Crater Detection and Population Statistics in Tianwen-1 Landing Area Based on Segment Anything Model (SAM)
Abstract
:1. Introduction
- (a)
- We proposed a complete solution for automatic crater identification based on SAM, which was applied to extract craters from the DIM of the Tianwen-1 landing area.
- (b)
- Experiments were conducted in three subregions of the Tianwen-1 landing area, where SAM achieved a recall rate of 100%. Many new craters were detected, confirming its effectiveness in the task of crater extraction.
- (c)
- On the basis of the DIM of the Tianwen-1 landing area, we provided a relatively comprehensive crater dataset, including information on the position and diameter of the craters.
- (d)
- We analyzed the CSFD of the craters and estimated the surface age of the landing area, conducting an analysis of the geological evolution of the landing region.
2. Materials and Methods
2.1. Data Preprocessing
2.2. SAM
- (a)
- Segmentation masks and the area of each mask;
- (b)
- Boundary boxes for each mask;
- (c)
- A quality score (ranging from 0 to 1) for the boundary box of each mask, measuring the reliability of the mask;
- (d)
- A stability score (ranging from 0 to 1) for each mask, assessing the stability of the mask at different input coordinates.
2.3. Crater Extraction
- (a)
- Using SAM model to obtain segmentation masks for DIM images of different sizes;
- (b)
- Filtering out non-circular edges from the segmented edges;
- (c)
- Performing circular fitting with the edges of the segmentation masks;
- (d)
- Removing duplicates and false circles;
- (e)
- Converting pixel coordinates to geographic coordinates.
2.3.1. Circular Metrics
2.3.2. Circular Fitting
2.3.3. Remove of Duplicates and False Craters
2.3.4. Transformation of Coordinates
3. Experimental Results and Analysis
3.1. Evaluate Metrics
3.2. Experimental
4. Statistics and Distribution of The Landing Area’s Crater
4.1. Counting the Craters
4.2. Crater Size–Frequency Distribution (CSFD)
4.3. Documentation of the Crater Catalog
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Meng, Q.; Wang, D.; Wang, X.; Li, W.; Yang, X.; Yan, D.; Li, Y.; Cao, Z.; Ji, Q.; Sun, T.; et al. High Resolution Imaging Camera (HiRIC) on China’s First Mars Exploration Tianwen-1 Mission. Space Sci. Rev. 2021, 217, 42. [Google Scholar] [CrossRef]
- Head, J.W., 3rd; Fassett, C.I.; Kadish, S.J.; Smith, D.E.; Zuber, M.T.; Neumann, G.A.; Mazarico, E. Global distribution of large lunar craters: Implications for resurfacing and impactor populations. Science 2010, 329, 1504–1507. [Google Scholar] [CrossRef] [PubMed]
- Hu, T.; Yang, Z.; Kang, Z.; Lin, H.; Zhong, J.; Zhang, D.; Cao, Y.; Geng, H. Population of Degrading Small Impact Craters in the Chang’E-4 Landing Area Using Descent and Ground Images. Remote Sens. 2022, 14, 3608. [Google Scholar] [CrossRef]
- Wu, B.; Huang, J.; Li, Y.; Wang, Y.; Peng, J. Rock Abundance and Crater Density in the Candidate Chang’E-5 Landing Region on the Moon. J. Geophys. Res. Planets 2018, 123, 3256–3272. [Google Scholar] [CrossRef]
- Hartmann, W.K.; Neukum, G. Cratering chronology and the evolution of Mars. In Chronology and Evolution of Mars: Proceedings of an ISSI Workshop, Bern, Switzerland, 10–14 April 2000; Springer Netherlands: Dordrecht, The Netherlands, 2001; pp. 165–194. [Google Scholar]
- Neukum, G. Meteoritenbombardement und Datierung Planetarer Oberflachen. Habilitation Dissertation, Faculty Membership, Ludwig-Maximilians-University, Munchen, Germany, 1983. [Google Scholar]
