Real-Time Estimation of BDS-3 Satellite Clock Offset with Ambiguity Resolution Using B1C/B2a Signals
Abstract
:1. Introduction
2. Methods
2.1. Model for Ambiguity-Float Satellite Clock Offset Estimation
2.2. UPD Estimation and AR Strategies
2.3. Data Processing Flowchart
3. Experiment Analysis
3.1. Experimental Setup
3.2. UPD Performance
3.3. Ambiguity Fixing Rate
3.4. Clock Offset Accuracy
3.5. PPP Validation
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yang, Y.; Gao, W.; Guo, S.; Mao, Y.; Yang, Y. Introduction to BeiDou-3 navigation satellite system. Navigation 2019, 66, 7–18. [Google Scholar] [CrossRef]
- Huang, G.; Cui, B.; Zhang, Q.; Fu, W.; Li, P. An improved predicted model for BDS ultra-rapid satellite clock offsets. Remote Sens. 2018, 10, 60. [Google Scholar] [CrossRef]
- Xie, W.; Huang, G.; Fu, W.; Shu, B.; Cui, B.; Li, M.; Yue, F. A quality control method based on improved IQR for estimating multi-GNSS real-time satellite clock offset. Measurement 2022, 201, 111695. [Google Scholar] [CrossRef]
- CSNO. BeiDou Navigation Satellite System Signal in Space Interface Control Document Open Service Signal B1I (Version 3.0); China Satellite Navigation Office: Beijing, China, 2019. [Google Scholar]
- CSNO. BeiDou Navigation Satellite System Signal in Space Interface Control Document Open Service Signal B3I (Version 1.0); China Satellite Navigation Office: Beijing, China, 2018. [Google Scholar]
- CSNO. BeiDou Navigation Satellite System Signal in Space Interface Control Document Open Service Signal B1C (Version 1.0); China Satellite Navigation Office: Beijing, China, 2017. [Google Scholar]
- CSNO. BeiDou Navigation Satellite System Signal in Space Interface Control Document Open Service Signal B2a (Version 1.0); China Satellite Navigation Office: Beijing, China, 2017. [Google Scholar]
- Lu, M.; Li, W.; Yao, Z.; Cui, X. Overview of BDS III new signals. Navigation 2019, 66, 19–35. [Google Scholar] [CrossRef]
- He, L.; He, X.; Huang, Y. Enhanced precise orbit determination of BDS-3 MEO satellites based on ambiguity resolution with B1C/B2a dual-frequency combination. Measurement 2022, 205, 112197. [Google Scholar] [CrossRef]
- Xie, S.; Huang, G.; Wang, L.; Yan, X.; Qin, Z. Estimation of Vertical Phase Center Offset and Phase Center Variations for BDS-3 B1CB2a Signals. Remote Sens. 2022, 14, 6380. [Google Scholar] [CrossRef]
- Kuang, K.; Wang, J.; Han, H. Real-Time BDS-3 Clock Estimation with a Multi-Frequency Uncombined Model including New B1C/B2a Signals. Remote Sens. 2022, 14, 966. [Google Scholar] [CrossRef]
- Zhang, Q.; Zhu, Y.; Chen, Z. An In-Depth Assessment of the New BDS-3 B1C and B2a Signals. Remote Sens. 2021, 13, 788. [Google Scholar] [CrossRef]
- Li, M.; Mu, R.; Jiang, K.; Wang, Y.; Zhang, X.; Chang, C.; Zhao, Q. Precise orbit determination for the Haiyang-2D satellite using new onboard BDS-3 B1C/B2a signal measurements. GPS Solut. 2022, 26, 137. [Google Scholar] [CrossRef]
- Zhao, L.; Hua, X.; Tang, X.; Cao, Y.; Zhou, S.; Yang, Y.; Liu, L.; Guo, R. Generation of DFMC SBAS corrections for BDS-3 satellites and improved positioning performances. Adv. Space Res. 2020, 66, 702–714. [Google Scholar] [CrossRef]
- Hou, Y.; Wang, H.; Wang, J.; Ma, H.; Ren, Y.; Liu, Y. BDS-3 new signals observable-specific phase biases estimation and PPP ambiguity resolution. Adv. Space Res. 2023, 72, 2156–2169. [Google Scholar] [CrossRef]
