Why Rivers Disappear—Remote Sensing Analysis of Postmining Factors Using the Example of the Sztoła River, Poland
Abstract
:1. Introduction
2. Area of Interest
3. Methods
3.1. Input Data
- NDWI (I variant)
- NDWI (II variant)
- NDVI
- MSAVI2
- NMDI Soil
- MSI
3.2. Methods Used to Evaluate Results
4. Results
4.1. NMDI Soil—Soil Moisture Assessment
4.2. MSAVI2—Vegetation Condition Assessment
4.3. MSI—Water Stress Assessment
4.4. Cross-Index Validation
5. Discussion
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- West, H.; Quinn, N.; Horswell, M. Remote Sensing for Drought Monitoring & Impact Assessment: Progress, Past Challenges and Future Opportunities. Remote Sens. Environ. 2019, 232, 111291. [Google Scholar]
- Hung, T.L.; Vu, D.T. Application of Remote Sensing Technique for Drought Assessment Based on Normalized Difference Drought Index, a Case Study of Bac Binh District, Binh Thuan Province (Vietnam). Russ. J. Earth Sci. 2019, 19, ES2003. [Google Scholar] [CrossRef]
- Ford, T.W.; Quiring, S.M. Comparison of Contemporary in Situ, Model, and Satellite Remote Sensing Soil Moisture with a Focus on Drought Monitoring. Water Resour. Res. 2019, 55, 1565–1582. [Google Scholar] [CrossRef]
- Nagendra, H.; Lucas, R.; Honrado, J.P.; Jongman, R.H.G.; Tarantino, C.; Adamo, M.; Mairota, P. Remote Sensing for Conservation Monitoring: Assessing Protected Areas, Habitat Extent, Habitat Condition, Species Diversity, and Threats. Ecol. Indic. 2013, 33, 45–59. [Google Scholar] [CrossRef]
- Mulder, V.L.; de Bruin, S.; Schaepman, M.E.; Mayr, T.R. The Use of Remote Sensing in Soil and Terrain Mapping—A Review. Geoderma 2011, 162, 1–19. [Google Scholar] [CrossRef]
- Wulder, M. Optical Remote-Sensing Techniques for the Assessment of Forest Inventory and Biophysical Parameters. Prog. Phys. Geogr. 1998, 22, 449–476. [Google Scholar] [CrossRef]
- Wang, Y.; Bian, Z.; Lei, S.; Zhang, Y. Investigating Spatial and Temporal Variations of Soil Moisture Content in an Arid Mining Area Using an Improved Thermal Inertia Model. J. Arid Land 2017, 9, 712–726. [Google Scholar] [CrossRef]
- Howladar, M.F. Coal Mining Impacts on Water Environs Around the Barapukuria Coal Mining Area, Dinajpur, Bangladesh. Environ. Earth Sci. 2013, 70, 215–226. [Google Scholar] [CrossRef]
- Libicki, J. Changes in the Groundwater Due to Surface Mining. Int. J. Mine Water 1982, 1, 25–30. [Google Scholar] [CrossRef]
- Elsworth, D.; Liu, J. Topographic Influence of Longwall Mining on Ground-Water Supplies. Groundwater 1995, 33, 786–793. [Google Scholar] [CrossRef]
- ERMITE-Consortium; Younger, P.L.; Wolkersdorfer, C. Mining Impacts on the Fresh Water Environment: Technical and Managerial Guidelines for Catchment Scale Management. Mine Water Environ. 2004, 23, 2–80. [Google Scholar] [CrossRef]
- Cidu, R.; Biagini, C.; Fanfani, L.; La Ruffa, G.; Marras, I. Mine Closure at Monteponi (Italy): Effect of the Cessation of Dewatering on the Quality of Shallow Groundwater. Appl. Geochem. 2001, 16, 489–502. [Google Scholar] [CrossRef]
- Gerwin, W.; Raab, T.; Birkhofer, K.; Hinz, C.; Letmathe, P.; Leuchner, M.; Roß-Nickoll, M.; Rüde, T.; Trachte, K.; Wätzold, F.; et al. Perspectives of Lignite Post-mining Landscapes Under Changing Environmental Conditions: What Can We Learn from a Comparison Between the Rhenish and Lusatian Region in Germany. Environ. Sci. Eur. 2023, 35, 36. [Google Scholar] [CrossRef]
