Studying the Impact of the Geospace Environment on Solar Lithosphere Coupling and Earthquake Activity
Abstract
:1. Introduction
2. Data and Methods
3. Results
3.1. Increasing Seismic Activity near Magnetic Field Line Footprints of Newly Created Radiation Belts Arising from Geomagnetic Storms
3.1.1. Case Study in the Years 1991, 2012, and 2015
3.1.2. Case Study in the Year 2003
3.2. On Temporal Variations of Solar Activity, Galactic Cosmic Rays, and Global Seismicity
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Guglielmi, A.V.; Klain, B.I. On the influence of the Sun on the seismicity of the Earth. Sol. Terr. Phys. 2020, 6, 111–115. [Google Scholar] [CrossRef]
- Fainberg, E.B.; Avagimov, A.A.; Zeigarnik, V.A.; Vasil’eva, T.A. Generation of heat flows in the Earth’s interior by global geomagnetic storms. Phys. Solid Earth 2004, 40, 315–322. (In Russian) [Google Scholar]
- Guglielmi, A.V. Ponderomotor forces in the crust and in the Earth’s magnetosphere. Earth Phys. 1992, 7, 35–39. [Google Scholar]
- Anagnostopoulos, G.; Spyroglou, I.; Rigas, A.; Preka-Papadema, P.; Mavromichalaki, H.; Kiosses, I. The Sun as a Significant Agent Provoking Earthquakes. Eur. Phys. J. Spec. Top. 2021, 230, 287–333. [Google Scholar] [CrossRef]
- Guglielmi, A.V.; Zotov, O.D. On geoseismic noise and helioseismic oscillations. Izvestiya Phys. Solid. Earth 2021, 57, 567–572. [Google Scholar] [CrossRef]
- McPherron, R. Magnetic Pulsations: Their Sources and Relation to Solar Wind and Geomagnetic Activity. Surv. Geophys. 2005, 26, 545–592. [Google Scholar] [CrossRef]
- Pulinets, S.A.; Boyarchuk, K. Ionospheric Precursors of Earthquakes; Springer: Berlin/Heidelberg, Germany, 2004. [Google Scholar]
- Pulinets, S.A. Physical mechanism of the vertical electric field generation over active tectonic faults. Adv. Space Res. 2009, 44, 767–773. [Google Scholar] [CrossRef]
- Pulinets, S.; Ouzounov, D. Lithosphere-Atmosphere-Ionosphere Coupling (LAIC) model—An unified concept for earthquake precursors validation. J. Asian Earth Sci. 2011, 41, 371–382. [Google Scholar] [CrossRef]
- Ouzounov, D.; Pulinets, K.S.; Hattori, P.; Taylor, P. (Eds.) Pre-Earthquake Processes: A Multi-disciplinary Approach to Earthquake Prediction Studies, American Geophysical Union; John Wiley & Sons: Hoboken, NJ, USA, 2018; 385p. [Google Scholar]
- Pulinets, S.; Ouzounov, D.; Karelin, A.; Davidenko, D. Lithosphere–Atmosphere–Ionosphere–Magnetosphere Coupling—A Concept for Pre-Earthquake Signals Generation. In Pre Earthquake Processes: A Multidisciplinary Approach to Earthquake Prediction Studies; John Wiley & Sons: Hoboken, NJ, USA, 2018; pp. 79–98. [Google Scholar]
- Roble, R.G.; Tzur, I. The Global Atmospheric Electrical Circuit. In Study in Geophysics—The Earth’s Electrical Environment; National Academy Press: Washington, DC, USA, 1986; pp. 206–231. [Google Scholar]
- Roble, R.G. On Modeling Component Processes in the Earth’s Global Electric Circuit. J. Atmos. Terr. Phys. 1991, 53, 831–847. [Google Scholar] [CrossRef]
- Schery, S.D.; Huang, S. An estimate of the global distribution of radon emissions from the ocean. Geophys. Res. Lett. 2004, 31, L19104. [Google Scholar] [CrossRef]
- Schery, S.D.; Wasiolek, M.A. Modeling 222Rn flux from the Earth’s surface. In Radon and Thoron in the Human Environment; Katase, A., Shimo, M., Eds.; World Scientific River Edge: River Edge, NJ, USA, 1998; pp. 207–217. [Google Scholar]
