Greening the Urban Landscape: Assessing the Impact of Tree-Planting Initiatives and Climate Influences on Miami-Dade County’s Greenness
Abstract
:1. Introduction
2. Methods
2.1. Unit of Analysis
2.2. Study Area and Data Sources
2.3. Image Processing and Composite Creation
2.4. Mann–Kendall Tests for Greenness Trends
2.5. Climatic Variables
2.6. Lagged Effect of Precipitation on Vegetation
3. Results
3.1. Greenness Changes in Miami-Dade County
3.2. Spatial and Seasonal Patterns of Greenness Changes
3.3. Visual Comparison of Greenness Changes
3.4. Climatic Variables: Minimum Temperature
3.5. Climatic Variables: Precipitation Variability
4. Discussion
4.1. Overview of Findings
4.2. Prior Greenness Studies in Miami-Dade County
4.3. Extent of Changes in Greenness
4.4. Million Trees Miami Initiative Evaluation
4.5. Limitations
4.6. Conclusions and Future Research
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Dales, R.E.; Cakmak, S.; Judek, S.; Dann, T.; Coates, F.; Brook, J.R.; Burnett, R.T. Influence of outdoor aeroallergens on hospitalization for asthma in Canada. J. Allergy Clin. Immunol. 2004, 113, 303–306. [Google Scholar] [CrossRef] [PubMed]
- Lovasi, G.S.; Quinn, J.W.; Neckerman, K.M.; Perzanowski, M.S.; Rundle, A. Children living in areas with more street trees have lower prevalence of asthma. J. Epidemiol. Community Health 2008, 62, 647–649. [Google Scholar] [CrossRef] [PubMed]
- Nowak, D.J.; Crane, D.E.; Stevens, J.C. Air pollution removal by urban trees and shrubs in the United States. Urban For. Urban Green. 2006, 4, 115–123. [Google Scholar] [CrossRef]
- Wang, H.C.; Yousef, E. Air Quality and Pediatric Asthma-Related Emergencies. J. Asthma 2007, 44, 839–841. [Google Scholar] [CrossRef] [PubMed]
- Bowler, D.E.; Buyung-Ali, L.M.; Knight, T.M.; Pullin, A.S. A systematic review of evidence for the added benefits to health of exposure to natural environments. BMC Public Health 2010, 10, 456. [Google Scholar] [CrossRef]
- Bratman, G.N.; Hamilton, J.P.; Daily, G.C. The impacts of nature experience on human cognitive function and mental health. Ann. N. Y. Acad. Sci. 2012, 1249, 118–136. [Google Scholar] [CrossRef]
- Maller, C.; Townsend, M.; Pryor, A.; Brown, P.; St Leger, L. Healthy nature healthy people: ‘contact with nature’ as an upstream health promotion intervention for populations. Health Promot. Int. 2006, 21, 45–54. [Google Scholar] [CrossRef]
- Brown, S.C.; Lombard, J.; Wang, K.; Byrne, M.M.; Toro, M.; Plater-Zyberk, E.; Feaster, D.J.; Kardys, J.; Nardi, M.I.; Perez-Gomez, G.; et al. Neighborhood Greenness and Chronic Health Conditions in Medicare Beneficiaries. Am. J. Prev. Med. 2016, 51, 78–89. [Google Scholar] [CrossRef]
- Brown, S.C.; Mason, C.A.; Lombard, J.L.; Martinez, F.; Plater-Zyberk, E.; Spokane, A.R.; Newman, F.L.; Pantin, H.; Szapocznik, J. The Relationship of Built Environment to Perceived Social Support and Psychological Distress in Hispanic Elders: The Role of “Eyes on the Street”. J. Gerontol. Ser. B 2009, 64, 234–246. [Google Scholar] [CrossRef]
