Detection of Surface Rocks and Small Craters in Permanently Shadowed Regions of the Lunar South Pole Based on YOLOv7 and Markov Random Field Algorithms in SAR Images
Abstract
:1. Introduction
2. Methods
2.1. Crater Detection with YOLOv7
2.1.1. YOLOv7 Algorithm
2.1.2. Crater Detection
- Dataset preparation: The images used as a training set and a testing set were all collected from the lunar pole regions on QuickMap (https://quickmap.lroc.asu.edu/).
- Image cropping: Large SAR images and slope angle maps have a spatial resolution ranging from 60 to 120 m/pixel. These large images were cropped into 500 small images with a size of 600 × 600 pixels. The initial labeling process involved manual annotation.
- Dataset division: The 80% labeled images were used as input for model training.
- YOLO auxiliary marking: Data augmentation techniques were applied to further enhance the train dataset. The trained model was used to label another 25 large SAR images and 25 large slope angle maps automatically. Some manual refinements were made to obtain accurate labels.
- Image cropping: The labeled large images were subsequently cropped into 1000 small images with a size of 600 × 600 pixels.
- Dataset division: Then, both the dataset of 1500 cropped SAR images and 1500 cropped slope angle maps were randomly divided into a training set and a test set in the ratio of 8:2.
2.2. Rocky Area and Pixel-Sized Crater Detection with MRF
2.2.1. MRF Method
2.2.2. Rock Detection
2.2.3. Pixel-Sized Crater Detection
3. Results
3.1. Shackleton Crater
3.2. Shoemaker Crater
3.3. Slater Crater
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Watson-Morgan, L.; Chavers, G.; Connolly, J.; Crowe, K.; Krupp, D.; Means, L.; Percy, T.; Polsgrove, T.; Turpin, J. NASA’s Initial and Sustained Artemis Human Landing Systems. In Proceedings of the 2021 IEEE Aerospace Conference (50100), Big Sky, MT, USA, 6–13 March 2021; pp. 1–11. [Google Scholar]
- Creech, S.; Guidi, J.; Elburn, D. Artemis: An Overview of NASA’s Activities to Return Humans to the Moon. In Proceedings of the 2022 IEEE Aerospace Conference (AERO), Big Sky, MT, USA, 5–12 March 2022; pp. 1–7. [Google Scholar]
- Liu, J.; Zeng, X.; Li, C.; Ren, X.; Yan, W.; Tan, X.; Zhang, X.; Chen, W.; Zuo, W.; Liu, Y.; et al. Landing Site Selection and Overview of China’s Lunar Landing Missions. Space Sci. Rev. 2020, 217, 6. [Google Scholar] [CrossRef]
- Zheng, Y.; Ouyang, Z.; Li, C.; Liu, J.; Zou, Y. China’s Lunar Exploration Program: Present and future. Planet. Space Sci. 2008, 56, 881–886. [Google Scholar] [CrossRef]
- Yin, Z.; Liu, N.; Jin, Y. Simulation of the temperatures in the permanently shadowed region of the Moon’s south pole and data validation. Icarus 2023, 411, 115917. [Google Scholar] [CrossRef]
- Chi, W.; Yingzhuo, J.; Changbin, X.; Yangting, L.; Jianzhong, L.; Xiaohui, F.; Lin, X.; Yun, H.; Yufen, Z.; Yigang, X.; et al. Scientific objectives and payload configuration of the Chang’E-7 mission. Natl. Sci. Rev. 2023, 11, nwad329. [Google Scholar] [CrossRef] [PubMed]
- Smith, D.E.; Zuber, M.T.; Neumann, G.A.; Mazarico, E.; Lemoine, F.G.; Head Iii, J.W.; Lucey, P.G.; Aharonson, O.; Robinson, M.S.; Sun, X.; et al. Summary of the results from the lunar orbiter laser altimeter after seven years in lunar orbit. Icarus 2017, 283, 70–91. [Google Scholar] [CrossRef]
- Liu, N.; Jin, Y.-Q. Selection of a Landing Site in the Permanently Shadowed Portion of Lunar Polar Regions Using DEM and Mini-RF Data. IEEE Geosci. Remote Sens. Lett. 2022, 19, 4503305. [Google Scholar] [CrossRef]