- Chandrashekara, M.S.; Sannappa, J.; Paramesh, L. Studies on atmospheric electrical conductivity related to radon and its progeny concentrations in the lower atmosphere at Mysore. Atmos. Envir. 2006, 40, 87–95. [Google Scholar] [CrossRef]
- Kobeissi, M.A.; Gomez, F.; Tabet, C. Measurement of anomalous radon gas emanation across the Yammouneh Fault in southern Lebanon: A possible approach to earthquake prediction. Int. J. Disaster Risk Sci. 2015, 6, 250–266. [Google Scholar] [CrossRef]
- Harrison, R.; Aplin, K.; Rycroft, M. Atmospheric Electricity Coupling Between Earthquake Regions and the Ionosphere. J. Atmos. Sol. Terr. Phys. 2010, 72, 376–381. [Google Scholar] [CrossRef]
- Rycroft, M.J.; Harrison, G. Electromagnetic Atmosphere-Plasma Coupling: The Global Atmospheric Electric Circuit. Space Sci. Rev. 2012, 168, 363–384. [Google Scholar] [CrossRef]
- Němec, F.; Santolík, O.; Parrot, M. Decrease of Intensity of ELF/VLF Waves Observed in the Upper Ionosphere Close to Earthquakes: A Statistical Study. J. Geophys. Res. 2009, 114, A04303. [Google Scholar] [CrossRef]
- Bering, E.A.; Few, A.A.; Benbrook, J.R. The global electric circuit. Phys. Today 1998, 51, 24–30. [Google Scholar] [CrossRef]
- Makarova, L.N.; Shirochkov, A.V. A New Approach to the Global Electric Circuit Conception. 1998. Available online: http://www.sgo.fi/SPECIAL/Contributions/Makarova.pdf (accessed on 10 November 2021).
- Bazilevskaya, G.A.; Usoskin, I.G.; Flückiger, E.O.; Harrison, R.G.; Desorgher, L.; Bütikofer, R.; Krainev, M.B.; Makhmutov, V.S.; Stozhkov, Y.I.; Svirzhevskaya, A.K.; et al. Cosmic ray induced ion production in the atmosphere. Space Sci. Rev. 2008, 137, 149–173. [Google Scholar] [CrossRef]
- Phillips, T.; Johnson, S.; Koske-Phillips, A.; White, M.; Yarborough, A.; Lamb, A.; Schultz, J. Space weather ballooning. Space Weather 2016, 14, 697–703. [Google Scholar] [CrossRef]
- Frohlich, C.; Lean, J. Total solar irradiance variation in new eyes to see inside the sun and stars. In Proceedings of the IAU Symposium, Kyoto, Japan, 26–30 August 1997; p. 185. [Google Scholar]
- Markson, R. Modulation of the Earth’s electric field by cosmic radiation. Nature 1981, 291, 304–308. [Google Scholar] [CrossRef]
- Harrison, R.G. The Global Atmospheric Electrical Circuit and Climate. Surv. Geophys. 2004, 25, 441–484. [Google Scholar] [CrossRef]
- Carslaw, K.S.; Harrison, R.G.; Kirkby, J. Cosmic rays, clouds, and climate. Science 2002, 298, 1732–1737. [Google Scholar] [CrossRef] [PubMed]
- Kirkby, J. Cosmic Rays and Climate. SurvGeophys 2007, 28, 333–375. [Google Scholar] [CrossRef]
- Usoskin, I.G.; Desorgher, L.; Velinov, P.; Storini, M.; Flückiger, E.O.; Bütikofer, R.; Kovaltsov, G.A. Ionization of the Earth’s atmosphere by solar and galactic cosmic rays. Acta Geophys. 2009, 57, 88–101. [Google Scholar] [CrossRef]
- Vainio, R.; Desorgher, L.; Heynderickx, D.; Storini, M.; Flückiger, E.; Horne, R.B.; Kovaltsov, G.A.; Kudela, K.; Laurenza, M.; McKenna-Lawlor, S.; et al. Dynamics of the Earth’s particle radiation environment. Space Sci. Rev. 2009, 147, 187–231. [Google Scholar] [CrossRef]
- McIlwain, C.E. Coordinates for mapping the distribution of geomagnetically trapped particles. J. Geophys. Res. 1961, 66, 3681–3691. [Google Scholar] [CrossRef]
- Tsyganenko, N.A. Geopack: A Set of Fortran Subroutines for Computations of the Geomagnetic Field in the Earth’s Magnetosphere. 2008. Available online: https://geo.phys.spbu.ru/~tsyganenko/Geopack-2008.html (accessed on 1 October 2012).
