Typhoon-Induced Extreme Sea Surface Temperature Drops in the Western North Pacific and the Impact of Extra Cooling Due to Precipitation
Abstract
:1. Introduction
2. Data and Methods
2.1. Observations
2.2. Model Description and Experiment Design
3. Results
3.1. Validation of Satellite-Observed SSTs
3.2. Characteristics of TICs and ESSTDs
3.3. TICs and ESSTDs vs. Sharp TC Intensity Changes
3.4. TICs and ESSTDs: Open Ocean versus Continental Shelf
4. Outlier—Kilo (2015)
5. Conclusions and Remarks
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Chien, F.-C.; Kuo, H.-C. On the Extreme Rainfall of Typhoon Morakot (2009). J. Geophys. Res. Atmos. 2011, 116. [Google Scholar] [CrossRef]
- Schade, L.R.; Emanuel, K.A. The Ocean’s Effect on the Intensity of Tropical Cyclones: Results from a Simple Coupled Atmosphere–Ocean Model. J. Atmos. Sci. 1999, 56, 642–651. [Google Scholar] [CrossRef]
- Shay, L.K.; Goni, G.J.; Black, P.G. Effects of a Warm Oceanic Feature on Hurricane Opal. Mon. Weather. Rev. 2000, 128, 1366–1383. [Google Scholar] [CrossRef]
- Wu, C.-C.; Lee, C.-Y.; Lin, I.-I. The Effect of the Ocean Eddy on Tropical Cyclone Intensity. J. Atmos. Sci. 2007, 64, 3562–3578. [Google Scholar] [CrossRef]
- Lin, I.-I.; Wu, C.-C.; Pun, I.-F.; Ko, D.-S. Upper-Ocean Thermal Structure and the Western North Pacific Category 5 Typhoons. Part I: Ocean Features and the Category 5 Typhoons’ Intensification. Mon. Weather Rev. 2008, 136, 3288–3306. [Google Scholar] [CrossRef]
- Lee, C.-Y.; Chen, S.S. Stable Boundary Layer and Its Impact on Tropical Cyclone Structure in a Coupled Atmosphere–Ocean Model. Mon. Weather Rev. 2014, 142, 1927–1944. [Google Scholar] [CrossRef]
- Zheng, Z.-W.; Lin, I.-I.; Wang, B.; Huang, H.-C.; Chen, C.-H. A Long Neglected Damper in the El Niño—Typhoon Relationship: A ‘Gaia-Like’ Process. Sci. Rep. 2015, 5, 11103. [Google Scholar] [CrossRef] [PubMed]
- Glenn, S.M.; Miles, T.N.; Seroka, G.N.; Xu, Y.; Forney, R.K.; Yu, F.; Roarty, H.; Schofield, O.; Kohut, J. Stratified Coastal Ocean Interactions with Tropical Cyclones. Nat. Commun. 2016, 7, 10887. [Google Scholar] [CrossRef]
- Kuo, Y.-C.; Zheng, Z.-W.; Zheng, Q.; Gopalakrishnan, G.; Lee, H.-Y. Typhoon–Kuroshio Interaction in an Air–Sea Coupled System: Case Study of Typhoon Nanmadol (2011). Ocean. Model. 2018, 132, 130–138. [Google Scholar] [CrossRef]
- Emanuel, K.A. Thermodynamic Control of Hurricane Intensity. Nature 1999, 401, 665–669. [Google Scholar] [CrossRef]
- Zhu, T.; Zhang, D.-L. The Impact of the Storm-Induced SST Cooling on Hurricane Intensity. Adv. Atmos. Sci. 2006, 23, 14–22. [Google Scholar] [CrossRef]
- Mohanty, S.; Nadimpalli, R.; Osuri, K.K.; Pattanayak, S.; Mohanty, U.C.; Sil, S. Role of Sea Surface Temperature in Modulating Life Cycle of Tropical Cyclones over Bay of Bengal. Trop. Cyclone Res. Rev. 2019, 8, 68–83. [Google Scholar] [CrossRef]
- Price, J.F. Upper Ocean Response to a Hurricane. J. Phys. Oceanogr. 1981, 11, 153–175. [Google Scholar] [CrossRef]
- Zedler, S.E.; Dickey, T.D.; Doney, S.C.; Price, J.F.; Yu, X.; Mellor, G.L. Analyses and Simulations of the Upper Ocean’s Response to Hurricane Felix at the Bermuda Testbed Mooring Site: 13–23 August 1995. J. Geophys. Res. Oceans 2002, 107, 25-1–25-29. [Google Scholar] [CrossRef]
- Lin, I.-I.; Liu, W.T.; Wu, C.-C.; Wong, G.T.F.; Hu, C.; Chen, Z.; Liang, W.-D.; Yang, Y.; Liu, K.-K. New Evidence for Enhanced Ocean Primary Production Triggered by Tropical Cyclone. Geophys. Res. Lett. 2003, 30. [Google Scholar] [CrossRef]