- Liu, N.; Jin, Y.-Q. Pol-SAR Image Simulation of the Lunar Surface with Data Analysis of Chandrayaan-2 and Mini-RF. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2023, 16, 10301–10310. [Google Scholar] [CrossRef]
- Liu, N.; Jin, Y.-Q. Simulation of Pol-SAR Imaging and Data Analysis of Mini-RF Observation From the Lunar Surface. IEEE Trans. Geosci. Remote Sens. 2022, 60, 2000411. [Google Scholar] [CrossRef]
- Liu, N.; Xu, F.; Jin, Y.-Q. A Numerical Model of CPR of Rough Surface With Discrete Scatterers for Analysis of Mini-RF Data. Radio Sci. 2020, 55, e2018RS006776. [Google Scholar] [CrossRef]
- Chang, S.; Deng, Y.; Zhang, Y.; Zhao, Q.; Wang, R.; Zhang, K. An Advanced Scheme for Range Ambiguity Suppression of Spaceborne SAR Based on Blind Source Separation. IEEE Trans. Geosci. Remote Sens. 2022, 60, 5230112. [Google Scholar] [CrossRef]
- Gao, Y.; Zhao, F.; Hou, W.; Han, Y.; Liu, M.; Dang, Y.; Lu, P.; Wang, R. Analysis of Rock Abundance on Lunar Surface and Near-Surface Using Mini-RF SAR Data. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2023, 16, 9590–9605. [Google Scholar] [CrossRef]
- Raney, R.K.; Spudis, P.D.; Bussey, B.; Crusan, J.; Jensen, J.R.; Marinelli, W.; McKerracher, P.; Neish, C.; Palsetia, M.; Schulze, R.; et al. The Lunar Mini-RF Radars: Hybrid Polarimetric Architecture and Initial Results. Proc. IEEE 2011, 99, 808–823. [Google Scholar] [CrossRef]
- Kereszturi, A.; Tomka, R.; Steinmann, V. Testing statistical impact crater analysis in permanently shadowed lunar polar regions. Icarus 2022, 376, 114879. [Google Scholar] [CrossRef]
- Duda, R.O.; Hart, P.E. Use of the Hough transformation to detect lines and curves in pictures. Commun. ACM 1972, 15, 11–15. [Google Scholar] [CrossRef]
- Chen, S.; Wang, H.; Xu, F.; Jin, Y.-Q. Target Classification Using the Deep Convolutional Networks for SAR Images. IEEE Trans. Geosci. Remote Sens. 2016, 54, 4806–4817. [Google Scholar] [CrossRef]
- Wang, C.Y.; Bochkovskiy, A.; Liao, H.Y.M. YOLOv7: Trainable Bag-of-Freebies Sets New State-of-the-Art for Real-Time Object Detectors. In Proceedings of the 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Vancouver, BC, Canada, 17–24 June 2023; pp. 7464–7475. [Google Scholar]
- Jin, Y.-Q. Change Detection from Multi-Temporal SAR Images. In Polarimetric Scattering and SAR Information Retrieval; Wiley-IEEE Press: Hoboken, NJ, USA, 2013; pp. 291–309. [Google Scholar] [CrossRef]
- Geman, S.; Geman, D. Stochastic Relaxation, Gibbs Distributions, and the Bayesian Restoration of Images. IEEE Trans. Pattern Anal. Mach. Intell. 1984, PAMI-6, 721–741. [Google Scholar] [CrossRef]
- Xi, L.H.; Hou, J.W.; Ma, G.L.; Hei, Y.Q.; Li, W.T. A Multiscale Information Fusion Network Based on PixelShuffle Integrated With YOLO for Aerial Remote Sensing Object Detection. IEEE Geosci. Remote Sens. Lett. 2024, 21, 7501505. [Google Scholar] [CrossRef]
- Robinson, M.S.; Brylow, S.M.; Tschimmel, M.; Humm, D.; Lawrence, S.J.; Thomas, P.C.; Denevi, B.W.; Bowman-Cisneros, E.; Zerr, J.; Ravine, M.A.; et al. Lunar Reconnaissance Orbiter Camera (LROC) Instrument Overview. Space Sci. Rev. 2010, 150, 81–124. [Google Scholar] [CrossRef]
- Zhou, Z.-H. Machine Learning; Springer: Singapore, 2021; p. XIII, 459. [Google Scholar] [CrossRef]
- Xia, G.-S.; He, C.; Sun, H. A Rapid and Automatic MRF-Based Clustering Method for SAR Images. IEEE Geosci. Remote Sens. Lett. 2007, 4, 596–600. [Google Scholar] [CrossRef]
