Improving Radar Reflectivity Reconstruction with Himawari-9 and UNet++ for Off-Shore Weather Monitoring
Abstract
:1. Introduction
2. Materials and Methods
2.1. Radar Composite Reflectivity
2.2. Himawari-9 Data
2.3. Study Area
2.4. Deep Learning Model
3. Results
3.1. Features of Different Variables
3.1.1. Radar Composite Reflectivity
3.1.2. Brightness Temperature
3.2. Model Output
4. Discussion
4.1. Spatial Analysis
4.2. Diurnal Cycle Analysis
4.3. Distribution Analysis
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yu, X.; Zheng, Y. Advances in Severe Convection Research and Operation in China. J. Meteorol. Res. 2020, 34, 189–217. [Google Scholar] [CrossRef]
- Villarini, G.; Krajewski, W.F. Review of the different sources of uncertainty in single polarization radar-based estimates of rainfall. Surv. Geophys. 2010, 31, 107–129. [Google Scholar] [CrossRef]
- Houze, R.A.; Biggerstaff, M.I.; Rutledge, S.A.; Smull, B.F. Interpretation of Doppler Weather Radar Displays of Midlatitude Mesoscale Convective Systems. Bull. Am. Meteorol. Soc. 1989, 70, 608–619. [Google Scholar] [CrossRef]
- Doviak, R.; Zrnic, S. Doppler Radar and Weather Observations; Courier Corporation: North Chelmsford, MA, USA, 2006. [Google Scholar]
- Roberts, R.D.; Rutledge, S. Nowcasting storm initiation and growth using GOES-8 and WSR-88D data. Weather Forecast. 2003, 18, 562–584. [Google Scholar] [CrossRef]
- Ravuri, S.; Lenc, K.; Willson, M.; Kangin, D.; Lam, R.; Mirowski, P.; Fitzsimons, M.; Athanassiadou, M.; Kashem, S.; Madge, S.; et al. Skilful precipitation nowcasting using deep generative models of radar. Nature 2021, 597, 672–677. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Long, M.; Wang, J.; Gao, Z.; Yu, P.S. PredRNN: Recurrent Neural Networks for Predictive Learning using Spatiotemporal LSTMs. In Advances in Neural Information Processing Systems; Curran Associates, Inc.: Red Hook, NY, USA, 2017; Volume 30. [Google Scholar]
- Zhang, Y.; Long, M.; Chen, K.; Xing, L.; Jin, R.; Jordan, M.I.; Wang, J. Skilful nowcasting of extreme precipitation with NowcastNet. Nature 2023, 619, 526–532. [Google Scholar] [CrossRef] [PubMed]
- Bauer, P.; Thorpe, A.; Brunet, G. The quiet revolution of numerical weather prediction. Nature 2015, 525, 47–55. [Google Scholar] [CrossRef]
- Sheng, C.; Gao, S.; Xue, M. Short-range prediction of a heavy precipitation event by assimilating Chinese CINRAD-SA radar reflectivity data using complex cloud analysis. Meteorol. Atmos. Phys. 2006, 94, 167–183. [Google Scholar] [CrossRef]
- Bessho, K.; Date, K.; Hayashi, M.; Ikeda, A.; Imai, T.; Inoue, H.; Kumagai, Y.; Miyakawa, T.; Murata, H.; Ohno, T.; et al. An introduction to Himawari-8/9—Japan’s new-generation geostationary meteorological satellites. J. Meteorol. Soc. Jpn. Ser. II 2016, 94, 151–183. [Google Scholar] [CrossRef]
- Kuligowski, R.; Yu, H.; Hao, Y.; Zhang, Y. Improvements to the GOES-R rainfall rate algorithm. J. Hydrometeorol. 2016, 17, 1693–1704. [Google Scholar] [CrossRef]
- Sun, R.; Yuan, H.; Liu, X.; Jiang, X. Evaluation of the latest satellite–gauge precipitation products and their hydrologic applications over the Huaihe River basin. J. Hydrol. 2016, 536, 302–319. [Google Scholar] [CrossRef]
- Tang, G.; Clark, M.P.; Papalexiou, S.M.; Ma, Z.; Hong, Y. Have satellite precipitation products improved over last two decades? A comprehensive comparison of GPM IMERG with nine satellite and reanalysis datasets. Remote Sens. Environ. 2019, 240, 111697. [Google Scholar] [CrossRef]
- Duan, M.; Xia, J.; Yan, Z.; Han, L.; Zhang, L.; Xia, H.; Yu, S. Reconstruction of the radar reflectivity of convective storms based on deep learning and himawari-8 observations. Remote Sens. 2021, 13, 3330. [Google Scholar] [CrossRef]
- Sun, F.; Li, B.; Min, M.; Qin, D. Deep learning-based radar composite reflectivity factor estimations from fengyun-4a geostationary satellite observations. Remote Sens. 2021, 13, 2229. [Google Scholar] [CrossRef]
- Wang, G.; Liu, L.; Ding, Y. Improvement of radar quantitative precipitation estimation based on real-time adjustments to Z-R relationships and inverse distance weighting correction schemes. Adv. Atmos. Sci. 2012, 29, 575–584. [Google Scholar] [CrossRef]