- Gonzalez, W.D.; Joselyn, J.A.; Kamide, Y.; Kroehl, H.W.; Rostoker, G.; Tsurutani, B.T.; Vasyliunas, V.M. What is a Geomagnetic Storm? J. Geophys. Res. 1994, 99, 5771–5792. [Google Scholar] [CrossRef]
- Loewe, C.A.; Prölss, G.W. Classification and mean behavior of magnetic storms. J. Geophys. Res. Space Phys. 1997, 102, 14209–14213. [Google Scholar] [CrossRef]
- Van Allen, J.A.; Ludwig, G.H.; Ray, E.C.; McIlwain, C.E. Observation of high intensity radiation by satellites 1958 alpha and gamma. J. Jet Propuls. 1958, 28, 588–592. [Google Scholar] [CrossRef]
- Baker, D.N.; Erickson, P.J.; Fennell, J.F.; Foster, J.C.; Jaynes, A.N.; Verronen, P.T. Space Weather Effects in the Earth’s Radiation Belts. Space Sci. Rev. 2018, 214, 17. [Google Scholar] [CrossRef]
- Baker, D.N.; Kanekal, S.G.; Hoxie, V.C.; Henderson, M.G.; Li, X.; Spence, H.E.; Elkington, S.R.; Friedel, R.H.W.; Goldstein, J.; Hudson, M.K.; et al. A long-lived relativistic electron storage ring embedded in Earth’s outer Van Allen belt. Science 2013, 340, 186–190. [Google Scholar] [CrossRef]
- Baker, D.N.; Kanekal, S.G.; Li, X.; Monk, S.P.; Goldstein, J.; Burch, J.L. An extreme distortion of the Van Allen belt arising from the Halloween solar storm in 2003. Nature 2004, 432, 878–881. [Google Scholar] [CrossRef] [PubMed]
- Baker, D.N.; Kanekal, S.G.; Horne, R.B.; Meredith, N.P.; Glauert, S.A. Low-altitude measurements of 2–6 MeV electron trapping lifetimes at 1.5 ≤ L ≤ 2.5. Geophys. Res. Lett. 2007, 34, L20110. [Google Scholar] [CrossRef]
- Blake, J.B.; Kolasinski, W.A.; Fillius, R.W.; Mullen, E.G. Injection of electrons and protons with energies of tens of MeV into L < 3 on March 24 1991. Geophys. Res. Lett. 1992, 19, 821–824. [Google Scholar] [CrossRef]
- Galper, A.M. Earth radiation belt. Soros Educ. J. 1999, 75–81. Available online: http://cosmic-rays.ru/Resource/9906_075.pdf (accessed on 10 November 2021).