- Black, P.G.; D’Asaro, E.A.; Drennan, W.M.; French, J.R.; Niiler, P.P.; Sanford, T.B.; Terrill, E.J.; Walsh, E.J.; Zhang, J.A. Air–Sea Exchange in Hurricanes: Synthesis of Observations from the Coupled Boundary Layer Air–Sea Transfer Experiment. Bull. Amer. Meteor. Soc. 2007, 88, 357–374. [Google Scholar] [CrossRef]
- D’Asaro, E.A.; Sanford, T.B.; Niiler, P.P.; Terrill, E.J. Cold Wake of Hurricane Frances. Geophys. Res. Lett. 2007, 34. [Google Scholar] [CrossRef]
- Zheng, Z.-W.; Lin, J.-Y.; Gopalakrishnan, G.; Chen, Y.-R.; Doong, D.-J.; Ho, C.-R.; Zheng, Q.; Wu, C.-R.; Huang, C.-F. Extreme Cooling of 12.5 °C Triggered by Typhoon Fungwong (2008). Ocean Model. 2023, 182, 102176. [Google Scholar] [CrossRef]
- Lumpkin, R.; Centurioni, L. NOAA Global Drifter Program Quality-Controlled 6-Hour Interpolated Data from Ocean Surface Drifting Buoys; NOAA National Centers for Environmental Information: Asheville, NC, USA, 2019.
- Perez, R.C.; Foltz, G.R.; Lumpkin, R.; Wei, J.; Voss, K.J.; Ondrusek, M.; Wang, M.; Bourassa, M.A. Chapter 5—Oceanographic Buoys: Providing Ocean Data to Assess the Accuracy of Variables Derived from Satellite Measurements. In Field Measurements for Passive Environmental Remote Sensing; Nalli, N.R., Ed.; Elsevier: Amsterdam, The Netherlands, 2023; pp. 79–100. [Google Scholar]
- Hansen, D.V.; Poulain, P.-M. Quality Control and Interpolations of WOCE-TOGA Drifter Data. J. Atmos. Ocean. Technol. 1996, 13, 900–909. [Google Scholar] [CrossRef]
- Large, W.G.; McWilliams, J.C.; Doney, S.C. Oceanic Vertical Mixing: A Review and a Model with a Nonlocal Boundary Layer Parameterization. Rev. Geophys. 1994, 32, 363–403. [Google Scholar] [CrossRef]
- Gelaro, R.; McCarty, W.; Suárez, M.J.; Todling, R.; Molod, A.; Takacs, L.; Randles, C.A.; Darmenov, A.; Bosilovich, M.G.; Reichle, R.; et al. The Modern-Era Retrospective Analysis for Research and Applications, Version 2 (MERRA-2). J. Clim. 2017, 30, 5419–5454. [Google Scholar] [CrossRef] [PubMed]
- Cummings, J.A. Operational Multivariate Ocean Data Assimilation. Q. J. R. Meteorol. Soc. 2005, 131, 3583–3604. [Google Scholar] [CrossRef]
- Shchepetkin, A.F.; McWilliams, J.C. A Method for Computing Horizontal Pressure-Gradient Force in an Oceanic Model with a Nonaligned Vertical Coordinate. J. Geophys. Res. Oceans 2003, 108. [Google Scholar] [CrossRef]
- Shchepetkin, A.F.; McWilliams, J.C. The Regional Oceanic Modeling System (ROMS): A Split-Explicit, Free-Surface, Topography-Following-Coordinate Oceanic Model. Ocean Model. 2005, 9, 347–404. [Google Scholar] [CrossRef]
- Zheng, Z.-W.; Zheng, Q.; Lee, C.-Y.; Gopalakrishnan, G. Transient Modulation of Kuroshio Upper Layer Flow by Directly Impinging Typhoon Morakot in East of Taiwan in 2009. J. Geophys. Res. Oceans 2014, 119, 4462–4473. [Google Scholar] [CrossRef]
- Shen, D.; Li, X.; Wang, J.; Bao, S.; Pietrafesa, L.J. Dynamical Ocean Responses to Typhoon Malakas (2016) in the Vicinity of Taiwan. J. Geophys. Res. Oceans 2021, 126, e2020JC016663. [Google Scholar] [CrossRef]
- Zheng, Z.-W.; Chen, Y.-R. Influences of Tidal Effect on Upper Ocean Responses to Typhoon Passages Surrounding Shore Region off Northeast Taiwan. J. Mar. Sci. Eng. 2022, 10, 1419. [Google Scholar] [CrossRef]
- Elipot, S.; Lumpkin, R.; Perez, R.C.; Lilly, J.M.; Early, J.J.; Sykulski, A.M. A Global Surface Drifter Data Set at Hourly Resolution. J. Geophys. Res. Oceans 2016, 121, 2937–2966. [Google Scholar] [CrossRef]
- Dare, R.A.; McBride, J.L. Sea Surface Temperature Response to Tropical Cyclones. Mon. Weather. Rev. 2011, 139, 3798–3808. [Google Scholar] [CrossRef]