- Yu, X.; Cao, X.; Wang, J.; Ge, Y.; Shen, F. The benefit of B1C/B2a signals for BDS-3 wide-area decimeter-level and centimeter-level point positioning with observable-specific signal bias. Measurement 2023, 214, 112815. [Google Scholar] [CrossRef]
- Ren, Z.; Gong, H.; Lyu, D.; Peng, J.; Guo, Y.; Sun, G. Time transfer with BDS-3 signals: CV, PPP and IPPP. Meas. Sci. Technol. 2023, 34, 045007. [Google Scholar] [CrossRef]
- Li, X.; Xiong, Y.; Yuan, Y.; Wu, J.; Li, X.; Zhang, K.; Huang, J. Real-time estimation of multi-GNSS integer recovery clock with undifferenced ambiguity resolution. J. Geod. 2019, 93, 2515–2528. [Google Scholar] [CrossRef]
- Montenbruck, O.; Steigenberger, P.; Prange, L.; Deng, Z.; Zhao, Q.; Perosanz, F.; Romero, I.; Noll, C.; Stürze, A.; Weber, G.; et al. The multi-GNSS experiment (MGEX) of the international GNSS Service (IGS)—Achievements, prospects and challenges. Adv. Space Res. 2017, 59, 1671–1697. [Google Scholar] [CrossRef]
- Li, X.; Li, X.; Liu, G.; Feng, G.; Guo, F.; Yuan, Y.; Zhang, K. Spatial-temporal characteristic of BDS phase delays and PPP ambiguity resolution with GEO/IGSO/MEO satellites. GPS Solut. 2018, 22, 123. [Google Scholar] [CrossRef]
- Fu, W.; Yang, Y.; Zhang, Q.; Huang, G. Real-time estimation of BDS/GPS high-rate satellite clock offsets using sequential least squares. Adv. Space Res. 2018, 62, 477–487. [Google Scholar] [CrossRef]
- Xie, W.; Huang, G.; Fu, W.; Li, P.; Cui, B. An efficient clock offset datum switching compensation method for BDS real-time satellite clock offset estimation. Adv. Space Res. 2021, 68, 1802–1813. [Google Scholar] [CrossRef]
- Hatch, R. The synergism of GPS code and carrier measurements. In Proceedings of the Third International Symposium on Satellite Doppler Positioning at Physical Sciences Laboratory of New Mexico State University, Las Cruces, Mexico, 8–12 February 1982; Volume 2, pp. 1213–1231. [Google Scholar]
- Melbourne, W.G. The case for ranging in GPS-based geodetic systems. In Proceedings of the First International Symposium on Precise Positioning with the Global Positioning System, Rockville, MD, USA, 15–19 April 1985; pp. 5–19. [Google Scholar]
- Wübbena, G. Software developments for geodetic positioning with GPS using TI-4100 code and carrier measurements. In Proceedings of the First International Symposium on Precise Positioning with the Global Positioning System, Rockville, MD, USA, 15–19 April 1985; pp. 5–19. [Google Scholar]
- Cui, B.; Li, P.; Wang, J.; Ge, M.; Harald, S. Calibrating receiver-type-dependent wide-lane uncalibrated phase delay biases for PPP integer ambiguity resolution. J. Geod. 2021, 95, 82. [Google Scholar] [CrossRef]
- Dong, D.; Bock, Y. Global positioning system network analysis with phase ambiguity resolution applied to crustal deformation studies in California. J. Geophys. Res. 1989, 94, 3949–3966. [Google Scholar] [CrossRef]
- Xie, W.; Huang, G.; Fu, W.; Li, M.; Du, S.; Tan, Y. Realizing rapid re-convergence in multi-GNSS real-time satellite clock offset estimation with dual-thread integer ambiguity resolution. GPS Solut. 2023, 27, 54. [Google Scholar] [CrossRef]
- Liu, S.; Yuan, Y. Generating GPS decoupled clock products for precise point positioning with ambiguity resolution. J. Geod. 2022, 96, 6. [Google Scholar] [CrossRef]
- Fu, W.; Wang, J.; Wang, L.; Chen, R. A Kalman filter-based online fractional cycle bias determination method for real-time ambiguity-fixing GPS satellite clock estimation. Measurement 2022, 205, 112207. [Google Scholar] [CrossRef]