- Thorne, R.M.; Li, W.; Ni, B.; Ma, Q.; Bortnik, J.; Baker, D.N.; Spence, H.E.; Reeves, G.D.; Henderson, M.G.; Kletzing, C.A.; et al. Evolution and slow decay of an unusual narrow ring of relativistic electrons near L~3.2 following the September 2012 magnetic storm. Geophys. Res. Lett. 2013, 40, 3507–3511. [Google Scholar] [CrossRef]
- Claudepierre, S.G.; O’Brien, T.P.; Fennell, J.F.; Blake, J.B.; Clemmons, J.H.; Looper, M.D.; Mazur, J.E.; Roeder, J.L.; Turner, D.L.; Reeves, G.D.; et al. The hidden dynamics of relativistic electrons (0.7-1.5 MeV) in the inner zone and slot region. J. Geophys. Res. Space Phys. 2017, 122, 3127–3144. [Google Scholar] [CrossRef]
- Kavanagh, A.J.; Cobbett, N.; Kirsch, P. Radiation Belt Slot Region Filling Events: Sustained Energetic Precipitation Into the Mesosphere. J. Geophys. Res. Space Phys. 2018, 123, 7999–8020. [Google Scholar] [CrossRef]
- Li, W.; Hudson, M.K. Earth’s Van Allen Radiation Belts: From Discovery to the Van Allen Probes Era. J. Geophys. Res. Space Phys. 2019, 124, 8319–8351. [Google Scholar] [CrossRef]
- Gutenberg, B.; Richter, C. Magnitude and energy of earthquakes. Nature 1955, 176, 795. [Google Scholar] [CrossRef]
- Khachikyan, G.; Zhakupov, N.; Kadyrkhanova, N. Geomagnetic conjugacy of modern tectonic structures. Geodyn. Tectonophys. 2013, 4, 187–195. [Google Scholar] [CrossRef]
- Michael, A.J. Random variability explains apparent global clustering of large earthquakes. Geophys. Res. Lett. 2011, 38, L21301. [Google Scholar] [CrossRef]
- Shestopalov, I.P.; Kharin, E.P. Secular variations of solar activity and seismicity of the Earth. Geophys. J. 2006, 28, 59–70. [Google Scholar]
- Zhang, G.Q. Relationship between global seismicity and solar activities. Acta Seismol. Sin. 1998, 11, 495–500. [Google Scholar]
- Huzaimy, J.M.; Yumoto, K. Possible correlation between solar activity and global seismicity. In Proceeding of the 2011 IEEE International Conference on Space Science and Communication (IconSpace), Penang, Malaysia, 12–13 July 2011; pp. 138–141. [Google Scholar]
- Ebisuzaki, T.; Miyahara, H.; Katoaka, R.; Sato, T.; Ishimine, Y. Explosive volcanic eruptions triggered by cosmic rays: Volcano as a bubble chamber. Gondwana Res. 2011, 19, 1054–1061. [Google Scholar] [CrossRef]
- Kumar, V.; Dhaka, S.K.; Hitchman, M.H.; Yoden, S. The influence of solar-modulated regional circulations and galactic cosmic rays on global cloud distribution. Sci. Rep. 2023, 13, 3707. [Google Scholar] [CrossRef]
- Sobolev, G.A.; Zakrzhevskaya, N.A.; Kharin, E.P. On the relation between seismicity and magnetic storms. Phys. Solid. Earth. 2001, 37, 917–927. [Google Scholar]
- Sobolev, G.A. The effect of strong magnetic storms on the occurrence of large earthquakes. Izv. Phys. Solid. Arth. 2021, 57, 20–36. [Google Scholar] [CrossRef]
- Urata, N.; Duma, G.; Freund, F. Geomagnetic Kp Index and Earthquakes. Open J. Earthq. Res. 2018, 7, 39–52. [Google Scholar] [CrossRef]
- Chen, H.; Wang, R.; Miao, M.; Liu, X.; Ma, Y.; Hattori, K.; Han, P. A Statistical Study of the Correlation between Geomagnetic Storms and M ≥ 7.0 Global Earthquakes during 1957–2020. Entropy 2020, 22, 1270. [Google Scholar] [CrossRef]
