LEO-Enhanced GNSS/INS Tightly Coupled Integration Based on Factor Graph Optimization in the Urban Environment
Abstract
:1. Introduction
2. Methodology Model
2.1. LEO-Enhanced EKF GNSS/INS TCI
2.1.1. LEO-Enhanced GNSS/INS TCI Algorithm Structure
2.1.2. Observation Function of the LEO-Enhanced GNSS/INS TCI
- where
2.1.3. State Function of the LEO-Enhanced GNSS/INS TCI
2.2. LEO-Enhanced FGO GNSS/INS TCI
2.2.1. FGO Theory
2.2.2. INS Factor
2.2.3. GNSS and LEO Factors
3. Experiment Evaluations
3.1. Experiment Data and Scheme
- The paper analyzed the positioning performance of EKF GNSS/INS and LEO-enhanced EKF GNSS/INS TCI. The purpose was to verify the improvement of LEO-enhanced EKF GNSS/INS TCI.
- Meanwhile, the paper analyzed the positioning performance of FGO GNSS/INS and LEO-enhanced FGO GNSS/INS TCI. The purpose was to verify the improvement of LEO-enhanced FGO GNSS/INS TCI.
- Comparison of the LEO-enhanced EKF and FGO GNSS/INS TCI positioning performance.
- Weak GNSS conditions were simulated to validate the performance of the LEO-enhanced FGO GNSS/INS in complex urban environments.
3.2. LEO-Enhanced EKF and FGO GNSS/INS TCI
3.2.1. LEO-Enhanced EKF GNSS/INS TCI
3.2.2. LEO-Enhanced FGO GNSS/INS TCI
3.2.3. The Performance Comparison between EKF and FGO Method
3.3. LEO-Enhanced FGO GNSS/INS TCI Performance under GNSS with the Low-Observability Environment
3.3.1. LEO-Enhanced FGO GNSS/INS TCI Position Performance
3.3.2. LEO-Enhanced FGO GNSS/INS TCI Convergence Performance
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Elamin, A.; Abdelaziz, N.; El-Rabbany, A. A GNSS/INS/LiDAR Integration Scheme for UAV-Based Navigation in GNSS-Challenging Environments. Sensors 2022, 22, 9908. [Google Scholar] [CrossRef] [PubMed]
- Eling, C.; Klingbeil, L.; Kuhlmann, H. Real-time single-frequency GPS/MEMS-IMU attitude determination of lightweight UAVs. Sensors 2015, 15, 26212–26235. [Google Scholar] [CrossRef] [PubMed]
- Gao, Z.; Zhang, H.; Ge, M.; Niu, X.; Shen, W.; Wickert, J.; Schuh, H. Tightly coupled integration of ionosphere-constrained precise point positioning and inertial navigation systems. Sensors 2015, 15, 5783–5802. [Google Scholar] [CrossRef] [PubMed]
- Hsu, L.-T.; Huang, F.; Ng, H.-F.; Zhang, G.; Zhong, Y.; Bai, X.; Wen, W. Hong Kong UrbanNav: An Open-Source Multisensory Dataset for Benchmarking Urban Navigation Algorithms. NAVIGATION J. Inst. Navig. 2023, 70, navi.602. [Google Scholar] [CrossRef]
- Han, H.; Xu, T.; Wang, J. Tightly Coupled Integration of GPS Ambiguity Fixed Precise Point Positioning and MEMS-INS through a Troposphere-Constrained Adaptive Kalman Filter. Sensors 2016, 16, 1057. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Zhang, X.; Niu, X.; Wang, J.; Pei, L.; Yu, F.; Zhang, H.; Yang, C.; Gao, Z.; Zhang, Q.; et al. Progress and Achievements of Multi-sensor Fusion Navigation in China during 2019–2023. J. Geod. Geoinf. Sci. 2023, 6, 102–114. [Google Scholar]
- Li, S.; Wang, S.; Zhou, Y.; Shen, Z.; Li, X. Tightly Coupled Integration of GNSS, INS, and LiDAR for Vehicle Navigation in Urban Environments. IEEE Internet Things J. 2022, 9, 24721–24735. [Google Scholar] [CrossRef]
- Ibrahim, A.; Abosekeen, A.; Azouz, A.; Noureldin, A. Enhanced Autonomous Vehicle Positioning Using a Loosely Coupled INS/GNSS-Based Invariant-EKF Integration. Sensors 2023, 23, 6097. [Google Scholar] [CrossRef] [PubMed]
