GGMNet: Pavement-Crack Detection Based on Global Context Awareness and Multi-Scale Fusion
Abstract
:1. Introduction
2. Methods
2.1. Model Overview
2.2. Global Contextual Res-Block
2.3. Graph Pyramid Pooling Module
2.4. Multi-Scale Feature Fusion
2.5. Loss Function
3. Experimental Dataset and Setup
3.1. Datasets
3.2. Parameter Setting
3.3. Evaluation Metrics
4. Experimental Results
4.1. Results for DeepCrack
4.2. Results for CrackTree260
4.3. Results for Aerial Track Detection
4.4. Experimental Conclusions
5. Discussions
5.1. Comparison of Effectiveness among Different Levels of GC-Resblock
5.2. Comparison of the Effectiveness among Different Multi-Scale Aggregation Schemes
5.3. Comparison of Effectiveness among Various Feature Fusion Methods
5.4. Ablation Experiments
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ragnoli, A.; De Blasiis, M.; Di Benedetto, A. Pavement Distress Detection Methods: A Review. Infrastructures 2018, 3, 58. [Google Scholar] [CrossRef]
- Huang, W.; Zhang, N. A Novel Road Crack Detection and Identification Method Using Digital Image Processing Techniques. In Proceedings of the 2012 7th International Conference on Computing and Convergence Technology (ICCCT), Seoul, Republic of Korea, 3–5 December 2012; pp. 397–400. [Google Scholar]
- Li, P.; Wang, C.; Li, S.; Feng, B. Research on Crack Detection Method of Airport Runway Based on Twice-Threshold Segmentation. In Proceedings of the 2015 Fifth International Conference on Instrumentation and Measurement, Computer, Communication and Control (IMCCC), Qinhuangdao, China, 18–20 September 2015; Li, J., Ed.; IEEE: Piscataway, NJ, USA, 2015; pp. 1716–1720. [Google Scholar]
- Xu, W.; Tang, Z.; Zhou, J.; Ding, J. Ieee Pavement Crack Detection Based On Saliency and Statistical Features. In Proceedings of the 2013 IEEE International Conference on Image Processing, Melbourne, Australia, 15–18 September 2013; IEEE: Piscataway, NJ, USA, 2013; pp. 4093–4097. [Google Scholar]
- Chambon, S.; Moliard, J. Automatic Road Pavement Assessment with Image Processing: Review and Comparison. Int. J. Geophys. 2011, 2011, 989354. [Google Scholar] [CrossRef]
- Tanaka, N.; Uematsu, K. A Crack Detection Method in Road Surface Images Using Morphology. In Proceedings of the IAPR Workshop on Machine Vision Applications, Chiba, Japan, 17–19 November 1998; pp. 154–157. [Google Scholar]
- Zhou, J.; Huang, P.; Chiang, F. Wavelet-Based Pavement Distress Detection and Evaluation. Opt. Eng. 2006, 45, 027007. [Google Scholar] [CrossRef]
- Subirats, P.; Dumoulin, J.; Legeay, V.; Barba, D. IEEE Automation of Pavement Surface Crack Detection Using the Continuous Wavelet Transform. In Proceedings of the 2006 International Conference on Image Processing, Las Vegas, NV, USA, 26–29 June 2006; IEEE: Piscataway, NJ, USA, 2006; p. 3037. [Google Scholar]
- Kapela, R.; Sniatala, P.; Turkot, A.; Rybarczyk, A.; Pozarycki, A.; Rydzewski, P.; Wyczalek, M.; Bloch, A. IEEE Asphalt Surfaced Pavement Cracks Detection Based on Histograms of Oriented Gradients. In Proceedings of the 2015 22nd International Conference Mixed Design of Integrated Circuits & Systems (MIXDES), Torun, Poland, 25–27 June 2015; IEEE: Piscataway, NJ, USA, 2015; pp. 579–584. [Google Scholar]
