Monitoring Spatio-Temporal Variations of Ponds in Typical Rural Area in the Huai River Basin of China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Remote Sensing Data and Processing
2.3. Ponds Extraction
2.3.1. Analysis of Surface Type
2.3.2. Get Image Object
2.3.3. Retrieval of Ponds Information
2.3.4. Post-Classification Processing
- (1)
- Integration of Pond Information: We combined pond information obtained through DA, CART, SVM, and RF methods for the same year;
- (2)
- Spatial Analysis for Non-Intersecting Ponds: Subsequently, building upon the results of the preceding step, spatial analysis techniques were employed to determine the portions of ponds that did not intersect between the years 2010 and 2016, as well as between 2016 and 2022;
- (3)
- Integration with Visual Interpretation: These non-intersecting ponds were then combined with images from 2010/2016 and 2016/2022. Visual interpretation was employed to ascertain the categorization of these non-intersecting ponds, determining whether they could be classified as omission ponds, anhydrous ponds, or other surface types;
- (4)
- Validation of Omission Ponds: In the final step, a validation of omission ponds was conducted based on the extraction results and corresponding images from 2010, 2016, and 2022.
2.3.5. Accuracy Verification
2.4. Analysis of Pond Characteristics
3. Results
3.1. Accuracy and Pond Extraction Results
3.2. Distribution of Hot Spots in Ponds
3.3. Spatial-Temporal Relationships between Ponds, Town-Village Land, and Cultivated Land
4. Discussion
4.1. Method Applicability
4.2. Pond Environment in the Study Area
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Cereghino, R.; Biggs, J.; Oertli, B.; Declerck, S. The ecology of European ponds: Defining the characteristics of a neglected freshwater habitat. Hydrobiologia 2008, 597, 1–6. [Google Scholar] [CrossRef]
- Peng, K.; Jiang, W.; Hou, P.; Wu, Z.; Ling, Z.; Wang, X.; Niu, Z.; Mao, D. Continental-scale wetland mapping: A novel algorithm for detailed wetland types classification based on time series Sentinel-1/2 images. Ecol. Indic. 2023, 148, 110113. [Google Scholar] [CrossRef]
- Chen, W.; He, B.; Nover, D.; Lu, H.; Liu, J.; Sun, W.; Chen, W. Farm ponds in southern China: Challenges and solutions for conserving a neglected wetland ecosystem. Sci. Total Environ. 2019, 659, 1322–1334. [Google Scholar] [CrossRef]
- Phillips, G.; Bramwell, A.; Pitt, J.; Stansfield, J.; Perrow, M. Practical application of 25 years’ research into the management of shallow lakes. Hydrobiologia 1999, 395–396, 61–76. [Google Scholar] [CrossRef]
- Liu, X.; Xu, H.; Wang, X.; Wu, Z.; Bao, X. An ecological engineering pond aquaculture recirculating system for effluent purification and water quality control. CLEAN–Soil Air Water 2014, 42, 221–228. [Google Scholar] [CrossRef]
- De Meester, L.; Declerck, S.; Stoks, R.; Louette, G.; Van de Meutter, F.; De Bie, T.; Michels, E.; Brendonck, L. Ponds and pools as model systems in conservation biology, ecology and evolutionary biology. Aquat. Conserv.-Mar. Freshw. Ecosyst. 2005, 15, 715–725. [Google Scholar] [CrossRef]
- Downing, J.A. Emerging global role of small lakes and ponds: Little things mean a lot. Limnetica 2010, 29, 9–24. [Google Scholar] [CrossRef]
- Oertli, B.; Biggs, J.; Cereghino, R.; Grillas, P.; Joly, P.; Lachavanne, J.B. Conservation and monitoring of pond biodiversity: Introduction. Aquat. Conserv.-Mar. Freshw. Ecosyst. 2005, 15, 535–540. [Google Scholar] [CrossRef]
- Ren, H.; Xu, D.; Shi, X.; Xu, J.; Zhuang, D.; Yang, G. Characterisation of gastric cancer and its relation to environmental factors: A case study in Shenqiu County, China. Int. J. Environ. Health Res. 2016, 26, 1–10. [Google Scholar] [CrossRef]