- Chiang, K.W.; Duong, T.T.; Liao, J.K. The performance analysis of a real-time integrated INS/GPS vehicle navigation system with abnormal GPS measurement elimination. Sensors 2013, 13, 10599–10622. [Google Scholar] [CrossRef] [PubMed]
- Liu, D.; Wang, H.; Xia, Q.; Jiang, C. A Low-Cost Method of Improving the GNSS/SINS Integrated Navigation System Using Multiple Receivers. Electronics 2020, 9, 1079. [Google Scholar] [CrossRef]
- Zhao, L.; Blunt, P.; Yang, L.; Ince, S. Performance Analysis of Real-Time GPS/Galileo Precise Point Positioning Integrated with Inertial Navigation System. Sensors 2023, 23, 2396. [Google Scholar] [CrossRef] [PubMed]
- Yao, Y.; Xu, X.; Zhu, C.; Chan, C.-Y. A hybrid fusion algorithm for GPS/INS integration during GPS outages. Measurement 2017, 103, 42–51. [Google Scholar] [CrossRef]
- Abd Rabbou, M.; El-Rabbany, A. Tightly coupled integration of GPS precise point positioning and MEMS-based inertial systems. GPS Solut. 2014, 19, 601–609. [Google Scholar] [CrossRef]
- Zhang, X.; Zhu, F.; Tao, X.; Duan, R. New optimal smoothing scheme for improving relative and absolute accuracy of tightly coupled GNSS/SINS integration. GPS Solut. 2017, 21, 861–872. [Google Scholar] [CrossRef]
- Godha, S.; Cannon, M.E. GPS/MEMS INS integrated system for navigation in urban areas. GPS Solut. 2007, 11, 193–203. [Google Scholar] [CrossRef]
- Roesler, G.; Martell, H. Tightly Coupled Processing of Precise Point Position (PPP) and INS Data. In Proceedings of the Institute of Navigation, Savannah, GA, USA, 22–25 September 2009. [Google Scholar]
- Lai, L.; Meng, X.; Zhao, D.; Li, X.; Guo, W.; Li, L. PPP/INS Tight Integration with BDS-3 PPP-B2b Service in the Urban Environment. Sensors 2023, 23, 2652. [Google Scholar] [CrossRef] [PubMed]
- Gao, Z.; Zhang, H.; Ge, M.; Niu, X.; Shen, W.; Wickert, J.; Schuh, H. Tightly coupled integration of multi-GNSS PPP and MEMS inertial measurement unit data. GPS Solut. 2016, 21, 377–391. [Google Scholar] [CrossRef]
- Wen, W.; Pfeifer, T.; Bai, X.; Hsu, L.T. Factor graph optimization for GNSS/INS integration: A comparison with the extended Kalman filter. Navigation 2021, 68, 315–331. [Google Scholar] [CrossRef]
- Han, H.; Wang, J.; Du, M. GPS/BDS/INS tightly coupled integration accuracy improvement using an improved adaptive interacting multiple model with classified measurement update. Chin. J. Aeronaut. 2018, 31, 556–566. [Google Scholar] [CrossRef]
- Prol, F.S.; Ferre, R.M.; Saleem, Z.; Valisuo, P.; Pinell, C.; Lohan, E.S.; Elsanhoury, M.; Elmusrati, M.; Islam, S.; Celikbilek, K.; et al. Position, Navigation, and Timing (PNT) Through Low Earth Orbit (LEO) Satellites: A Survey on Current Status, Challenges, and Opportunities. IEEE Access 2022, 10, 83971–84002. [Google Scholar] [CrossRef]
- Ge, H.; Li, B.; Jia, S.; Nie, L.; Wu, T.; Yang, Z.; Shang, J.; Zheng, Y.; Ge, M. LEO Enhanced Global Navigation Satellite System (LeGNSS): Progress, opportunities, and challenges. Geo-Spat. Inf. Sci. 2021, 25, 1–13. [Google Scholar] [CrossRef]
- Zheng, Y.; Ge, H.; Li, B. The convergence mechanism of Low Earth Orbit enhanced GNSS (LeGNSS) Precise Point Positioning (PPP). Geo-Spat. Inf. Sci. 2023, 1–16. [Google Scholar] [CrossRef]
- Shi, Y.; Xu, T.; Li, M.; Wei, K.; Wang, S.; Wang, D. Real-Time Precise Orbit Determination of Low Earth Orbit Satellites Based on GPS and BDS-3 PPP B2b Service. Remote Sens. 2024, 16, 833. [Google Scholar] [CrossRef]