- Bucher, B.; Simon, S. Groundwater Rise in the Rhenish Lignite Mining Area. World Min.-Surf. Undergr. 2016, 68, 21–27. [Google Scholar]
- Forkel, V. Aspects of Groundwater Rise in the Rhenish Mining Area. In Proceedings of the Dresden Grundwassertage, Dresden, Germany, 16–17 May 2011; Proc DGFZ: Dresden, Germany; Volume 45, pp. 137–150. [Google Scholar]
- Grünewald, U.; Schoenheinz, D. Bergbaubedingte Gewässerversauerung in der Niederlausitz—Ursachen, Ausmass und Minderungskonzepte. Hydrol. Wasserbewirtsch. 2014, 58, 1439–1783. [Google Scholar]
- Sun, X.; Yuan, L.; Liu, M.; Liang, S.; Li, D.; Liu, L. Quantitative Estimation for the Impact of Mining Activities on Vegetation Phenology and Identifying its Controlling Factors from Sentinel-2 Time Series. Int. J. Appl. Earth Obs. Geoinf. 2022, 111, 102814. [Google Scholar] [CrossRef]
- Jawecki, B.; Dabek, K.; Paweska, P.; Wei, X. Estimating Water Retention in Post-mining Excavations Using Lidar ALS Data for the Strzelin Quarry, in Lower Silesia. Mine Water Environ. 2018, 37, 744–753. [Google Scholar] [CrossRef]
- Deshayes, M.; Guyon, D.; Jeanjean, H.; Stach, N.; Jolly, A.; Hagolle, O. The Contribution of Remote Sensing to the Assessment of Drought Effects in Forest Ecosystems. Ann. For. Sci. 2006, 63, 579–595. [Google Scholar] [CrossRef]
- AghaKouchak, A.; Farahmand, A.; Melton, F.S.; Teixeira, J.; Anderson, M.C.; Wardlow, B.D.; Hain, C.R. Remote Sensing of Drought: Progress, Challenges and Opportunities. Rev. Geophys. 2015, 53, 452–480. [Google Scholar] [CrossRef]
- Mikaili, O.; Rahimzadegan, M. Investigating Remote Sensing Indices to Monitor Drought Impacts on a Local Scale (Case Study: Fars Province, Iran). Nat. Hazards 2022, 111, 2511–2529. [Google Scholar] [CrossRef]
- Mahesh Babu, C.; Hemalatha, T.; Ranga Naik, B. Comparison of Remote Sensing Based Indices for Drought Monitoring in Anantapur. Int. J. Appl. Res. 2016, 2, 449–456. [Google Scholar]
- Wang, F.; Wang, Z.; Yang, H.; Zhao, Y.; Li, Z.; Wu, J. Capability of Remotely Sensed Drought Indices for Representing the Spatio–Temporal Variations of the Meteorological Droughts in the Yellow River Basin. Remote Sens. 2018, 10, 1834. [Google Scholar] [CrossRef]
- Jakomulska, A.; Zagajewski, B.; Traut, A. Application of Field Remote Sensing Techniques for Vegetation Investigation. Case Study of Siwica Glade Reserve. Misc. Geogr. 2002, 10, 279–306. [Google Scholar] [CrossRef]
- Kycko, M.; Zagajewski, B.; Lavender, S.; Romanowska, E.; Zwijacz-Kozica, M. The Impact of Tourist Traffic on the Condition and Cell Structures of Alpine Swards. Remote Sens. 2018, 10, 220. [Google Scholar] [CrossRef]
- Ochtyra, A.; Zagajewski, B.; Kozłowska, A.; Marcinkowska-Ochtyra, A.; Jarocinska, A. Ocena Kondycji Drzewostanów Tatrzańskiego Parku Narodowego za Pomocą Metody Drzewa Decyzyjnego oraz Wielospektralnych Obrazów Satelitarnych Landsat 5 TM. Sylwan 2016, 160, 256–264. [Google Scholar]
- Rouse, J.W. Monitoring the Vernal Advancements and Retrogradation (Green Wave Effect) of Natural Vegetation; NASA/GSFC Final Report; NASA/GSFC: Greenbelt, MD, USA, 1974.