- Brown, S.C.; Perrino, T.; Lombard, J.; Wang, K.; Toro, M.; Rundek, T.; Gutierrez, C.M.; Dong, C.; Plater-Zyberk, E.; Nardi, M.I.; et al. Health Disparities in the Relationship of Neighborhood Greenness to Mental Health Outcomes in 249,405 U.S. Medicare Beneficiaries. Int. J. Environ. Res. Public Health 2018, 15, 430. [Google Scholar] [CrossRef]
- Van Dillen, S.M.; de Vries, S.; Groenewegen, P.P.; Spreeuwenberg, P. Greenspace in urban neighbourhoods and residents’ health: Adding quality to quantity. J. Epidemiol. Community Health 2012, 66, e8. [Google Scholar] [CrossRef] [PubMed]
- Pereira, G.; Christian, H.; Foster, S.; Boruff, B.J.; Bull, F.; Knuiman, M.; Giles-Corti, B. The association between neighborhood greenness and weight status: An observational study in Perth Western Australia. Environ. Health 2013, 12, 49. [Google Scholar] [CrossRef] [PubMed]
- Dadvand, P.; Villanueva, C.M.; Font-Ribera, L.; Martinez, D.; Basagaña, X.; Belmonte, J.; Vrijheid, M.; Gražulevičienė, R.; Kogevinas, M.; Nieuwenhuijsen, M.J. Risks and Benefits of Green Spaces for Children: A Cross-Sectional Study of Associations with Sedentary Behavior, Obesity, Asthma, and Allergy. Environ. Health Perspect. 2014, 122, 1329–1335. [Google Scholar] [CrossRef] [PubMed]
- Pereira, G.; Foster, S.; Martin, K.; Christian, H.; Boruff, B.J.; Knuiman, M.; Giles-Corti, B. The association between neighborhood greenness and cardiovascular disease: An observational study. BMC Public Health 2012, 12, 466. [Google Scholar] [CrossRef] [PubMed]
- Wang, K.; Lombard, J.; Rundek, T.; Dong, C.; Gutierrez, C.M.; Byrne, M.M.; Toro, M.; Nardi, M.I.; Kardys, J.; Yi, L.; et al. Relationship of Neighborhood Greenness to Heart Disease in 249 405 US Medicare Beneficiaries. J. Am. Heart Assoc. 2019, 8, e010258. [Google Scholar] [CrossRef] [PubMed]
- Miami-Dade County. Street Tree Master Plan. 2023. Available online: https://www.miamidade.gov/global/recreation/milliontrees/street-tree-master-plan.page (accessed on 1 June 2023).
- Nowak, D.J.; Greenfield, E.J. Tree and impervious cover change in U.S. cities. Urban For. Urban Green. 2012, 11, 21–30. [Google Scholar] [CrossRef]
- Zhao, M.; Escobedo, F.J.; Staudhammer, C. Spatial patterns of a subtropical, coastal urban forest: Implications for land tenure, hurricanes, and invasives. Urban For. Urban Green. 2010, 9, 205–214. [Google Scholar] [CrossRef]
- Miami-Dade County. Million Trees Miami. Available online: https://www.miamidade.gov/global/recreation/milliontrees/home.page (accessed on 1 June 2023).
- Richards, D.R.; Belcher, R.N. Global Changes in Urban Vegetation Cover. Remote Sens. 2020, 12, 23. [Google Scholar] [CrossRef]
- Madhavan, B.B.; Kubo, S.; Kurisaki, N.; Sivakumar, T.V.L.N. Appraising the anatomy and spatial growth of the Bangkok Metropolitan area using a vegetation-impervious-soil model through remote sensing. Int. J. Remote Sens. 2001, 22, 789–806. [Google Scholar] [CrossRef]
- Mathan, M.; Krishnaveni, M. Monitoring spatio-temporal dynamics of urban and peri-urban land transitions using ensemble of remote sensing spectral indices—A case study of Chennai Metropolitan Area, India. Environ. Monit. Assess. 2019, 192, 15. [Google Scholar] [CrossRef]