- Ge, H.; Li, B.; Ge, M.; Zang, N.; Nie, L.; Shen, Y.; Schuh, H. Initial Assessment of Precise Point Positioning with LEO Enhanced Global Navigation Satellite Systems (LeGNSS). Remote Sens. 2018, 10, 984. [Google Scholar] [CrossRef]
- Li, X.; Li, X.; Ma, F.; Yuan, Y.; Zhang, K.; Zhou, F.; Zhang, X. Improved PPP Ambiguity Resolution with the Assistance of Multiple LEO Constellations and Signals. Remote Sens. 2019, 11, 408. [Google Scholar] [CrossRef]
- Ke, M.; Lv, J.; Chang, J.; Dai, W.; Zhu, M. Integrating GPS and LEO to accelerate convergence time of precise point positioning. In Proceedings of the 2015 International Conference on Wireless Communications & Signal Processing (WCSP), Nanjing, China, 15–17 October 2015; pp. 1–5. [Google Scholar]
- Zhao, Q.; Pan, S.; Gao, C.; Gao, W.; Xia, Y. BDS/GPS/LEO triple-frequency uncombined precise point positioning and its performance in harsh environments. Measurement 2020, 151, 107216. [Google Scholar] [CrossRef]
- Liu, J.; Hao, J.; Yang, Y.; Xu, Z.; Liu, W.; Wu, R. Design optimisation of low earth orbit constellation based on BeiDou Satellite Navigation System precise point positioning. IET Radar Sonar Navig. 2022, 16, 1241–1252. [Google Scholar] [CrossRef]
- Teng, Y.; Jia, X.; Peng, G. LEO navigation augmentation constellation design and precise point positioning performance analysis based on BDS-3. Adv. Space Res. 2023, 72, 1944–1960. [Google Scholar] [CrossRef]
- Zhang, S.; Tu, R.; Gao, Z.; Zhang, P.; Wang, S.; Lu, X. Low-Earth-Orbit Satellites and Robust Theory-Augmented GPS/Inertial-Navigation-System Tight Integration for Vehicle-Borne Positioning. Electronics 2024, 13, 508. [Google Scholar] [CrossRef]
- Xu, S.; Yang, Q.; Du, X.; Xu, X.; Zhao, Q.; Yang, L.; Qin, Y.; Guo, J. Multi-GNSS Precise Point Positioning enhanced by the real navigation signals from CENTISPACETM LEO mission. Adv. Space Res. 2024, 73, 4175–4186. [Google Scholar] [CrossRef]
- Watson, R.M.; Gross, J.N. Evaluation of Kinematic Precise Point Positioning Convergence with an Incremental Graph Optimizer. In Proceedings of the IEEE/ION Position, Location and Navigation Symposium (PLANS), Monterey, CA, USA, 23–26 April 2018; pp. 589–596. [Google Scholar]
- Li, W.; Cui, X.; Lu, M. A Robust Graph Optimization Realization of Tightly Coupled GNSS/INS Integrated Navigation System for Urban Vehicles. Tsinghua Sci. Technol. 2018, 23, 724–732. [Google Scholar] [CrossRef]
- Wen, W.; Bai, X.; Kan, Y.C.; Hsu, L.-T. Tightly Coupled GNSS/INS Integration via Factor Graph and Aided by Fish-Eye Camera. IEEE Trans. Veh. Technol. 2019, 68, 10651–10662. [Google Scholar] [CrossRef]
- Chang, L.; Niu, X.; Liu, T. GNSS/IMU/ODO/LiDAR-SLAM Integrated Navigation System Using IMU/ODO Pre-Integration. Sensors 2020, 20, 4702. [Google Scholar] [CrossRef] [PubMed]
- Tang, H.; Niu, X.; Zhang, T.; Fan, J.; Liu, J. Exploring the Accuracy Potential of IMU Preintegration in Factor Graph Optimization. arXiv 2021, arXiv:2109.03010v2. [Google Scholar]
- Wen, W.; Hsu, L.T. Towards Robust GNSS Positioning and Real-time Kinematic Using Factor Graph Optimization. In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), Xi’an, China, 30 May–5 June 2021; pp. 5884–5890. [Google Scholar]
- Engel, J.; Koltun, V.; Cremers, D. Direct Sparse Odometry. IEEE Trans. Pattern Anal. Mach. Intell. 2018, 40, 611–625. [Google Scholar] [CrossRef] [PubMed]