- Povilaitis, R.Z.; Robinson, M.S.; van der Bogert, C.H.; Hiesinger, H.; Meyer, H.M.; Ostrach, L.R. Crater density differences: Exploring regional resurfacing, secondary crater populations, and crater saturation equilibrium on the moon. Planet. Space Sci. 2018, 162, 41–51. [Google Scholar] [CrossRef]
- Cheng, Y.; Johnson, A.E.; Matthies, L.H.; Olson, C.F. Optical landmark detection for spacecraft navigation. In Proceedings of the 13th Annual AAS/AIAA Space Flight Mechanics Meeting, Ponce, Puerto Rico, 9–13 February 2003; pp. 1–19. [Google Scholar]
- Illingworth, J.; Kittler, J. A survey of the Hough transform. Comput. Vis. Graph. Image Process. 1988, 44, 87–116. [Google Scholar] [CrossRef]
- Briechle, K.; Hanebeck, U.D. Template matching using fast normalized cross correlation. Proc. SPIE Int. Soc. Opt. Eng. 2001, 4387, 1–8. [Google Scholar]
- Leroy, B.; Medioni, G.; Johnson, E.; Matthies, L. Crater detection for autonomous landing on asteroids. Image Vis. Comput. 2001, 19, 787–792. [Google Scholar] [CrossRef]
- Galloway, M.J.; Benedix, G.K.; Bland, P.A.; Paxman, J.; Towner, M.C.; Tan, T. Automated crater detection and counting using the Hough transform. In Proceedings of the 2014 IEEE International Conference on Image Processing (ICIP), Paris, France, 27–30 October 2014; pp. 1579–1583. [Google Scholar]
- Dong, S.; Wang, L.; Du, B.; Meng, X. ChangeCLIP: Remote sensing change detection with multimodal vision-language representation learning. ISPRS J. Photogramm. Remote Sens. 2024, 208, 53–69. [Google Scholar] [CrossRef]
- Li, Y.; Du, L.; Wei, D. Multiscale CNN Based on Component Analysis for SAR ATR. IEEE Trans. Geosci. Remote Sens. 2022, 60, 5211212. [Google Scholar] [CrossRef]
- Li, J.; Chen, K.; Tian, G.; Li, L.; Shi, Z. MarsSeg: Mars Surface Semantic Segmentation with Multi-level Extractor and Connector. arXiv 2024, arXiv:2404.04155. [Google Scholar]
- Silburt, A.; Ali-Dib, M.; Zhu, C.; Jackson, A.; Valencia, D.; Kissin, Y.; Tamayo, D.; Menou, K. Lunar crater identification via deep learning. Icarus 2019, 317, 27–38. [Google Scholar] [CrossRef]
- Speyerer, E.; Robinson, M.; Denevi, B.; Team, L.S. Lunar Reconnaissance Orbiter Camera Global Morphological Map of the Moon. In Proceedings of the 42nd Annual Lunar and Planetary Science Conference, The Woodlands, TX, USA, 7–11 March 2011; p. 2387. [Google Scholar]
- Ronneberger, O.; Fischer, P.; Brox, T. U-net: Convolutional networks for biomedical image segmentation. In Medical Image Computing and Computer-Assisted Intervention–MICCAI 2015, Proceedings of the 18th International Conference, Munich, Germany, 5–9 October 2015; Proceedings, Part III; Springer International Publishing: Berlin/Heidelberg, Germany, 2015; pp. 234–241. [Google Scholar]
- Lee, C. Automated crater detection on Mars using deep learning. Planet. Space Sci. 2019, 170, 16–28. [Google Scholar] [CrossRef]
- Chen, D.; Hu, F.; Mathiopoulos, P.T.; Zhang, Z.; Peethambaran, J. MC-UNet: Martian Crater Segmentation at Semantic and Instance Levels Using U-Net-Based Convolutional Neural Network. Remote Sens. 2023, 15, 266. [Google Scholar] [CrossRef]
- Zhao, Y.; Ye, H. SqUNet: An High-Performance Network for Crater Detection With DEM Data. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2023, 16, 8577–8585. [Google Scholar] [CrossRef]
- Yang, C.; Zhao, H.; Bruzzone, L.; Benediktsson, J.A.; Liang, Y.; Liu, B.; Zeng, X.; Guan, R.; Li, C.; Ouyang, Z. Lunar impact crater identification and age estimation with Chang’E data by deep and transfer learning. Nat. Commun. 2020, 11, 6358. [Google Scholar] [CrossRef]