- Hu, Y.; Zhao, C. A Novel LBP Based Methods for Pavement Crack Detection. JPRR 2010, 5, 140–147. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Fan, J.; Huo, B.; Liu, Y. Inspection of Welding Defect Based on Multi-Feature Fusion and a Convolutional Network. J. Nondestruct. Eval. 2021, 40, 90. [Google Scholar] [CrossRef]
- Yang, L.; Fan, J.; Liu, Y.; Li, E.; Peng, J.; Liang, Z. Automatic Detection and Location of Weld Beads With Deep Convolutional Neural Networks. IEEE Trans. Instrum. Meas. 2021, 70, 1–12. [Google Scholar] [CrossRef]
- Liu, Y.; Shen, J.; Yang, L.; Bian, G.; Yu, H. ResDO-UNet: A Deep Residual Network for Accurate Retinal Vessel Segmentation from Fundus Images. Biomed. Signal Process. Control 2023, 79, 104087. [Google Scholar] [CrossRef]
- Li, J.; Gao, G.; Yang, L.; Liu, Y. GDF-Net: A Multi-Task Symmetrical Network for Retinal Vessel Segmentation. Biomed. Signal Process. Control 2023, 81, 104426. [Google Scholar] [CrossRef]
- Xie, S.; Tu, Z. Holistically-Nested Edge Detection. In Proceedings of the IEEE International Conference on Computer Vision, Santiago, Chile, 7–13 December 2015; IEEE: Piscataway, NJ, USA, 2015; pp. 1395–1403. [Google Scholar]
- Liu, Y.; Cheng, M.-M.; Hu, X.; Wang, K.; Bai, X. Richer Convolutional Features for Edge Detection. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; IEEE: Piscataway, NJ, USA, 2017; pp. 3000–3009. [Google Scholar]
- Long, J.; Shelhamer, E.; Darrell, T. Fully Convolutional Networks for Semantic Segmentation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June 2015; IEEE: Piscataway, NJ, USA, 2015; pp. 3431–3440. [Google Scholar]
- Ronneberger, O.; Fischer, P.; Brox, T. U-Net: Convolutional Networks for Biomedical Image Segmentation. In Proceedings of the Medical Image Computing and Computer-Assisted Intervention—MICCAI 2015, Munich, Germany, 5–9 October 2015; Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F., Eds.; Springer International Publishing: Cham, Switzerland, 2015; pp. 234–241. [Google Scholar]
- Badrinarayanan, V.; Kendall, A.; Cipolla, R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 39, 2481–2495. [Google Scholar] [CrossRef]
- Zhao, H.; Shi, J.; Qi, X.; Wang, X.; Jia, J. IEEE Pyramid Scene Parsing Network. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 6230–6239. [Google Scholar]
- Chen, L.; Zhu, Y.; Papandreou, G.; Schroff, F.; Adam, H. Encoder-Decoder with Atrous Separable Convolution for Semantic Image Segmentation. In Proceedings of the European Conference on Computer Vision, Munich, Germany, 8–14 September 2018; Volume 11211, pp. 833–851. [Google Scholar]
- Chen, J.; Lu, Y.; Yu, Q.; Luo, X.; Adeli, E.; Wang, Y.; Lu, L.; Yuille, A.L.; Zhou, Y. TransUNet: Transformers Make Strong Encoders for Medical Image Segmentation. arXiv 2021, arXiv:2102.04306. [Google Scholar]
- Cao, H.; Wang, Y.; Chen, J.; Jiang, D.; Zhang, X.; Tian, Q.; Wang, M. Swin-Unet: Unet-like Pure Transformer for Medical Image Segmentation; Springer Nature: Cham, Switzerland, 2021. [Google Scholar]
- Liu, Y.; Yao, J.; Lu, X.; Xie, R.; Li, L. DeepCrack: A Deep Hierarchical Feature Learning Architecture for Crack Segmentation. Neurocomputing 2019, 338, 139–153. [Google Scholar] [CrossRef]
