensing. 2023; 15(9):2403. https://doi.org/10.3390/rs15092403
Chicago/Turabian StyleMatsuoka, Masayuki, and Hiroki Yoshioka. 2023. "Orthorectification of Data from the AHI Aboard the Himawari-8 Geostationary Satellite" Remote Sensing 15, no. 9: 2403. https://doi.org/10.3390/rs15092403
APA StyleMatsuoka, M., & Yoshioka, H. (2023). Orthorectification of Data from the AHI Aboard the Himawari-8 Geostationary Satellite. Remote Sensing, 15(9), 2403. https://doi.org/10.3390/rs15092403