- Robbins, S.J.; Hynek, B.M. A new global database of Mars impact craters ≥1 km: 1. Database creation, properties, and parameters. J. Geophys. Res. Planets 2012, 117. [Google Scholar] [CrossRef]
- Jia, M.; Yue, Z.; Di, K.; Liu, B.; Liu, J.; Michael, G. A catalogue of impact craters larger than 200 m and surface age analysis in the Chang’e-5 landing area. Earth Planet. Sci. Lett. 2020, 541, 116272. [Google Scholar] [CrossRef]
- Chen, K.; Liu, C.; Chen, H.; Zhang, H.; Li, W.; Zou, Z.; Shi, Z. RSPrompter: Learning to prompt for remote sensing instance segmentation based on visual foundation model. IEEE Trans. Geosci. Remote Sens. 2024, 62, 4701117. [Google Scholar] [CrossRef]
- Kirillov, A.; Mintun, E.; Ravi, N.; Mao, H.; Rolland, C.; Gustafson, L.; Xiao, T.; Whitehead, S.; Berg, A.C.; Lo, W.-Y. Segment anything. arXiv 2023, arXiv:2304.02643. [Google Scholar]
- Mazurowski, M.A.; Dong, H.; Gu, H.; Yang, J.; Konz, N.; Zhang, Y. Segment anything model for medical image analysis: An experimental study. Med. Image Anal. 2023, 89, 102918. [Google Scholar] [CrossRef]
- Giannakis, I.; Bhardwaj, A.; Sam, L.; Leontidis, G. A flexible deep learning crater detection scheme using Segment Anything Model (SAM). Icarus 2024, 408, 115797. [Google Scholar] [CrossRef]
- Wan, W.X.; Wang, C.; Li, C.L.; Wei, Y. China’s first mission to Mars. Nat. Astron. 2020, 4, 721. [Google Scholar] [CrossRef]
- Niu, S.; Zhang, F.; Di, K.; Gou, S.; Yue, Z. Layered Ejecta Craters in the Candidate Landing Areas of China’s First Mars Mission (Tianwen-1): Implications for Subsurface Volatile Concentrations. J. Geophys. Res. Planets 2022, 127, e2021JE007089. [Google Scholar] [CrossRef]
- Zhao, J.; Xiao, Z.; Huang, J.; Head, J.W.; Wang, J.; Shi, Y.; Wu, B.; Wang, L. Geological Characteristics and Targets of High Scientific Interest in the Zhurong Landing Region on Mars. Geophys. Res. Lett. 2021, 48, e2021GL094903. [Google Scholar] [CrossRef]
- Wu, B.; Dong, J.; Wang, Y.; Li, Z.; Chen, Z.; Liu, W.C.; Zhu, J.; Chen, L.; Li, Y.; Rao, W. Characterization of the Candidate Landing Region for Tianwen-1—China’s First Mission to Mars. Earth Space Sci. 2021, 8, e2021EA001670. [Google Scholar] [CrossRef]
- Wu, X.; Liu, Y.; Zhang, C.; Wu, Y.; Zhang, F.; Du, J.; Liu, Z.; Xing, Y.; Xu, R.; He, Z.; et al. Geological characteristics of China’s Tianwen-1 landing site at Utopia Planitia, Mars. Icarus 2021, 370, 114657. [Google Scholar] [CrossRef]
- Wu, B.; Dong, J.; Wang, Y.; Rao, W.; Sun, Z.; Li, Z.; Tan, Z.; Chen, Z.; Wang, C.; Liu, W.C.; et al. Landing Site Selection and Characterization of Tianwen-1 (Zhurong Rover) on Mars. J. Geophys. Res. Planets 2022, 127, e2021JE007137. [Google Scholar] [CrossRef]
- Cao, Z.; Kang, Z.; Hu, T.; Yang, Z.; Zhu, L.; Ye, C. Cross-attention induced multilayer domain adaptation network for extraction of sub-kilometer craters from HiRIC images. Icarus 2024, 407, 115776. [Google Scholar] [CrossRef]
- Dosovitskiy, A.; Beyer, L.; Kolesnikov, A.; Weissenborn, D.; Zhai, X.; Unterthiner, T.; Dehghani, M.; Minderer, M.; Heigold, G.; Gelly, S. An image is worth 16x16 words: Transformers for image recognition at scale. arXiv 2020, arXiv:2010.11929. [Google Scholar]
- Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, Ł.; Polosukhin, I. Attention is all you need. Adv. Neural Inf. Process. Syst. 2017, 30, 600–610. [Google Scholar]
- Mordvintsev, A.; Abid, K. Opencv-Python Tutorials Documentation. 2014. Available online: https://buildmedia.readthedocs.org/media/pdf/opencv-python/latest/opencv-python.pdf (accessed on 10 January 2024).