- Yan, X.; Liu, C.; Huang, G.; Zhang, Q.; Wang, L.; Qin, Z.; Xie, S. A Priori Solar Radiation Pressure Model for BeiDou-3 MEO Satellites. Remote Sens. 2019, 11, 1605. [Google Scholar] [CrossRef]
- Saastamoinen, J. Contributions to the theory of atmospheric refraction—Part II. Refraction corrections in satellite geodesy. Bull. Géodésiqu 1973, 47, 13–34. [Google Scholar] [CrossRef]
- Wu, J.T.; Wu, S.C.; Hajj, G.A.; Bertiger, W.I.; Lichten, S.M. Effects of antenna orientation on GPS carrier phase. In Proceedings of the Astrodynamics 1991, San Diego, CA, USA, 19–22 August 1991; pp. 1647–1660. [Google Scholar]
- Kouba, J. Relativity effects of Galileo passive hydrogen maser satellite clocks. GPS Solut. 2019, 23, 117. [Google Scholar] [CrossRef]
- Li, M.; Huang, G.; Wang, L.; Xie, W.; Yue, F. Performance of Multi-GNSS in the Asia-Pacific Region: Signal Quality, Broadcast Ephemeris and Precise Point Positioning (PPP). Remote Sens. 2022, 14, 3028. [Google Scholar] [CrossRef]
- Li, X.; Liu, G.; Li, X.; Zhou, F.; Feng, G.; Yuan, Y.; Zhang, K. Galileo PPP rapid ambiguity resolution with five-frequency Observations. GPS Solut. 2020, 24, 24. [Google Scholar] [CrossRef]
- Griffiths, J.; Ray, J.R. On the precision and accuracy of IGS orbits. J. Geod. 2009, 83, 277–287. [Google Scholar] [CrossRef]
- Yao, Z.; Zhang, J.; Lu, M. ACE-BOC: Dual-frequency constant envelope multiplexing for satellite navigation. IEEE Trans. Aerosp. Electron. Syst. 2016, 52, 466–485. [Google Scholar] [CrossRef]
Items | Strategies |
---|---|
Signal selection | B1C/B2a, B1I/B3I |
Elevation mask | 7° |
Stochastic Model | 1, > 30°; 2sin (), < 30° |
Satellite orbit, PCO, and PCV | From Chang’an University [10,31] |
ERP | IGS weekly solutions |
Phase wind-up | Corrected [33] |
Relativistic effects | Corrected [34] |
Station coordinates | IGS weekly solutions applied |
Clock offset estimator | Sequential least-squares adjustment [21] |
UPD estimator | Kalman filter [30] |
ZWD | Piece-wise constants and updated hourly |
Phase ambiguities | Fixed to integers using the Rounding method for WL and NL ambiguities, epoch-wise |
Satellite clock offset | White noise |
Receiver clock offset | White noise |
B1I/B3I Float | B1C/B2a Float | B1I/B3I Fixed | B1C/B2a Fixed | |
---|---|---|---|---|
East | 2.57 | 2.75 | 1.56 | 1.36 |
North | 1.64 | 1.56 | 1.23 | 1.16 |
Up | 5.16 | 5.05 | 4.46 | 4.25 |
B1I/B3I Float | B1C/B2a Float | B1I/B3I Fixed | B1C/B2a Fixed | |
---|---|---|---|---|
East | 66.57 | 39.45 | 36.69 | 23.79 |
North | 13.73 | 12.95 | 13.70 | 12.33 |
Up | 42.93 | 37.25 | 31.43 | 20.98 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xie, W.; Wang, K.; Fu, W.; Xie, S.; Cui, B.; Li, M. Real-Time Estimation of BDS-3 Satellite Clock Offset with Ambiguity Resolution Using B1C/B2a Signals. Remote Sens. 2024, 16, 1666. https://doi.org/10.3390/rs16101666
Xie W, Wang K, Fu W, Xie S, Cui B, Li M. Real-Time Estimation of BDS-3 Satellite Clock Offset with Ambiguity Resolution Using B1C/B2a Signals. Remote Sensing. 2024; 16(10):1666. https://doi.org/10.3390/rs16101666
Chicago/Turabian StyleXie, Wei, Kan Wang, Wenju Fu, Shichao Xie, Bobin Cui, and Mengyuan Li. 2024. "Real-Time Estimation of BDS-3 Satellite Clock Offset with Ambiguity Resolution Using B1C/B2a Signals" Remote Sensing 16, no. 10: 1666. https://doi.org/10.3390/rs16101666
APA StyleXie, W., Wang, K., Fu, W., Xie, S., Cui, B., & Li, M. (2024). Real-Time Estimation of BDS-3 Satellite Clock Offset with Ambiguity Resolution Using B1C/B2a Signals. Remote Sensing, 16(10), 1666. https://doi.org/10.3390/rs16101666