- Barfoot, T.D. State Estimation for Robotics; Cambridge University Press: Cambridge, UK, 2016. [Google Scholar]
- Li, X.; Ma, F.; Li, X.; Lv, H.; Bian, L.; Jiang, Z.; Zhang, X. LEO constellation-augmented multi-GNSS for rapid PPP convergence. J. Geod. 2018, 93, 749–764. [Google Scholar] [CrossRef]
- Hong, J.; Tu, R.; Zhang, P.; Zhang, R.; Han, J.; Fan, L.; Wang, S.; Lu, X. GNSS rapid precise point positioning enhanced by low Earth orbit satellites. Satell. Navig. 2023, 4, 11. [Google Scholar] [CrossRef]
IMU | Sampling Rate | Bias | Random Walk | ||
---|---|---|---|---|---|
Hz | Gyro. °/h | Acc. mGal | Angular °/s/√h | Velocity m/s/√h | |
POS320 | 200 | 0.5 | 25 | 0.05 | 0.1 |
Parameter | Models and Strategies |
---|---|
Satellite systems and frequency | GPS: L1 + L2; BDS-2/BDS-3: B1I + B3I; LEO: L1 + L2 |
Sampling interval | GNSS: 1 Hz; LEO: 1 Hz; INS: 200 Hz |
Cut-off elevation angle | 15° |
Reference coordinate | GNSS RTK/INS conducted by the software IE 8.7 |
Estimation method | The extended Kalman filter method and the factor graph optimization method |
Observations | Ionospheric-free observations of pseudo-range, carrier-phase, and Doppler observations |
Tropospheric delay | Using the Saastamoinen model, the residual component is modeled as a random walk process |
Satellite orbit and clock | Precise orbit and clock products |
Weight for observations | Elevation-dependent weight |
Receiver clock offset and clock drift | Modeled as a random walk process |
Satellite and receiver antenna phase center and other model errors | igs14.atx; model correction |
Biases and scale factor errors of accelerometer and gyroscope | Modeled as first-order Gauss–Markov processes |
TCI Modes | EKF | FGO | ||||||
---|---|---|---|---|---|---|---|---|
North | East | Up | 3D | North | East | Up | 3D | |
GPS/INS | 1.23 | 1.31 | 0.71 | 1.93 | 0.97 | 0.93 | 0.71 | 1.52 |
LEO-enhanced GPS/INS | 1.08 | 1.18 | 0.63 | 1.72 | 0.69 | 0.89 | 0.62 | 1.28 |
BDS/INS | 1.12 | 1.75 | 1.39 | 3.33 | 0.67 | 1.71 | 1.16 | 2.17 |
LEO-enhanced BDS/INS | 1.08 | 1.56 | 1.11 | 2.19 | 0.57 | 1.52 | 1.07 | 1.94 |
TCI Modes | 3D Positioning Errors for FGO | |||
---|---|---|---|---|
Data One | Data Two | Data Three | Data Four | |
GPS/INS | 3.26 | 2.46 | 1.23 | 3.56 |
LEO-enhanced GPS/INS | 1.67 | 1.95 | 0.82 | 2.45 |
BDS/INS | 4.56 | 2.18 | 1.56 | 2.68 |
LEO-enhanced BDS/INS | 3.37 | 1.55 | 1.40 | 1.05 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, S.; Tu, R.; Gao, Z.; Zou, D.; Wang, S.; Lu, X. LEO-Enhanced GNSS/INS Tightly Coupled Integration Based on Factor Graph Optimization in the Urban Environment. Remote Sens. 2024, 16, 1782. https://doi.org/10.3390/rs16101782
Zhang S, Tu R, Gao Z, Zou D, Wang S, Lu X. LEO-Enhanced GNSS/INS Tightly Coupled Integration Based on Factor Graph Optimization in the Urban Environment. Remote Sensing. 2024; 16(10):1782. https://doi.org/10.3390/rs16101782
Chicago/Turabian StyleZhang, Shixuan, Rui Tu, Zhouzheng Gao, Decai Zou, Siyao Wang, and Xiaochun Lu. 2024. "LEO-Enhanced GNSS/INS Tightly Coupled Integration Based on Factor Graph Optimization in the Urban Environment" Remote Sensing 16, no. 10: 1782. https://doi.org/10.3390/rs16101782
APA StyleZhang, S., Tu, R., Gao, Z., Zou, D., Wang, S., & Lu, X. (2024). LEO-Enhanced GNSS/INS Tightly Coupled Integration Based on Factor Graph Optimization in the Urban Environment. Remote Sensing, 16(10), 1782. https://doi.org/10.3390/rs16101782