- Bottema, M.J. Circularity of objects in images. In Proceedings of the 2000 IEEE International Conference on Acoustics, Speech, and Signal Processing (Cat. No. 00CH37100), Istanbul, Turkey, 5–9 June 2000; pp. 2247–2250. [Google Scholar]
- Gou, S.; Yue, Z.; Di, K.; Zhao, C.; Bugiolacchi, R.; Xiao, J.; Cai, Z.; Jin, S. Transverse aeolian ridges in the landing area of the Tianwen-1 Zhurong rover on Utopia Planitia, Mars. Earth Planet. Sci. Lett. 2022, 595, 117764. [Google Scholar] [CrossRef]
- Wang, S.; Fan, Z.; Li, Z.; Zhang, H.; Wei, C. An effective lunar crater recognition algorithm based on convolutional neural network. Remote Sens. 2020, 12, 2694. [Google Scholar] [CrossRef]
- Jia, Y.; Liu, L.; Zhang, C. Moon impact crater detection using nested attention mechanism based UNet++. IEEE Access 2021, 9, 44107–44116. [Google Scholar] [CrossRef]
- Grant, J.A.; Schultz, P.H. Degradation of selected terrestrial and Martian impact craters. J. Geophys. Res. Planets 1993, 98, 11025–11042. [Google Scholar] [CrossRef]
- Ivanov, B.A. Mars/Moon cratering rate ratio estimates. Space Sci. Rev. 2001, 96, 87–104. [Google Scholar] [CrossRef]
- Neukum, G.; Ivanov, B.A.; Hartmann, W.K. Cratering records in the inner solar system in relation to the lunar reference system. In Chronology and Evolution of Mars, Proceedings of an ISSI Workshop, Bern, Switzerland, 10–14 April 2000; Springer: Dordrecht, The Netherlands, 2001; pp. 55–86. [Google Scholar]
- Michael, G.; Neukum, G. Planetary surface dating from crater size–frequency distribution measurements: Partial resurfacing events and statistical age uncertainty. Earth Planet. Sci. Lett. 2010, 294, 223–229. [Google Scholar] [CrossRef]
- Tanaka, K.L.; Skinner, J.A., Jr.; Dohm, J.M.; Irwin, R.P., III; Kolb, E.J.; Fortezzo, C.M.; Platz, T.; Michael, G.G.; Hare, T.M. Geologic Map of Mars; U.S. Geological Survey: Reston, VA, USA, 2014; p. 3292. [CrossRef]
- Ivanov, M.A.; Hiesinger, H.; Erkeling, G.; Reiss, D. Mud volcanism and morphology of impact craters in Utopia Planitia on Mars: Evidence for the ancient ocean. Icarus 2014, 228, 121–140. [Google Scholar] [CrossRef]
- Huang, H.; Wang, X.; Chen, Y.; Zhang, Q.; Zhao, F.; Ren, X.; Zeng, X.; Yan, W.; Chen, W.; Liu, B. Observations and interpretations of geomorphologic features in the Tianwen-1 landing area on Mars by using orbital imagery data. Earth Planet. Phys. 2022, 7, 331–346. [Google Scholar] [CrossRef]
Circularity Threshold | 0.5 | 0.55 | 0.6 | 0.65 | 0.7 | 0.75 | 0.8 | 0.85 | 0.9 | 0.95 | |
---|---|---|---|---|---|---|---|---|---|---|---|
Metrics | |||||||||||
R | 1 | 1 | 1 | 1 | 1 | 1 | 92.7% | 79.7% | 56.8% | 43.8% | |
P | 2.8% | 3.0% | 3.2% | 3.4% | 3.7% | 4.7% | 4.8% | 6.1% | 9.1% | 13.8% |
Central Positions of the Subregions | 110°2′E, 25°41′N | 110°18′E, 24°56′N | 110°8′E, 24°24′N | |
---|---|---|---|---|
Metricsc | ||||
R | 1 | 1 | 1 | |
P | 3.5% | 4.7% | 3.8% |
Model | SAM | MC-UNet | ERU-Net | U-Net++ | DeepMoon | |
---|---|---|---|---|---|---|
Metrics | ||||||
R | 1 | 89.2% | 88.1% | 86.3% | 76.3% | |
P | 3.5% | 80.1% | 82.3% | 81.5% | 91.6% |
Central Positions of the Subregions | 110°2′E, 25°41′N | 110°18′E, 24°56′N | 110°8′E, 24°24′N | |||