- Tucker, C.J.; Pinzon, J.E.; Brown, M.E.; Slayback, D.A.; Pak, E.W.; Mahoney, R.; Vermote, E.F.; El Saleous, N. An Extended AVHRR 8-km NDVI Dataset Compatible with MODIS and SPOT Vegetation NDVI Data. Int. J. Remote Sens. 2005, 26, 4485–4498. [Google Scholar] [CrossRef]
- Qi, J.; Chehbouni, A.; Huete, A.R.; Kerr, Y.H.; Sorooshian, S. A Modified Soil Adjusted Vegetation Index. Remote Sens. Environ. 1994, 48, 119–126. [Google Scholar] [CrossRef]
- Ceccato, P.; Flasse, S.; Tarantola, S.; Jacquemoud, S.; Grégoire, J.M. Detecting Vegetation Leaf Water Content Using Reflectance in the Optical Domain. Remote Sens. Environ. 2001, 77, 22–33. [Google Scholar] [CrossRef]
- Gao, B. NDWI a Normalized Difference Water Index for Remote Sensing of Vegetation Liquid Water from Space. Remote Sens. Environ. 1996, 58, 257–266. [Google Scholar] [CrossRef]
- Gu, Y.; Brown, J.F.; Verdin, J.P.; Wardlow, B. A Five-year Analysis of MODIS NDVI and NDWI for Grassland Drought Assessment over the Central Great Plains of the United States. Geophys. Res. Lett. 2007, 34, 1–6. [Google Scholar] [CrossRef]
- Islam, M.A.; Sado, K. Development of Flood Hazard Maps of Bangladesh Using NOAA-AVHRR Images with GIS. Hydrol. Sci. J. 2000, 45, 337–355. [Google Scholar] [CrossRef]
- Xiao, X.; Boles, S.; Frolking, S.; Li, C.; Babu, J.Y.; Salas, W.; Moore, B., III. Mapping Paddy Rice Agriculture in South and Southeast Asia Using Multi-temporal MODIS Images. Remote Sens. Environ. 2006, 100, 95–113. [Google Scholar] [CrossRef]
- Pettorelli, N.; Vik, J.O.; Mysterud, A.; Gaillard, J.M.; Tucker, C.J.; Stenseth, N.C. Using the Satellite-derived NDVI to Assess Ecological Responses to Environmental Change. Trends Ecol. Evol. 2005, 20, 503–510. [Google Scholar] [CrossRef] [PubMed]
- Fensholt, R.; Sandholt, I. Derivation of a Shortwave Infrared Water Stress Index from MODIS Near-and Shortwave Infrared Data in a Semiarid Environment. Remote Sens. Environ. 2003, 87, 111–121. [Google Scholar] [CrossRef]
- Roerink, G.J.; Menenti, M.; Verhoef, W. Reconstructing Cloud-free NDVI Composites Using Fourier Analysis of Time Series. Int. J. Remote Sens. 2000, 21, 1911–1917. [Google Scholar] [CrossRef]
- Feng, W.; Zhong, M.; Lemoine, J.M.; Biancale, R.; Hsu, H.T.; Xia, J. Evaluation of Groundwater Depletion in North China Using the Gravity Recovery and Climate Experiment (GRACE) Data and Ground-based Measurements. Water Resour. Res. 2013, 49, 2110–2118. [Google Scholar] [CrossRef]
- Peñuelas, J.; Filella, I.; Biel, C.; Serrano, L.; Save, R. The Reflectance at the 950–970 nm Region as an Indicator of Plant Water Status. Int. J. Remote Sens. 1993, 14, 1887–1905. [Google Scholar] [CrossRef]
- Buma, W.G.; Lee, S.-I. Multispectral Image-Based Estimation of Drought Patterns and Intensity around Lake Chad, Africa. Remote Sens. 2019, 11, 2534. [Google Scholar] [CrossRef]
- Bijaber, N.; El Hadani, D.; Saidi, M.; Svoboda, M.D.; Wardlow, B.D.; Hain, C.R.; Poulsen, C.C.; Yessef, M.; Rochdi, A. Developing a Remotely Sensed Drought Monitoring Indicator for Morocco. Geosciences 2018, 8, 55. [Google Scholar] [CrossRef]
- Godzik, B. Natural and Historical Values of the Olkusz Ore-bearing Region. Acta Biol. Cracoviensia Ser. Bot. 2015, 17–24. [Google Scholar]
- Skorek, A. Pustynia Błędowska. Available online: https://dnidziedzictwa.pl/pustynia-bledowska/ (accessed on 1 June 2023).
- Instytut Gospodarki Przestrzennej i Komunalnej w Krakowie. Available online: https://bip.malopolska.pl/e,pobierz,get.html?id=1293988 (accessed on 1 June 2023).