- Cao, L.; Li, P.; Zhang, L.; Chen, T. Remote sensing image-based analysis of the relationship between urban heat island and vegetation fraction. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2008, 37, 1379–1384. [Google Scholar]
- Green, K.; Kempka, D.; Lackey, L. Using remote sensing to detect and monitor land-cover and land-use change. Photogramm. Eng. Remote Sens. 1994, 60, 331–337. [Google Scholar]
- Shahtahmassebi, A.R.; Li, C.; Fan, Y.; Wu, Y.; Lin, Y.; Gan, M.; Wang, K.; Malik, A.; Blackburn, G.A. Remote sensing of urban green spaces: A review. Urban For. Urban Green. 2021, 57, 126946. [Google Scholar] [CrossRef]
- Zhou, J.; Chen, Y.H.; Li, J.; Weng, Q.H.; Tang, Y. Estimation and seasonal monitoring of urban vegetation abundance based on remote sensing. In Proceedings of the 15th International Conference on Geoinformatics, Nanjing, China, 25–27 May 2007. [Google Scholar]
- Bell, J.F.; Wilson, J.S.; Liu, G.C. Neighborhood Greenness and 2-Year Changes in Body Mass Index of Children and Youth. Am. J. Prev. Med. 2008, 35, 547–553. [Google Scholar] [CrossRef]
- Rhew, I.C.; Stoep, A.V.; Kearney, A.; Smith, N.L.; Dunbar, M.D. Validation of the Normalized Difference Vegetation Index as a Measure of Neighborhood Greenness. Ann. Epidemiol. 2011, 21, 946–952. [Google Scholar] [CrossRef] [PubMed]
- Wilson, J.S.; Clay, M.; Martin, E.; Stuckey, D.; Vedder-Risch, K. Evaluating environmental influences of zoning in urban ecosystems with remote sensing. Remote Sens. Environ. 2003, 86, 303–321. [Google Scholar] [CrossRef]
- Gan, M.; Deng, J.; Zheng, X.; Hong, Y.; Wang, K. Monitoring Urban Greenness Dynamics Using Multiple Endmember Spectral Mixture Analysis. PLoS ONE 2014, 9, e112202. [Google Scholar] [CrossRef]
- de la Iglesia Martinez, A.; Labib, S. Demystifying normalized difference vegetation index (NDVI) for greenness exposure assessments and policy interventions in urban greening. Environ. Res. 2023, 220, 115155. [Google Scholar] [CrossRef]
- Dutta, D.; Rahman, A.; Paul, S.K.; Kundu, A. Spatial and temporal trends of urban green spaces: An assessment using hyper-temporal NDVI datasets. Geocarto Int. 2022, 37, 7983–8003. [Google Scholar] [CrossRef]
- Zhang, W.; Randall, M.; Jensen, M.B.; Brandt, M.; Wang, Q.; Fensholt, R. Socio-economic and climatic changes lead to contrasting global urban vegetation trends. Glob. Environ. Change 2021, 71, 102385. [Google Scholar] [CrossRef]
- Long, R.W. The vegetation of southern Florida. Fla. Sci. 1974, 37, 33–45. [Google Scholar]
- Noss, R.F.; Cooperrider, A. Saving Nature’s Legacy: Protecting and Restoring Biodiversity; Island Press: Washington, DC, USA, 1994. [Google Scholar]
- Schultz, P.; Halpert, M. Global correlation of temperature, NDVI and precipitation. Adv. Space Res. 1993, 13, 277–280. [Google Scholar] [CrossRef]
- Geographic Areas Reference Manual: Chapter 11: Census Blocks and Block Groups; U.S. Department of Commerce, Economics and Statistics Administration, Bureau of the Census: Washington, DC, USA, 1994.