- Liu, H.; Miao, X.; Mertz, C.; Xu, C.; Kong, H. CrackFormer: Transformer Network for Fine-Grained Crack Detection. In Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision (ICCV), Montreal, BC, Canada, 11–17 October 2021; IEEE: Piscataway, NJ, USA, 2021; pp. 3763–3772. [Google Scholar]
- Bai, S.; Yang, L.; Liu, Y.; Yu, H. DMF-Net: A Dual-Encoding Multi-Scale Fusion Network for Pavement Crack Detection. IEEE Trans. Intell. Transp. Syst. 2023, 1–16, early access. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, C. Network for Robust and High-Accuracy Pavement Crack Segmentation. Autom. Constr. 2024, 162, 105375. [Google Scholar] [CrossRef]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 26 June–1 July 2016; IEEE: Piscataway, NJ, USA, 2016; pp. 770–778. [Google Scholar]
- Cao, Y.; Xu, J.; Lin, S.; Wei, F.; Hu, H. GCNet: Non-Local Networks Meet Squeeze-Excitation Networks and Beyond. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Seoul, Republic of Korea, 27–28 October 2019; IEEE: Seoul, Republic of Korea, 2019; pp. 1971–1980. [Google Scholar]
- Lin, T.-Y.; Dollar, P.; Girshick, R.; He, K.; Hariharan, B.; Belongie, S. Feature Pyramid Networks for Object Detection. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; IEEE: Piscataway, NJ, USA, 2017; pp. 2117–2125. [Google Scholar]
- Chen, Y.; Rohrbach, M.; Yan, Z.; Shuicheng, Y.; Feng, J.; Kalantidis, Y. Graph-Based Global Reasoning Networks. In Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA, 15–20 June 2019; IEEE: Long Beach, CA, USA, 2019; pp. 433–442. [Google Scholar]
- Yang, F.; Zhang, L.; Yu, S.; Prokhorov, D.; Mei, X.; Ling, H. Feature Pyramid and Hierarchical Boosting Network for Pavement Crack Detection. IEEE Trans. Intell. Transp. Syst. 2020, 21, 1525–1535. [Google Scholar] [CrossRef]
- Zhou, Y.; Chen, Z.; Wang, B.; Li, S.; Liu, H.; Xu, D.; Ma, C. BOMSC-Net: Boundary Optimization and Multi-Scale Context Awareness Based Building Extraction From High-Resolution Remote Sensing Imagery. IEEE Trans. Geosci. Remote Sens. 2022, 60, 1–17. [Google Scholar] [CrossRef]
- Simonyan, K.; Zisserman, A. Very Deep Convolutional Networks for Large-Scale Image Recognition. arXiv 2014, arXiv:1409.1556. [Google Scholar]
- Li, X.; Sun, X.; Meng, Y.; Liang, J.; Wu, F.; Li, J. Dice Loss for Data-imbalanced NLP Tasks. arXiv 2019, arXiv:1911.02855. [Google Scholar]
- Lee, C.-Y.; Xie, S.; Gallagher, P.; Zhang, Z.; Tu, Z. Deeply-Supervised Nets. In Proceedings of the Eighteenth International Conference on Artificial Intelligence and Statistics, PMLR, San Diego, CA, USA, 9–12 May 2015; pp. 562–570. [Google Scholar]
- Zou, Q.; Cao, Y.; Li, Q.; Mao, Q.; Wang, S. Crack Tree: Automatic Crack Detection from Pavement Images. Pattern Recognit. Lett. 2012, 33, 227–238. [Google Scholar] [CrossRef]
- Hong, Z.; Yang, F.; Pan, H.; Zhou, R.; Zhang, Y.; Han, Y.; Wang, J.; Yang, S.; Chen, P.; Tong, X.; et al. Highway Crack Segmentation From Unmanned Aerial Vehicle Images Using Deep Learning. IEEE Geosci. Remote Sens. Lett. 2022, 19, 1–5. [Google Scholar] [CrossRef]
- Sun, X.; Xie, Y.; Jiang, L.; Cao, Y.; Liu, B. DMA-Net: DeepLab With Multi-Scale Attention for Pavement Crack Segmentation. IEEE Trans. Intell. Transp. Syst. 2022, 23, 18392–18403. [Google Scholar] [CrossRef]