- Foltz, G.R.; Balaguru, K.; Hagos, S. Interbasin Differences in the Relationship between SST and Tropical Cyclone Intensification. Mon. Weather Rev. 2018, 146, 853–870. [Google Scholar] [CrossRef]
- Bender, M.A.; Ginis, I. Real-Case Simulations of Hurricane–Ocean Interaction Using A High-Resolution Coupled Model: Effects on Hurricane Intensity. Mon. Weather Rev. 2000, 128, 917–946. [Google Scholar] [CrossRef]
- Cione, J.J.; Uhlhorn, E.W. Sea Surface Temperature Variability in Hurricanes: Implications with Respect to Intensity Change. Mon. Weather Rev. 2003, 131, 1783–1796. [Google Scholar] [CrossRef]
- Lloyd, I.D.; Vecchi, G.A. Observational Evidence for Oceanic Controls on Hurricane Intensity. J. Clim. 2011, 24, 1138–1153. [Google Scholar] [CrossRef]
- Mitchell, D.A.; Teague, W.J.; Jarosz, E.; Wang, D.W. Observed Currents over the Outer Continental Shelf during Hurricane Ivan. Geophys. Res. Lett. 2005, 32. [Google Scholar] [CrossRef]
- Teague, W.J.; Jarosz, E.; Wang, D.W.; Mitchell, D.A. Observed Oceanic Response over the Upper Continental Slope and Outer Shelf during Hurricane Ivan. J. Phys. Oceanogr. 2007, 37, 2181–2206. [Google Scholar] [CrossRef]
- Price, J.F. Internal Wave Wake of a Moving Storm. Part I. Scales, Energy Budget and Observations. J. Phys. Oceanogr. 1983, 13, 949–965. [Google Scholar] [CrossRef]
- Babin, S.M.; Carton, J.A.; Dickey, T.D.; Wiggert, J.D. Satellite Evidence of Hurricane-Induced Phytoplankton Blooms in an Oceanic Desert. J. Geophys. Res. Oceans 2004, 109. [Google Scholar] [CrossRef]
- Walker, N.D.; Leben, R.R.; Balasubramanian, S. Hurricane-Forced Upwelling and Chlorophyll a Enhancement within Cold-Core Cyclones in the Gulf of Mexico. Geophys. Res. Lett. 2005, 32. [Google Scholar] [CrossRef]
- Lin, I.-I.; Wu, C.-C.; Emanuel, K.A.; Lee, I.-H.; Wu, C.-R.; Pun, I.-F. The Interaction of Supertyphoon Maemi (2003) with a Warm Ocean Eddy. Mon. Weather Rev. 2005, 133, 2635–2649. [Google Scholar] [CrossRef]
- Zheng, Z.-W.; Ho, C.-R.; Zheng, Q.; Lo, Y.-T.; Kuo, N.-J.; Gopalakrishnan, G. Effects of Preexisting Cyclonic Eddies on Upper Ocean Responses to Category 5 Typhoons in the Western North Pacific. J. Geophys. Res. Oceans 2010, 115. [Google Scholar] [CrossRef]
- Zheng, Z.-W.; Ho, C.-R.; Zheng, Q.; Kuo, N.-J.; Lo, Y.-T. Satellite Observation and Model Simulation of Upper Ocean Biophysical Response to Super Typhoon Nakri. Cont. Shelf Res. 2010, 30, 1450–1457. [Google Scholar] [CrossRef]
- Zhang, H.; He, H.; Zhang, W.-Z.; Tian, D. Upper Ocean Response to Tropical Cyclones: A Review. Geosci. Lett. 2021, 8, 1. [Google Scholar] [CrossRef]
- Gosnell, R.; Fairall, C.W.; Webster, P.J. The Sensible Heat of Rainfall in the Tropical Ocean. J. Geophys. Res. Oceans 1995, 100, 18437–18442. [Google Scholar] [CrossRef]
- Jacob, S.D.; Koblinsky, C.J. Effects of Precipitation on the Upper-Ocean Response to a Hurricane. Mon. Weather Rev. 2007, 135, 2207–2225. [Google Scholar] [CrossRef]
- Ibrahim, H.D.; Sun, Y. Sea Surface Cooling by Rainfall Modulates Earth’s Heat Energy Flow. J. Clim. 2023, 36, 5125–5141. [Google Scholar] [CrossRef]
- Balaguru, K.; Foltz, G.R.; Leung, L.R.; Hagos, S.M. Impact of Rainfall on Tropical Cyclone-Induced Sea Surface Cooling. Geophys. Res. Lett. 2022, 49, e2022GL098187. [Google Scholar] [CrossRef]
- Hedström, K.S. Technical Manual for a Coupled Sea-Ice/Ocean Circulation Model (Version 3); Contract No. M07PC13368; US Department of the Interior Minerals Management Service Anchorage: Anchorage, AK, USA, 2009.