- Perrino, T.; Lombard, J.; Rundek, T.; Wang, K.; Dong, C.; Gutierrez, C.M.; Toro, M.; Byrne, M.M.; Nardi, M.I.; Kardys, J.; et al. Neighbourhood greenness and depression among older adults. Br. J. Psychiatry 2019, 215, 476–480. [Google Scholar] [CrossRef] [PubMed]
- Dewald, J.R.; Southworth, J.; Brown, S.C.; Szapocznik, J. Comparison of NDVI Values from Multiple Satellite Sensors to Monitor for Public Health in an Urban Sub-tropical Setting. Am. J. Geogr. Inf. Syst. 2022, 11, 33–40. [Google Scholar]
- Li, P.; Jiang, L.; Feng, Z. Cross-Comparison of Vegetation Indices Derived from Landsat-7 Enhanced Thematic Mapper Plus (ETM+) and Landsat-8 Operational Land Imager (OLI) Sensors. Remote Sens. 2014, 6, 310–329. [Google Scholar] [CrossRef]
- Trenberth, K.E. What are the Seasons? Bull. Am. Meteorol. Soc. 1983, 64, 1276–1282. [Google Scholar] [CrossRef]
- Tüshaus, J.; Dubovyk, O.; Khamzina, A.; Menz, G. Comparison of Medium Spatial Resolution ENVISAT-MERIS and Terra-MODIS Time Series for Vegetation Decline Analysis: A Case Study in Central Asia. Remote Sens. 2014, 6, 5238–5256. [Google Scholar] [CrossRef]
- De Jong, R.; de Bruin, S.; de Wit, A.; Schaepman, M.E.; Dent, D.L. Analysis of monotonic greening and browning trends from global NDVI time-series. Remote Sens. Environ. 2011, 115, 692–702. [Google Scholar] [CrossRef]
- Wessels, K.J.; van den Bergh, F.; Scholes, R.J. Limits to detectability of land degradation by trend analysis of vegetation index data. Remote Sens. Environ. 2012, 125, 10–22. [Google Scholar] [CrossRef]
- McLeod, A. Kendall Rank Correlation and Mann-Kendall Trend Test. R Package Kendall 2005, 602, 1–10. [Google Scholar]
- Zhu, D.; Ilyas, A.M.; Wang, G.; Zeng, B. Long-term hydrological assessment of remote sensing precipitation from multiple sources over the lower Yangtze River basin, China. Meteorol. Appl. 2021, 28, e1991. [Google Scholar] [CrossRef]
- World Meteorological Organization. WMO Guidelines on the Calculation of Climate Normals; World Meteorological Organization: Geneva, Switzerland, 2017. [Google Scholar]
- Gessner, U.; Naeimi, V.; Klein, I.; Kuenzer, C.; Klein, D.; Dech, S. The relationship between precipitation anomalies and satellite-derived vegetation activity in Central Asia. Glob. Planet. Change 2013, 110, 74–87. [Google Scholar] [CrossRef]
- Kong, D.; Miao, C.; Wu, J.; Zheng, H.; Wu, S. Time lag of vegetation growth on the Loess Plateau in response to climate factors: Estimation, distribution, and influence. Sci. Total. Environ. 2020, 744, 140726. [Google Scholar] [CrossRef] [PubMed]
- Huxman, T.E.; Smith, M.D.; Fay, P.A.; Knapp, A.K.; Shaw, M.R.; Loik, M.E.; Smith, S.D.; Tissue, D.T.; Zak, J.C.; Weltzin, J.F.; et al. Convergence across biomes to a common rain-use efficiency. Nature 2004, 429, 651–654. [Google Scholar] [CrossRef] [PubMed]
- Piao, S.; Liu, Q.; Chen, A.; Janssens, I.A.; Fu, Y.; Dai, J.; Liu, L.; Lian, X.; Shen, M.; Zhu, X. Plant phenology and global climate change: Current progresses and challenges. Glob. Change Biol. 2019, 25, 1922–1940. [Google Scholar] [CrossRef]
- Fang, J.; Piao, S.; Zhou, L.; He, J.; Wei, F.; Myneni, R.B.; Tucker, C.J.; Tan, K. Precipitation patterns alter growth of temperate vegetation. Geophys. Res. Lett. 2005, 32, L21411. [Google Scholar] [CrossRef]
- Brooks, P.D.; Troch, P.A.; Durcik, M.; Gallo, E.; Schlegel, M. Quantifying regional scale ecosystem response to changes in precipitation: Not all rain is created equal. Water Resour. Res. 2011, 47, W00J08. [Google Scholar] [CrossRef]