- Shelhamer, E.; Long, J.; Darrell, T. Fully Convolutional Networks for Semantic Segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 39, 640–651. [Google Scholar] [CrossRef] [PubMed]
- Ronneberger, O.; Fischer, P.; Brox, T. U-Net: Convolutional Networks for Biomedical Image Segmentation. In Proceedings of the Medical Image Computing and Computer-Assisted Intervention—MICCAI 2015: 18th International Conference, Munich, Germany, 5–9 October 2015; pp. 234–241. [Google Scholar]
- Zhou, Z.; Siddiquee, M.M.R.; Tajbakhsh, N.; Liang, J. UNet++: A Nested U-Net Architecture for Medical Image Segmentation. In Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support; Springer: Berlin/Heidelberg, Germany, 2018. [Google Scholar] [CrossRef]
- Badrinarayanan, V.; Kendall, A.; Cipolla, R. Segnet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 39, 2481–2495. [Google Scholar] [CrossRef] [PubMed]
- Zhuge, X.; Zou, X. Summertime convective initiation nowcasting over southeastern China based on advanced himawari imager observations. J. Meteorol. Soc. Jpn. Ser. II 2018, 96, 337–353. [Google Scholar] [CrossRef]
- Mecikalski, J.R.; Bedka, K.M. Forecasting convective initiation by monitoring the evolution of moving cumulus in daytime GOES imagery. Mon. Weather Rev. 2006, 134, 49–78. [Google Scholar] [CrossRef]
- Lee, S.; Han, H.; Im, J.; Jang, E.; Lee, M.-I. Detection of deterministic and probabilistic convection initiation using Himawari-8 Advanced Himawari Imager data. Atmos. Meas. Tech. 2017, 10, 1859–1874. [Google Scholar] [CrossRef]
- Laing, A.G.; Fritsch, J.M. The Large-scale environments of the global populations of mesoscale convective complexes. Mon. Weather Rev. 2000, 128, 2756–2776. [Google Scholar] [CrossRef]
- Vila, D.A.; Machado, L.A.T.; Laurent, H.; Velasco, I. Forecast and tracking the evolution of cloud clusters (ForTraCC) using satellite infrared imagery: Methodology and validation. Weather Forecast. 2008, 23, 233–245. [Google Scholar] [CrossRef]
CREF (dBZ) | |||
---|---|---|---|
10 | 0.0380 | 26.32 | 25.64 |
20 | 0.0282 | 35.56 | 34.25 |
30 | 0.0136 | 73.53 | 68.49 |
40 | 0.00459 | 217.86 | 178.89 |
45 | 0.00189 | 529.10 | 348.02 |
50 | 7.58 × 10−4 | 1319.26 | 568.83 |
55 | 1.36 × 10−4 | 7352.94 | 880.28 |
60 | 3.03 × 10−5 | 3.30 × 104 | 970.59 |
65 | 4.16 × 10−6 | 2.40 × 105 | 995.86 |
70 | 3.82 × 10−7 | 2.62 × 106 | 999.62 |
Abbreviation | Definition | Physical Meaning |
---|---|---|
Channel-7 brightness temperature | Shortwave infrared window, low clouds | |
Channel-9 brightness temperature | Mid-level water vapor content | |
Channel-13 brightness temperature | Cloud-top height | |
Brightness temperature difference between Channels 15 and 13 | Cloud optical thickness | |
Tri-channel difference for Channels 11, 15, and 13 | Cloud-top phrase |
Models | Model Inputs |
---|---|
Model 1 | Base bands |
Model 2 | Base bands + solar zenith angle |
Model 3 | Base bands + latitude + local time |
Model 4 | Base bands + minimum TBBs |
Models | Correlation Coefficients | Accuracy (|Deviation| ≤ 3 dBZ) | RMSE | RMSE (Echos over 10 dBZ) | CSI (35 dBZ) |
---|---|---|---|---|---|
Model 1 | 0.702 | 0.683 | 4.82 | 9.86 | 0.195 |
Model 2 | 0.707 | 0.686 | 4.77 | 10.13 | 0.171 |
Model 3 | 0.702 | 0.696 | 4.81 | 9.86 | 0.194 |
Model 4 | 0.727 | 0.728 | 4.57 | 9.65 | 0.215 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wan, B.; Gao, C.Y. Improving Radar Reflectivity Reconstruction with Himawari-9 and UNet++ for Off-Shore Weather Monitoring. Remote Sens. 2024, 16, 56. https://doi.org/10.3390/rs16010056
Wan B, Gao CY. Improving Radar Reflectivity Reconstruction with Himawari-9 and UNet++ for Off-Shore Weather Monitoring. Remote Sensing. 2024; 16(1):56. https://doi.org/10.3390/rs16010056
Chicago/Turabian StyleWan, Bingcheng, and Chloe Yuchao Gao. 2024. "Improving Radar Reflectivity Reconstruction with Himawari-9 and UNet++ for Off-Shore Weather Monitoring" Remote Sensing 16, no. 1: 56. https://doi.org/10.3390/rs16010056
APA StyleWan, B., & Gao, C. Y. (2024). Improving Radar Reflectivity Reconstruction with Himawari-9 and UNet++ for Off-Shore Weather Monitoring. Remote Sensing, 16(1), 56. https://doi.org/10.3390/rs16010056