- Guo, J.-M.; Markoni, H.; Lee, J.-D. BARNet: Boundary Aware Refinement Network for Crack Detection. IEEE Trans. Intell. Transp. Syst. 2022, 23, 7343–7358. [Google Scholar] [CrossRef]
- Wang, Y.; Zeng, X.; Liao, X.; Zhuang, D. B-FGC-Net: A Building Extraction Network from High Resolution Remote Sensing Imagery. Remote Sens. 2022, 14, 269. [Google Scholar] [CrossRef]
- Qu, Z.; Chen, W.; Wang, S.; Yi, T.; Liu, L. A Crack Detection Algorithm for Concrete Pavement Based on Attention Mechanism and Multi-Features Fusion. IEEE Trans. Intell. Transp. Syst. 2022, 23, 11710–11719. [Google Scholar] [CrossRef]
- Xie, E.; Wang, W.; Yu, Z.; Anandkumar, A.; Alvarez, J.M.; Luo, P. SegFormer: Simple and Efficient Design for Semantic Segmentation with Transformers. Adv. Neural Inf. Process. Syst. 2021, 34, 12077–12090. [Google Scholar]
- Ullah, I.; Jian, M.; Hussain, S.; Lian, L.; Ali, Z.; Qureshi, I.; Guo, J.; Yin, Y. Global Context-Aware Multi-Scale Features Aggregative Network for Salient Object Detection. Neurocomputing 2021, 455, 139–153. [Google Scholar] [CrossRef]
- Ma, C.; Zhuo, L.; Li, J.; Zhang, Y.; Zhang, J. Occluded Prohibited Object Detection in X-Ray Images with Global Context-Aware Multi-Scale Feature Aggregation. Neurocomputing 2023, 519, 1–16. [Google Scholar] [CrossRef]
- Alam, M.S.; Wang, D.; Liao, Q.; Sowmya, A. A Multi-Scale Context Aware Attention Model for Medical Image Segmentation. IEEE J. Biomed. Health Inform. 2023, 27, 3731–3739. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.; Ji, R.; Zhang, L.; Wu, Y. Bridging Multi-Scale Context-Aware Representation for Object Detection. IEEE Trans. Circuits Syst. Video Technol. 2023, 33, 2317–2329. [Google Scholar] [CrossRef]
- Niu, P.; Gu, J.; Zhang, Y.; Zhang, P.; Cai, T.; Xu, W.; Han, J. MDCGA-Net: Multi-Scale Direction Context-Aware Network with Global Attention for Building Extraction from Remote Sensing Images. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2024, 1–16. [Google Scholar] [CrossRef]
- Chen, L.-C.; Papandreou, G.; Kokkinos, I.; Murphy, K.; Yuille, A.L. DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 40, 834–848. [Google Scholar] [CrossRef]
- Hu, J.; Shen, L.; Albanie, S.; Sun, G.; Wu, E. Squeeze-and-Excitation Networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019; IEEE: Long Beach, CA, USA, 2019. [Google Scholar]
Item | Setting |
---|---|
Epoch | 100 |
Batch size | 4 |
Optimizer | Adam [39,40,41] |
Initial learning rate | 1 × 10−4 [39,41,42] |
Minimum learning rate | 1 × 10−6 [39,41,42] |
Momentum | 0.9 [39,41,42] |
Learning rate decay type | cos [39] |
GPU memory | 24 GB |
Image size | 256 × 256 |
Loss function | BCE + Dice [39,40,41,42] |
Data augmentation | Random horizontal–vertical flipping, random cropping, and random color mapping [39,41] |
Method | Code (accessed on 16 May 2024) | P | R | F1 | IOU |
---|---|---|---|---|---|
HED [15] | https://github.com/s9xie/hed | 78.78 | 88.12 | 83.19 | 71.21 |
RCF [16] | https://github.com/yun-liu/RCF | 79.36 | 89.14 | 83.97 | 72.37 |
DeepCrack [24] | https://github.com/qinnzou/DeepCrack | 79.63 | 87.92 | 83.57 | 71.77 |