- Lucas, C.; Ceroni, M.; Baeza, S.; Muñoz, A.A.; Brazeiro, A. Sensitivity of subtropical forest and savanna productivity to climate variability in South America, Uruguay. J. Veg. Sci. 2017, 28, 192–205. [Google Scholar] [CrossRef]
- Hochmair, H.H.; Benjamin, A.; Gann, D.; Juhász, L.; Olivas, P.; Fu, Z.J. Change Analysis of Urban Tree Canopy in Miami-Dade County. Forests 2022, 13, 949. [Google Scholar] [CrossRef]
Period | Number of Census Blocks with Significant Change in Greenness | Percent of Total | % of the Significant Changes Were Positive (Tau > 0.0) | % of the Significant Changes Were Negative (Tau < 0.0) |
---|---|---|---|---|
Total | 34,123 | - | - | - |
Winter | 20,976 | 61.47% | 99.46% | 0.54% |
Spring | 6406 | 18.77% | 99.47% | 0.53% |
Summer | 8407 | 24.64% | 99.43% | 0.57% |
Fall | 5990 | 17.55% | 99.02% | 0.98% |
Variable | Season | R | R Square | Adjusted R Square | Residual Standard Error | p-Value |
---|---|---|---|---|---|---|
Absolute minimum temperature | Winter | 0.170 | 0.029 | −0.004 | 9.112 | 0.359 |
Spring | 0.224 | 0.050 | 0.018 | 9.012 | 0.225 | |
Summer | 0.093 | 0.009 | −0.026 | 9.208 | 0.620 | |
Fall | 0.005 | 0.000 | −0.034 | 9.247 | 0.981 | |
Mean minimum temperature | Winter | 0.226 | 0.051 | 0.018 | 9.009 | 0.222 |
Spring | 0.247 | 0.061 | 0.028 | 8.962 | 0.181 | |
Summer | 0.436 | 0.190 | 0.163 | 8.321 | 0.014 | |
Fall | 0.348 | 0.121 | 0.091 | 8.670 | 0.055 | |
Rainfall | Winter | 0.416 | 0.173 | 0.110 | 4.220 | 0.123 |
Spring | 0.038 | 0.001 | −0.075 | 4.638 | 0.893 | |
Summer | 0.192 | 0.037 | −0.037 | 4.555 | 0.493 | |
Fall | 0.060 | 0.004 | −0.073 | 4.633 | 0.831 |
Season | Variance Pre-2010 | Variance Post-2010 | Variance Difference | F Test p-Value | Shapiro–Wilks Pre-2010 p-Value | Shapiro–Wilks Post-2010 p-Value |
---|---|---|---|---|---|---|
Fall | 5589.686 | 31,799.880 | 26,210.190 | 0.072 | 0.258 | 0.795 |
Spring | 3402.591 | 32,505.830 | 29,103.240 | 0.024 | 0.209 | 0.020 |
Summer | 5462.845 | 37,622.470 | 32,159.630 | 0.048 | 0.959 | 0.201 |
Winter | 1814.336 | 10,429.760 | 8615.420 | 0.070 | 0.046 | 0.103 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dewald, J.R.; Southworth, J.; Szapocznik, J.; Lombard, J.L.; Brown, S.C. Greening the Urban Landscape: Assessing the Impact of Tree-Planting Initiatives and Climate Influences on Miami-Dade County’s Greenness. Remote Sens. 2024, 16, 157. https://doi.org/10.3390/rs16010157
Dewald JR, Southworth J, Szapocznik J, Lombard JL, Brown SC. Greening the Urban Landscape: Assessing the Impact of Tree-Planting Initiatives and Climate Influences on Miami-Dade County’s Greenness. Remote Sensing. 2024; 16(1):157. https://doi.org/10.3390/rs16010157
Chicago/Turabian StyleDewald, Julius R., Jane Southworth, Jose Szapocznik, Joanna L. Lombard, and Scott C. Brown. 2024. "Greening the Urban Landscape: Assessing the Impact of Tree-Planting Initiatives and Climate Influences on Miami-Dade County’s Greenness" Remote Sensing 16, no. 1: 157. https://doi.org/10.3390/rs16010157
APA StyleDewald, J. R., Southworth, J., Szapocznik, J., Lombard, J. L., & Brown, S. C. (2024). Greening the Urban Landscape: Assessing the Impact of Tree-Planting Initiatives and Climate Influences on Miami-Dade County’s Greenness. Remote Sensing, 16(1), 157. https://doi.org/10.3390/rs16010157