- Bruzzone, L.; Prieto, D.F. Automatic analysis of the difference image for unsupervised change detection. IEEE Trans. Geosci. Remote Sens. 2000, 38, 1171–1182. [Google Scholar] [CrossRef]
- Ren, S.; He, K.; Girshick, R.; Sun, J. Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 39, 1137–1149. [Google Scholar] [CrossRef] [PubMed]
- Cai, Z.; Vasconcelos, N. Cascade R-CNN: Delving Into High Quality Object Detection. In Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 6154–6162. [Google Scholar]
- Ge, Z.; Liu, S.; Wang, F.; Li, Z.; Sun, J. YOLOX: Exceeding YOLO Series in 2021. arXiv 2021, arXiv:2107.08430. [Google Scholar]
- Chen, K.; Wang, J.; Pang, J.; Cao, Y.; Xiong, Y.; Li, X.; Sun, S.; Feng, W.; Liu, Z.; Xu, J.; et al. MMDetection: Open MMLab Detection Toolbox and Benchmark. arXiv 2019, arXiv:1906.07155. [Google Scholar]
- Wei, G.; Li, X.; Zhang, W.; Tian, Y.; Jiang, S.; Wang, C.; Ma, J. Illumination conditions near the Moon’s south pole: Implication for a concept design of China’s Chang’E−7 lunar polar exploration. Acta Astronaut. 2023, 208, 74–81. [Google Scholar] [CrossRef]
- Li, S.; Jiang, X.; Tao, T. Guidance Summary and Assessment of the Chang’e-3 Powered Descent and Landing. J. Spacecr. Rocket. 2016, 53, 258–277. [Google Scholar] [CrossRef]
- Tye, A.R.; Fassett, C.I.; Head, J.W.; Mazarico, E.; Basilevsky, A.T.; Neumann, G.A.; Smith, D.E.; Zuber, M.T. The age of lunar south circumpolar craters Haworth, Shoemaker, Faustini, and Shackleton: Implications for regional geology, surface processes, and volatile sequestration. Icarus 2015, 255, 70–77. [Google Scholar] [CrossRef]
- Kirk, R.L. Radargrammetry with Chandrayaan-1 and LRO Mini-RF images of the Moon: Controlled mosaics and DTMs. Eur. Planet. Sci. Congr. 2010 2010, 5, 703. [Google Scholar]
- Fassett, C.I.; Bramson, A.M.; Cahill, J.T.S.; Harris, C.P.; Morgan, G.A.; Neish, C.D.; Nypaver, C.A.; Patterson, G.W.; Rívera-Valentin, E.G.; Taylor, P.A.; et al. Improved Orthorectification and Empirical Reduction of Topographic Effects in Monostatic Mini-RF S-band Observations of the Moon. Planet. Sci. J. 2024, 5, 4. [Google Scholar] [CrossRef]
Method | [email protected] | Inference Speed (s) |
---|---|---|
Faster-RCNN | 0.650 | 0.8647 |
Cascade-RCNN | 0.657 | 0.2853 |
YOLOx | 0.660 | 0.0731 |
YOLOv7 | 0.738 | 0.0192 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xia, T.; Ren, X.; Liu, Y.; Liu, N.; Xu, F.; Jin, Y.-Q. Detection of Surface Rocks and Small Craters in Permanently Shadowed Regions of the Lunar South Pole Based on YOLOv7 and Markov Random Field Algorithms in SAR Images. Remote Sens. 2024, 16, 1834. https://doi.org/10.3390/rs16111834
Xia T, Ren X, Liu Y, Liu N, Xu F, Jin Y-Q. Detection of Surface Rocks and Small Craters in Permanently Shadowed Regions of the Lunar South Pole Based on YOLOv7 and Markov Random Field Algorithms in SAR Images. Remote Sensing. 2024; 16(11):1834. https://doi.org/10.3390/rs16111834
Chicago/Turabian StyleXia, Tong, Xuancheng Ren, Yuntian Liu, Niutao Liu, Feng Xu, and Ya-Qiu Jin. 2024. "Detection of Surface Rocks and Small Craters in Permanently Shadowed Regions of the Lunar South Pole Based on YOLOv7 and Markov Random Field Algorithms in SAR Images" Remote Sensing 16, no. 11: 1834. https://doi.org/10.3390/rs16111834
APA StyleXia, T., Ren, X., Liu, Y., Liu, N., Xu, F., & Jin, Y. -Q. (2024). Detection of Surface Rocks and Small Craters in Permanently Shadowed Regions of the Lunar South Pole Based on YOLOv7 and Markov Random Field Algorithms in SAR Images. Remote Sensing, 16(11), 1834. https://doi.org/10.3390/rs16111834