- Tian, D.; Zheng, W.; Wei, X.; Sun, X.; Liu, L.; Chen, X.; Zhang, H.; Zhou, Y.; Chen, H.; Zhang, H. Dissolved microcystins in surface and ground waters in regions with high cancer incidence in the Huai River Basin of China. Chemosphere 2013, 91, 1064–1071. [Google Scholar] [CrossRef]
- Xie, H.; Xin, L.; Xiong, X.; Tong, X.; Zhou, B. New hyperspectral difference water index for the extraction of urban water bodies by the use of airborne hyperspectral images. J. Appl. Remote Sens. 2014, 8, 085098. [Google Scholar] [CrossRef]
- Zhou, Y.; Dong, J.; Xiao, X.; Xiao, T.; Yang, Z.; Zhao, G.; Zou, Z.; Qin, Y. Open surface water mapping algorithms: A comparison of water-related spectral indices and sensors. Water 2017, 9, 256. [Google Scholar] [CrossRef]
- Verpoorter, C.; Kutser, T.; Tranvik, L. Automated Mapping of Water Bodies Using Landsat Multispectral Data. Limnol. Oceanogr. Methods 2012, 10, 1037–1050. [Google Scholar] [CrossRef]
- Lacaux, J.P.; Tourre, Y.M.; Vignolles, C.; Ndione, J.A.; Lafaye, M. Classification of ponds from high-spatial resolution remote sensing: Application to Rift Valley Fever epidemics in Senegal. Remote Sens. Environ. 2007, 106, 66–74. [Google Scholar] [CrossRef]
- Gusmawati, N.F.; Cheng, Z.; Soulard, B.; Lemonnier, H.; Selmaouifolcher, N. Aquaculture Pond Precise Mapping in Perancak Estuary, Bali, Indonesia. J. Coast. Res. 2016, 1, 637–641. [Google Scholar] [CrossRef]
- Gusmawati, N.; Soulard, B.; Selmaoui-Folcher, N.; Proisy, C.; Mustafa, A.; Le Gendre, R.; Laugier, T.; Lemonnier, H. Surveying shrimp aquaculture pond activity using multitemporal VHSR satellite images-case study from the Perancak estuary, Bali, Indonesia. Mar. Pollut. Bull. 2018, 131, 49–60. [Google Scholar] [CrossRef]
- Jawak, S.D.; Luis, A.J. A Rapid Extraction of Water Body Features from Antarctic Coastal Oasis Using Very High-Resolution Satellite Remote Sensing Data. Aquat. Procedia 2015, 4, 125–132. [Google Scholar] [CrossRef]
- Soti, V.; Puech, C.; Seen, D.L.; Bertran, A.; Vignolles, C.; Mondet, B.; Dessay, N.; Tran, A. The potential for remote sensing and hydrologic modelling to assess the spatio-temporal dynamics of ponds in the Ferlo Region (Senegal). Hydrol. Earth Syst. Sci. 2010, 14, 1449–1464. [Google Scholar] [CrossRef]
- Loberternos, R.A.; Porpetcho, W.P.; Graciosa, J.C.A.; Violanda, R.R.; Diola, A.G.; Dy, D.T.; Otadoy, R.E.S. An Object-Based Workflow Developed to Extract Aquaculture Ponds from Airborne LIDAR Data: A Test Case in Central Visayas, Philippines. ISPRS-Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2016, XLI-B8, 1147–1152. [Google Scholar] [CrossRef]
- Prasad, K.A.; Ottinger, M.; Wei, C.; Leinenkugel, P. Assessment of Coastal Aquaculture for India from Sentinel-1 SAR Time Series. Remote Sens. 2019, 11, 357. [Google Scholar] [CrossRef]
- Xie, C.; Huang, X.; Zeng, W.; Fang, X. A novel water index for urban high-resolution eight-band WorldView-2 imagery. Int. J. Digit. Earth 2016, 9, 925–941. [Google Scholar] [CrossRef]
- Bandos, T.V.; Bruzzone, L.; Camps-Valls, G. Classification of Hyperspectral Images with Regularized Linear Discriminant Analysis. IEEE Trans. Geosci. Remote Sens. 2009, 47, 862–873. [Google Scholar] [CrossRef]
- Sheykhmousa, M.; Mahdianpari, M.; Ghanbari, H.; Mohammadimanesh, F.; Ghamisi, P.; Homayouni, S. Support vector machine versus random forest for remote sensing image classification: A meta-analysis and systematic review. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2020, 13, 6308–6325. [Google Scholar] [CrossRef]