- Balcer, B. Flora Roslin Naczyniowych Projektowanego Obszaru Chronionego Krajobrazu “Dolina Sztoły”. Arch. Ochr. Sr. 2001, 27, 137–149. [Google Scholar]
- McFeeters, S.K. The Use of the Normalized Difference Water Index (NDWI) in the Delineation of Open Water Features. Int. J. Remote Sens. 1996, 17, 1425–1432. [Google Scholar] [CrossRef]
- Wang, L.; Qu, J.; Hao, X. Forest Fire Detection Using the Normalized Multi-Band Drought Index (NMDI) with Satellite Measurements. Agric. For. Meteorol. 2008, 148, 1767–1776. [Google Scholar] [CrossRef]
- Jones, H.; Vaughan, R. Remote Sensing of Vegetation: Principles, Techniques, and Applications; Oxford University Press: Oxford, UK, 2010; 353p. [Google Scholar]
- Jiang, Z.; Huete, A.; Li, J.; Qi, J. Interpretation of the Modified Soil-adjusted Vegetation Index Isolines in Red-NIR Reflectance Space. J. Appl. Remote Sens. 2007, 1, 013503. [Google Scholar] [CrossRef]
- Hunt, E.; Rock, B. Detection of Changes in Leaf Water Content Using Near and Middle-infrared Reflectances. Remote Sens. Environ. 1989, 30, 43–54. [Google Scholar]
- Pettorelli, N.; Laurance, W.F.; O’Brien, T.G.; Wegmann, M.; Nagendra, H.; Turner, W. Satellite Remote Sensing for Applied Ecologists: Opportunities and Challenges. J. Appl. Ecol. 2014, 51, 839–848. [Google Scholar] [CrossRef]
- Ji, L.; Peters, A.J. Assessing Vegetation Response to Drought in the Northern Great Plains Using Vegetation and Drought Indices. Remote Sens. Environ. 2003, 87, 85–98. [Google Scholar] [CrossRef]
- Fensholt, R.; Langanke, T.; Rasmussen, K.; Reenberg, A.; Prince, S.D.; Tucker, C.; Scholes, R.J.; Le, Q.B.; Bondeau, A.; Eastman, R.; et al. Greenness in Semi-Arid Areas Across the Globe 1981–2007—An Earth Observing Satellite Based Analysis of Trends and Drivers. Remote Sens. Environ. 2012, 121, 144–158. [Google Scholar] [CrossRef]
- Huntington, T.G. Evidence for Intensification of the Global Water Cycle: Review and Synthesis. J. Hydrol. 2006, 319, 83–95. [Google Scholar] [CrossRef]
- Cien, D.; Motyka, J.; D’Obyrn, K. Changes in the Flow Rate of the Sztola River (Olkusz Area) Under Mining Drainage Conditions. Prz. Geol. 2022, 70, 761–769. [Google Scholar]
- A/RES/70/1; Transforming Our World: The 2030 Agenda for Sustainable Development. United Nations General Assembly: New York, NY, USA, 2015.
- A Sustainable European Future: The EU Response to the 2030 Agenda for Sustainable Development—Council Conclusions; Council of the European Union: Brussels, Belgium, 2017.
- Wehnert, T.; Bierwirth, A.; Buschka, M.; Hermwille, L.; Mersmann, L. Phasing-Out Coal, Reinventing European Regions—An Analysis of EU Structural Funding in Four European Coal Regions; Wuppertal Institute for Climate, Environment and Energy: Wuppertal, Germany, 2017. [Google Scholar]
- Skoczkowski, T.; Bielecki, S.; Kochański, M.; Korczak, K. Climate-change induced uncertainties, risks and opportunities for the coal-based region of Silesia: Stakeholders’ perspectives. Environ. Innov. Soc. Transit. 2020, 35, 460–481. [Google Scholar] [CrossRef]
- Różkowski, J.; Rahmonov, O.; Zarychta, R.; Zarychta, A. Environmental Transformation and the Current State of Hydrogeological Condition in the Wojkowice Area—Southern Poland. Resources 2021, 10, 54. [Google Scholar] [CrossRef]
- Migaszewski, Z.M.; Gałuszka, A.; Dołęgowska, S. Rare earth and trace element signatures for assessing an impact of rock mining and processing on the environment: Wiśniówka case study, south-central Poland. Environ. Sci. Pollut. Res. 2016, 23, 24943–24959. [Google Scholar] [CrossRef] [PubMed]
- Dębiec, K. Drought in the Czech Republic: The Political, Economic and Social Consequences; OSW Report; Centre for Eastern Studies: Warsaw, Poland, 2021.