---|---|---|---|---|---|---|
GT | SAM | GT | SAM | GT | SAM | |
Size range (m) | 12.1–567.9 | 1.9–1943.2 | 1.9–1300.9 | 1.9–1367.4 | 12.2–733.9 | 1.6–744.0 |
Quantity | 2103 | 58,724 | 3135 | 65,477 | 2084 | 53,610 |
ID | Range of Craters’ Diameters (m) | Quantity (Count) | ID | Range of Craters’ Diameters (m) | Quantity (Count) |
---|---|---|---|---|---|
HX1_GRAS_HIRIC_DIM_0.7_0001_254537N1095850E_A | 1.93–1943.17 | 53,428 | HX1_GRAS_HIRIC_DIM_0.7_0009_244453N1103919E_A | 1.98–1060.23 | 54,670 |
HX1_GRAS_HIRIC_DIM_0.7_0002_254537N1101905E_A | 1.57–831.91 | 44,950 | HX1_GRAS_HIRIC_DIM_0.7_0010_241431N1095850E_A | 2.14–1143.70 | 54,937 |
HX1_GRAS_HIRIC_DIM_0.7_0003_254537N1103919E_A | 1.66–1528.68 | 51,029 | HX1_GRAS_HIRIC_DIM_0.7_0011_241431N1101905E_A | 1.98–1609.63 | 48,865 |
HX1_GRAS_HIRIC_DIM_0.7_0004_251515N1095850E_A | 1.83–948.05 | 61,423 | HX1_GRAS_HIRIC_DIM_0.7_0012_241431N1095850E_A | 1.68–744.02 | 49,424 |
HX1_GRAS_HIRIC_DIM_0.7_0005_251515N1101905E_A | 1.95–1794.37 | 47,557 | HX1_GRAS_HIRIC_DIM_0.7_0013_234409N1095850E_A | 1.64–1142.47 | 70,031 |
HX1_GRAS_HIRIC_DIM_0.7_0006_251515N1103919E_A | 1.97–1240.55 | 69,949 | HX1_GRAS_HIRIC_DIM_0.7_0014_234409N1101905E_A | 1.98–1367.44 | 56,653 |
HX1_GRAS_HIRIC_DIM_0.7_0007_244453N1095850E_A | 1.89–7910.47 | 54,900 | HX1_GRAS_HIRIC_DIM_0.7_0015_234409N1103919E_A | 1.57–879.72 | 62,522 |
HX1_GRAS_HIRIC_DIM_0.7_0008_244453N1101905E_A | 1.95–1196.73 | 61,389 |
Index | Meaning | Example |
---|---|---|
ID | Representing the region in the DIM | HX1_GRAS_HIRIC_DIM_0.7_0005_251515N1101905E_A |
Latitude (degrees) | Longitude of the crater’s center | 25.445545541679884 |
Longitude (degrees) | Latitude of the crater’s center | 110.4361572920686 |
Global_x_center | X-coordinate of the center of thecrater relative to the entire landing zone’s DIM (in pixels) | 52,881.735497283 |
Global_y_center | Y-coordinate of the center of the crater relative to the entire landing zone’s DIM (in pixels) | 48,093.05926101379 |
Local_x_center | X-coordinate of the center of the crater relative to the local landing area’s DIM (in pixels) | 24,298.735497283 |
Local_y_center | Y-coordinate of the center of the crater relative to the local landing area’ s DIM (in pixels) | 5224.059261013788 |
Diameter (km) | Diameter of the crater | 0.0196223768624538 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, Y.; Ye, H. Crater Detection and Population Statistics in Tianwen-1 Landing Area Based on Segment Anything Model (SAM). Remote Sens. 2024, 16, 1743. https://doi.org/10.3390/rs16101743
Zhao Y, Ye H. Crater Detection and Population Statistics in Tianwen-1 Landing Area Based on Segment Anything Model (SAM). Remote Sensing. 2024; 16(10):1743. https://doi.org/10.3390/rs16101743
Chicago/Turabian StyleZhao, Yaqi, and Hongxia Ye. 2024. "Crater Detection and Population Statistics in Tianwen-1 Landing Area Based on Segment Anything Model (SAM)" Remote Sensing 16, no. 10: 1743. https://doi.org/10.3390/rs16101743
APA StyleZhao, Y., & Ye, H. (2024). Crater Detection and Population Statistics in Tianwen-1 Landing Area Based on Segment Anything Model (SAM). Remote Sensing, 16(10), 1743. https://doi.org/10.3390/rs16101743