- Pelletier, C.; Valero, S.; Inglada, J.; Champion, N.; Dedieu, G. Assessing the robustness of Random Forests to map land cover with high resolution satellite image time series over large areas. Remote Sens. Environ. 2016, 187, 156–168. [Google Scholar] [CrossRef]
- Imani, M.; Ghassemian, H. Feature space discriminant analysis for hyperspectral data feature reduction. ISPRS J. Photogramm. Remote Sens. 2015, 102, 1–13. [Google Scholar] [CrossRef]
- Chen, R.; Dewi, C.; Huang, S.; Caraka, R.E. Selecting critical features for data classification based on machine learning methods. J. Big Data 2020, 7, 52. [Google Scholar] [CrossRef]
- Chen, M.; Wang, Q.; Li, X. Discriminant Analysis with Graph Learning for Hyperspectral Image Classification. Remote Sens. 2018, 10, 836. [Google Scholar] [CrossRef]
- Ji, W.; Zhuang, D.; Ren, H.; Jiang, D.; Huang, Y.; Xu, X.; Chen, W.; Jiang, X. Spatiotemporal variation of surface water quality for decades: A case study of Huai River System, China. Water Sci. Technol. J. Int. Assoc. Water Pollut. Res. 2013, 68, 1233–1241. [Google Scholar] [CrossRef]
- Wang, H.; Wang, C.; Wu, H. Using GF-2 Imagery and the Conditional Random Field Model for Urban Forest Cover Mapping. Remote Sens. Lett. 2016, 7, 378–387. [Google Scholar] [CrossRef]
- Liu, M.; Fu, B.; Xie, S.; He, H.; Lan, F.; Li, Y.; Lou, P.; Fan, D. Comparison of multi-source satellite images for classifying marsh vegetation using DeepLabV3 Plus deep learning algorithm. Ecol. Indic. 2021, 125, 107562. [Google Scholar] [CrossRef]
- Cheng, B.; Liang, C.; Liu, X.; Liu, Y.; Ma, X.; Wang, G. Research on a novel extraction method using Deep Learning based on GF-2 images for aquaculture areas. Int. J. Remote Sens. 2020, 41, 3575–3591. [Google Scholar] [CrossRef]
- Virdis, S.G.P. An object-based image analysis approach for aquaculture ponds precise mapping and monitoring: A case study of Tam Giang-Cau Hai Lagoon, Vietnam. Environ. Monit. Assess. 2014, 186, 117–133. [Google Scholar] [CrossRef]
- Zhang, T.; Yang, X.; Hu, S.; Su, F. Extraction of Coastline in Aquaculture Coast from Multispectral Remote Sensing Images: Object-Based Region Growing Integrating Edge Detection. Remote Sens. 2013, 5, 4470–4487. [Google Scholar] [CrossRef]
- Ji, Z.; Zhu, Y.; Pan, Y.; Zhu, X.; Zheng, X. Large-Scale Extraction and Mapping of Small Surface Water Bodies Based on Very High-Spatial-Resolution Satellite Images: A Case Study in Beijing, China. Water 2022, 14, 2889. [Google Scholar] [CrossRef]
- Lourenço, P.; Teodoro, A.C.; Gonçalves, J.A.; Honrado, J.P.; Cunha, M.; Sillero, N. Assessing the performance of different OBIA software approaches for mapping invasive alien plants along roads with remote sensing data. Int. J. Appl. Earth Obs. Geoinf. 2021, 95, 102263. [Google Scholar] [CrossRef]
- Drăguţ, L.; Csillik, O.; Eisank, C.; Tiede, D. Automated parameterisation for multi-scale image segmentation on multiple layers. ISPRS J. Photogramm. Remote Sens. Off. Publ. Int. Soc. Photogramm. Remote Sens. 2014, 88, 119. [Google Scholar] [CrossRef]
- Drǎguţ, L.; Tiede, D.; Levick, S.R. ESP: A tool to estimate scale parameter for multiresolution image segmentation of remotely sensed data. Int. J. Geogr. Inf. Sci. 2010, 24, 859–871. [Google Scholar] [CrossRef]
- Zhou, Y.; Zhang, R.; Wang, S.; Wang, F. Feature selection method based on high-resolution remote sensing images and the effect of sensitive features on classification accuracy. Sensors 2018, 18, 2013. [Google Scholar] [CrossRef]
- Mohammadpour, P.; Viegas, D.X.; Viegas, C. Vegetation mapping with random forest using sentinel 2 and GLCM texture feature—A case study for Lousã region, Portugal. Remote Sens. 2022, 14, 4585. [Google Scholar] [CrossRef]