U-Net [18] | https://github.com/milesial/Pytorch-UNet | 79.15 | 90.29 | 84.35 | 72.94 |
SegNet [19] | https://github.com/vinceecws/SegNet_PyTorch | 79.43 | 88.31 | 83.63 | 71.88 |
PSPNet [20] | https://github.com/hszhao/PSPNet | 69.50 | 82.87 | 75.60 | 60.77 |
Deeplabv3+ [21] | https://github.com/VainF/DeepLabV3Plus-Pytorch | 75.80 | 91.21 | 82.79 | 70.64 |
TransUNet [22] | https://github.com/Beckschen/TransUNet | 78.04 | 91.00 | 84.02 | 72.45 |
SegFormer [43] | https://github.com/NVlabs/SegFormer | 73.58 | 86.11 | 79.35 | 65.78 |
DMFNet [26] | https://github.com/Bsl1/DMFNet | 76.71 | 90.56 | 83.06 | 71.03 |
CrackFormer [25] | https://github.com/LouisNUST/CrackFormer-II | 81.15 | 91.81 | 86.15 | 75.68 |
GGMNet | https://github.com/hzlsdxx/GGMNet | 83.63 | 90.93 | 87.13 | 77.19 |
Method | P | R | F1 | IOU |
---|---|---|---|---|
HED | 74.10 | 73.85 | 73.97 | 58.70 |
RCF | 73.72 | 72.45 | 73.08 | 57.58 |
DeepCrack | 80.28 | 76.44 | 78.31 | 64.42 |
U-Net | 85.21 | 81.68 | 83.41 | 71.54 |
SegNet | 80.41 | 75.58 | 77.92 | 63.83 |
PSPNet | 18.15 | 20.23 | 19.13 | 10.58 |
Deeplabv3+ | 40.81 | 72.07 | 52.11 | 40.81 |
GGMNet | 88.48 | 85.08 | 86.75 | 76.59 |
Method | P | R | F1 | IOU |
---|---|---|---|---|
HED | 86.34 | 85.88 | 86.11 | 75.61 |
RCF | 91.44 | 88.67 | 90.03 | 81.87 |
DeepCrack | 93.46 | 91.38 | 92.41 | 85.89 |
U-Net | 91.23 | 89.10 | 90.15 | 82.07 |
SegNet | 93.62 | 90.74 | 92.16 | 85.46 |
PSPNet | 84.26 | 87.50 | 85.85 | 75.20 |
Deeplabv3+ | 89.16 | 87.19 | 88.16 | 78.83 |
GGMNet | 94.13 | 91.37 | 92.73 | 86.45 |
No. | Stage1 | Stage2 | Stage3 | Stage4 | F1 | IOU |
---|---|---|---|---|---|---|
1 | 85.70 | 74.97 | ||||
2 | ✓ | 86.07 | 75.54 | |||
3 | ✓ | ✓ | 86.33 | 75.95 | ||
4 | ✓ | ✓ | ✓ | 86.61 | 76.38 | |
5 | ✓ | ✓ | ✓ | ✓ | 87.13 | 77.19 |
No. | Method | F1 | IOU |
---|---|---|---|
1 | ASPP [49] | 86.09 | 75.58 |
2 | DRB [46] | 86.31 | 75.93 |
3 | MFEM [44] | 85.44 | 74.58 |
4 | DCI [46] | 86.90 | 76.82 |
5 | GPPM | 87.13 | 77.19 |
No. | Method | F1 | IOU |
---|---|---|---|
1 | Baseline | 84.35 | 72.94 |
2 | w/o GC-Resblock | 85.70 | 74.97 |
3 | w/o GPPM | 86.64 | 76.42 |
4 | w/o GRB(GPPM) | 86.86 | 76.78 |
5 | w/o MFF | 86.57 | 76.33 |
6 | GGMNet | 87.13 | 77.19 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; He, Z.; Zeng, X.; Zeng, J.; Cen, Z.; Qiu, L.; Xu, X.; Zhuo, Q. GGMNet: Pavement-Crack Detection Based on Global Context Awareness and Multi-Scale Fusion. Remote Sens. 2024, 16, 1797. https://doi.org/10.3390/rs16101797
Wang Y, He Z, Zeng X, Zeng J, Cen Z, Qiu L, Xu X, Zhuo Q. GGMNet: Pavement-Crack Detection Based on Global Context Awareness and Multi-Scale Fusion. Remote Sensing. 2024; 16(10):1797. https://doi.org/10.3390/rs16101797
Chicago/Turabian StyleWang, Yong, Zhenglong He, Xiangqiang Zeng, Juncheng Zeng, Zongxi Cen, Luyang Qiu, Xiaowei Xu, and Qunxiong Zhuo. 2024. "GGMNet: Pavement-Crack Detection Based on Global Context Awareness and Multi-Scale Fusion" Remote Sensing 16, no. 10: 1797. https://doi.org/10.3390/rs16101797
APA StyleWang, Y., He, Z., Zeng, X., Zeng, J., Cen, Z., Qiu, L., Xu, X., & Zhuo, Q. (2024). GGMNet: Pavement-Crack Detection Based on Global Context Awareness and Multi-Scale Fusion. Remote Sensing, 16(10), 1797. https://doi.org/10.3390/rs16101797