- McKenna, P.B.; Lechner, A.M.; Phinn, S.; Erskine, P.D. Remote Sensing of Mine Site Rehabilitation for Ecological Outcomes: A Global Systematic Review. Remote Sens. 2020, 12, 3535. [Google Scholar] [CrossRef]
- Buczyńska, A.; Blachowski, J.; Bugajska-Jędraszek, N. Analysis of Post-Mining Vegetation Development Using Remote Sensing and Spatial Regression Approach: A Case Study of Former Babina Mine (Western Poland). Remote Sens. 2023, 15, 719. [Google Scholar] [CrossRef]
- Przeździecki, K.; Zawadzki, J.; Miatkowski, Z. Use of the temperature–vegetation dryness index for remote sensing grassland moisture conditions in the vicinity of a lignite open-cast mine. Environ. Earth Sci. 2018, 77, 623. [Google Scholar] [CrossRef]
Index | Sentinel-2 Bands | Formula | Source |
---|---|---|---|
NDWI (I variant) | B8A, B12 | [46] | |
NDWI (II variant) | B03, B08 | [31] | |
NDVI | B04, B08 | (NIR−RED)/(NIR+RED) | [27] |
MSAVI2 | B04, B08 | [29] | |
NMDI | B8A, B11, B12 | If NDVI ≥ 0.4: If NDVI < 0.4: | [47] |
MSI | B8A, B11 | SWIR1/NIR | [30] |
Index Name | MSAVI2 | MSI | NDVI | NDWI v1 | NDWI v2 | NMDI Soil |
---|---|---|---|---|---|---|
MSAVI2 | - | −0.770 | 0.961 | 0.875 | −0.942 | 0.788 |
MSI | −0.770 | - | −0.776 | −0.943 | 0.638 | −0.620 |
NDVI | 0.961 | −0.776 | - | 0.891 | −0.935 | 0.785 |
NDWI v1 | 0.875 | −0.943 | 0.891 | - | −0.764 | 0.722 |
NDWI v2 | −0.942 | 0.638 | −0.935 | −0.764 | - | −0.737 |
NMDI Soil | 0.788 | −0.620 | 0.785 | 0.722 | −0.737 | - |
Average Values | Month | 2017 | 2018 | 2019 | 2020 | 2021 | 2022 | 2023 |
---|---|---|---|---|---|---|---|---|
NMDI Soil | May | 0.539 | 0.542 | 0.538 | 0.486 | 0.479 | 0.333 | 0.340 |
August | 0.511 | 0.502 | 0.521 | 0.530 | 0.553 | 0.275 | 0.358 |
Average Values | Month | 2017 | 2018 | 2019 | 2020 | 2021 | 2022 | 2023 |
---|---|---|---|---|---|---|---|---|
MSAVI2 | May | 0.718 | 0.719 | 0.688 | 0.614 | 0.598 | 0.499 | 0.505 |
August | 0.688 | 0.661 | 0.696 | 0.708 | 0.711 | 0.461 | 0.513 |
Average Values | Month | 2017 | 2018 | 2019 | 2020 | 2021 | 2022 | 2023 |
---|---|---|---|---|---|---|---|---|
MSI | May | 0.597 | 0.600 | 0.580 | 0.702 | 0.784 | 0.717 | 0.666 |
August | 0.623 | 0.633 | 0.583 | 0.572 | 0.514 | 0.692 | 0.678 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lupa, M.; Pełka, A.; Młynarczuk, M.; Staszel, J.; Adamek, K. Why Rivers Disappear—Remote Sensing Analysis of Postmining Factors Using the Example of the Sztoła River, Poland. Remote Sens. 2024, 16, 111. https://doi.org/10.3390/rs16010111
Lupa M, Pełka A, Młynarczuk M, Staszel J, Adamek K. Why Rivers Disappear—Remote Sensing Analysis of Postmining Factors Using the Example of the Sztoła River, Poland. Remote Sensing. 2024; 16(1):111. https://doi.org/10.3390/rs16010111
Chicago/Turabian StyleLupa, Michał, Aleksandra Pełka, Mariusz Młynarczuk, Jakub Staszel, and Katarzyna Adamek. 2024. "Why Rivers Disappear—Remote Sensing Analysis of Postmining Factors Using the Example of the Sztoła River, Poland" Remote Sensing 16, no. 1: 111. https://doi.org/10.3390/rs16010111
APA StyleLupa, M., Pełka, A., Młynarczuk, M., Staszel, J., & Adamek, K. (2024). Why Rivers Disappear—Remote Sensing Analysis of Postmining Factors Using the Example of the Sztoła River, Poland. Remote Sensing, 16(1), 111. https://doi.org/10.3390/rs16010111