- Ouzounov, D.; Khachikyan, G. A similarity in patterns of global seismicity after St. Patrick’s Day geomagnetic storms of 2013 and 2015. arXiv 2023, arXiv:2302.14173. [Google Scholar] [CrossRef]
- Marchetti, D.; De Santis, A.; Campuzano, S.A.; Zhu, K.; Soldani, M.; D’arcangelo, S.; Orlando, M.; Wang, T.; Cianchini, G.; Di Mauro, D.; et al. Worldwide Statistical Correlation of Eight Years of Swarm Satellite Data with M5.5+ Earthquakes: New Hints about the Preseismic Phenomena from Space. Remote Sens. 2022, 14, 2649. [Google Scholar] [CrossRef]
- Sorokin, V.; Yaschenko, A.; Mushkarev, G.; Novikov, V. Telluric Currents Generated by Solar Flare Radiation: Physical Model and Numerical Estimations. Atmosphere 2023, 14, 458. [Google Scholar] [CrossRef]
- Zeigarnik, V.A.; Bogomolov, L.M.; Novikov, V.A. Electromagnetic Earthquake Triggering: Field Observations, Laboratory Experiments, and Physical Mechanisms—A Review. Izv. Phys. Solid. Earth 2022, 58, 30–58. [Google Scholar] [CrossRef]
- Bufe, C.G.; Perkins, D. The 2011 Tohoku earthquake: Resumption of temporal clustering of Earth’s megaquakes. Seismol. Res. Lett. 2011, 82, 455. [Google Scholar]
- Ammon, C.J.; Aster, R.C.; Lay, T.; Simpson, D.W. The Tohoku earthquake and a 110-year spatio-temporal record of global seismic strain release. Seismol. Res. Lett. 2011, 82, 454. [Google Scholar]
- Namgaladze, A.A. Earthquakes, and global electrical circuit. Russ. J. Phys. Chem. 2013, 7, 589–593. [Google Scholar] [CrossRef]
- Whipple, F.J.W. On the association of the diurnal variation of electric potential gradient in fine weather with the distribution of thunderstorms over the globe. Q. J. R. Meteorol. Soc. 1929, 55, 1–18. [Google Scholar] [CrossRef]
- Harrison, R.G. The Carnegie Curve. Surv. Geophys. 2013, 34, 209–232. [Google Scholar] [CrossRef]
- Pulinets, S.A.; Khachikyan, G.Y. Unitary Variation in the Seismic Regime of the Earth: Carnegie-Curve Matching. Geomagn. Aeron. 2020, 60, 787–792. [Google Scholar] [CrossRef]
- Pulinets, S.; Khachikyan, G. The Global Electric Circuit and Global Seismicity. Geosciences 2021, 11, 491. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ouzounov, D.; Khachikyan, G. Studying the Impact of the Geospace Environment on Solar Lithosphere Coupling and Earthquake Activity. Remote Sens. 2024, 16, 24. https://doi.org/10.3390/rs16010024
Ouzounov D, Khachikyan G. Studying the Impact of the Geospace Environment on Solar Lithosphere Coupling and Earthquake Activity. Remote Sensing. 2024; 16(1):24. https://doi.org/10.3390/rs16010024
Chicago/Turabian StyleOuzounov, Dimitar, and Galina Khachikyan. 2024. "Studying the Impact of the Geospace Environment on Solar Lithosphere Coupling and Earthquake Activity" Remote Sensing 16, no. 1: 24. https://doi.org/10.3390/rs16010024
APA StyleOuzounov, D., & Khachikyan, G. (2024). Studying the Impact of the Geospace Environment on Solar Lithosphere Coupling and Earthquake Activity. Remote Sensing, 16(1), 24. https://doi.org/10.3390/rs16010024