Name | Date | △SST | Intensity Category | Moving Speed (m/s) | Cyclonic Eddies (SSH < 0.2 m) | Twice Impact * | Previous TC ** |
---|---|---|---|---|---|---|---|
MAN-YI | 6 August 2001 | −6.92 | 2 | 2.57 | X | X | O |
FENGSHEN | 23 July 2002 09:00 | −6.05 | 3 | 7.72 | X | X | X |
ELE | 4 September 2002 | −7.42 | 2 | 1.54 | X | X | X |
KETSANA | 21 October 2003 | −7.05 | 2 | 1.54 | O | X | X |
SOULIK | 13 October 2006 | −6.38 | 1 | 1.03 | X | X | X |
CHOI-WAN | 18 September 2009 | −6.52 | 3 | 4.12 | X | X | X |
MA-ON | 16 July 2011 | −7.27 | 4 | 5.14 | X | X | X |
PRAPIROON | 12 October 2012 | −6.95 | 3 | 1.54 | O | X | X |
SOULIK | 11 July 2013 | −6.84 | 3 | 6.17 | O | X | X |
NEOGURI | 7 July 2014 | −7.02 | 5 | 6.69 | X | X | X |
VONGFONG | 9 October 2014 | −6.12 | 5 | 2.57 | O | X | X |
ATSANI | 21 August 2015 | −6.48 | 3 | 5.14 | X | X | X |
KILO | 7 September 2015 | −6.33 | 1 | 5.14 | X | X | X |
DUJUAN | 25 September 2015 | −6.36 | 1 | 1.54 | O | X | X |
NORU | 31 July 2017 | −6.17 | 4 | 2.57 | X | X | X |
KROSA | 11 August 2019 | −7.1 | 0 | 2.57 | X | X | X |
MINDULLE | 28 September 2021 | −6.4 | 2 | 3.09 | O | X | X |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lin, J.-Y.; Ho, H.; Zheng, Z.-W.; Tseng, Y.-C.; Lu, D.-G. Typhoon-Induced Extreme Sea Surface Temperature Drops in the Western North Pacific and the Impact of Extra Cooling Due to Precipitation. Remote Sens. 2024, 16, 205. https://doi.org/10.3390/rs16010205
Lin J-Y, Ho H, Zheng Z-W, Tseng Y-C, Lu D-G. Typhoon-Induced Extreme Sea Surface Temperature Drops in the Western North Pacific and the Impact of Extra Cooling Due to Precipitation. Remote Sensing. 2024; 16(1):205. https://doi.org/10.3390/rs16010205
Chicago/Turabian StyleLin, Jia-Yi, Hua Ho, Zhe-Wen Zheng, Yung-Cheng Tseng, and Da-Guang Lu. 2024. "Typhoon-Induced Extreme Sea Surface Temperature Drops in the Western North Pacific and the Impact of Extra Cooling Due to Precipitation" Remote Sensing 16, no. 1: 205. https://doi.org/10.3390/rs16010205
APA StyleLin, J. -Y., Ho, H., Zheng, Z. -W., Tseng, Y. -C., & Lu, D. -G. (2024). Typhoon-Induced Extreme Sea Surface Temperature Drops in the Western North Pacific and the Impact of Extra Cooling Due to Precipitation. Remote Sensing, 16(1), 205. https://doi.org/10.3390/rs16010205