- Zhang, F.; Yang, X. Improving land cover classification in an urbanized coastal area by random forests: The role of variable selection. Remote Sens. Environ. 2020, 251, 112105. [Google Scholar] [CrossRef]
- Mansaray, L.R.; Wang, F.; Huang, J.; Yang, L.; Kanu, A.S. Accuracies of support vector machine and random forest in rice mapping with Sentinel-1A, Landsat-8 and Sentinel-2A datasets. Geocarto Int. 2020, 35, 1088–1108. [Google Scholar] [CrossRef]
- Getis, A.; Ord, J.K. The Analysis of Spatial Association by Use of Distance Statistics. Geogr. Anal. 1992, 24, 189–206. [Google Scholar] [CrossRef]
- Na, L.; Gaodi, X.; Demin, Z.; Changshun, Z.; Cuicui, J. Remote Sensing Classification of Marsh Wetland with Different Resolution Images. J. Resour. Ecol. 2016, 7, 107–114. [Google Scholar] [CrossRef]
Satellite | Sensors | Wavelength (μm) | Resolution (m) | Time | Acquisition Path | |||
---|---|---|---|---|---|---|---|---|
PAN | MUL | PAN | MUL | PAN | MUL | |||
ALOS | PRISM | AVNIR-2 | 0.52–0.77 | 0.42–0.50 | 2.5 | 10 | 20 February 2010 | http://www.eorc.jaxa.jp/ALOS (accessed on 6 March 2017) |
0.52–0.60 | ||||||||
0.61–0.69 | ||||||||
0.76–0.89 | ||||||||
GF-2 | PMS | 0.45–0.90 | 0.45–0.52 | 1 | 4 | 2 February 2016 | http://www.cresda.com (accessed on 13 March 2017) | |
0.52–0.59 | ||||||||
0.63–0.69 | ||||||||
0.77–0.89 | ||||||||
GF-1 | PMS | 0.45–0.90 | 0.45–0.52 | 2 | 8 | 1 March 2022 | http://www.cresda.com (accessed on 16 March 2023) | |
0.52–0.59 | ||||||||
0.63–0.69 | ||||||||
0.77–0.89 |
Time | Categories | Number |
---|---|---|
2010 | townland, rural settlements, road, cultivated land, woodland, puddle canal, anhydrous canal, puddle pond, anhydrous pond, shadow, unused land | 11 |
2016/2022 | townland, rural settlements, road, cultivated land, woodland, puddle canal, anhydrous canal, puddle pond, shadow, unused land | 10 |
Type | Features |
---|---|
Spectral features | Mean Band (NIR, Red, Green, Blue); Ratio Band (NIR, Red, Green, Blue); Brightness; Standard deviation Band (NIR, Red, Green, Blue); NDVI = (NIR − R)/ (NIR + R); NDWI = (Green − NIR)/(Green + NIR); |
Geometrical features | Length/Width; Shape index; Compactness; Border index; Density; Asymmetry; Stddev of length of edges (polygon); Perimeter (polygon); Stddev of area represented by segments; Number of pixels; |
Textural features | GLCM Homogeneity; GLCM Correlation; GLCM Contrast; GLCM Dissimilarity; GLCM Entropy; |
Year | DA | CART | SVM | RF | ||||
---|---|---|---|---|---|---|---|---|
Kappa | OA (%) | Kappa | OA (%) | Kappa | OA (%) | Kappa | OA (%) | |
2010 (ALOS) | 0.75 | 78 | 0.73 | 76 | 0.75 | 77 | 0.73 | 78 |
2016 (GF-2) | 0.84 | 82 | 0.78 | 80 | 0.80 | 83 | 0.72 | 78 |
2022 (GF-1) | 0.82 | 84 | 0.80 | 80 | 0.78 | 82 | 0.81 | 81 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ji, Z.; Ren, H.; Zha, C.; Adem, E.S. Monitoring Spatio-Temporal Variations of Ponds in Typical Rural Area in the Huai River Basin of China. Remote Sens. 2024, 16, 39. https://doi.org/10.3390/rs16010039
Ji Z, Ren H, Zha C, Adem ES. Monitoring Spatio-Temporal Variations of Ponds in Typical Rural Area in the Huai River Basin of China. Remote Sensing. 2024; 16(1):39. https://doi.org/10.3390/rs16010039
Chicago/Turabian StyleJi, Zhonglin, Hongyan Ren, Chenfeng Zha, and Eshetu Shifaw Adem. 2024. "Monitoring Spatio-Temporal Variations of Ponds in Typical Rural Area in the Huai River Basin of China" Remote Sensing 16, no. 1: 39. https://doi.org/10.3390/rs16010039
APA StyleJi, Z., Ren, H., Zha, C., & Adem, E. S. (2024). Monitoring Spatio-Temporal Variations of Ponds in Typical Rural Area in the Huai River Basin of China. Remote Sensing, 16(1), 39. https://doi.org/10.3390/rs16010039