Monitoring Monthly Net-Pen Aquaculture Dynamics of Shallow Lakes Using Sentinel-1 Data: Case Study of Shallow Lakes in Jiangsu Province, China
Abstract
:1. Introduction
2. Data and Study Area
2.1. Study Area
2.2. Data
2.2.1. Sentinel-1 Data
2.2.2. HydroLAKES Database
2.2.3. Gaofen-2 Data
3. Method
3.1. Data Preprocessing
3.2. Lake Water Body Extraction
3.3. Net-Pen Aquaculture Extraction
3.3.1. Threshold Segmentation
3.3.2. Temporal Consistency Checking
3.4. Dynamic Analysis of Net-Pen Aquaculture
3.5. Accuracy Assessment
4. Results
4.1. Lake Water Body Extraction Results
4.2. Net-Pen Aquaculture Extraction Results
4.3. Dynamic Analysis of Net-Pen Aquaculture
5. Discussion
5.1. Response of Net-Pen Aquaculture Activities to the Policy
5.2. Prospects and Limitations of This Study
6. Conclusions
- (1)
- The VH polarization image is effective in separating the lake water surface from surrounding aquaculture ponds, while the VV polarization image is suitable for net-pen aquaculture extraction. Temporal consistency checking can help alleviate the problem of distinguishing between changes in errors caused by misclassification and actual changes that have occurred. A monthly dataset spanning from 2016 to 2021 regarding the net-pen aquaculture structure was obtained using the proposed method. The overall accuracy of the net-pen aquaculture extraction results was over 85%.
- (2)
- The spatio-temporal pattern of aquaculture changes in eight typical shallow lakes located in Jiangsu Province was accurately described utilizing multi-temporal SAR imagery, thereby overcoming optical imagery limitations. This approach not only enables the analysis of changes in the aquaculture area and fence length but can also identify key time points.
- (3)
- The removal of net-pen aquaculture in lakes within the Jiangsu Province is primarily attributed to policy responses. In response to the ecological river and lake action plan implemented in Jiangsu Province, a decrease was observed in both the aquaculture areas and fence lengths across most lakes from 2016 to 2021.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Food and Agriculture Organization (FAO). Fishery and Aquaculture Statistics 2019; FAO: Roma, Italy, 2021. [Google Scholar]
- Edwards, P. Aquaculture environment interactions: Past, present and likely future trends. Aquaculture 2015, 447, 2–14. [Google Scholar] [CrossRef]
- Kang, B.; Huang, X.; Li, J.; Liu, M.; Guo, L.; Han, C.-C. Inland Fisheries in China: Past, Present, and Future. Rev. Fish. Sci. Aquac. 2017, 25, 270–285. [Google Scholar] [CrossRef]
- Wang, R.; Zhang, Y.; Xia, W.; Qu, X.; Xin, W.; Guo, C.; Bowker, J.; Chen, Y. Effects of Aquaculture on Lakes in the Central Yangtze River Basin, China, I. Water Quality. N. Am. J. Aquac. 2018, 80, 322–333. [Google Scholar] [CrossRef]
- Veenstra, J.; Nolen, S.; Carroll, J.; Ruiz, C. Impact of net pen aquaculture on lake water quality. Water Sci. Technol. 2003, 47, 293–300. [Google Scholar] [CrossRef] [PubMed]
- Zang, C.; Huang, S.; Wu, M.; Du, S.; Scholz, M.; Gao, F.; Lin, C.; Guo, Y.; Dong, Y. Comparison of Relationships Between pH, Dissolved Oxygen and Chlorophyll a for Aquaculture and Non-aquaculture Waters. Water Air Soil Pollut. 2011, 219, 157–174. [Google Scholar] [CrossRef]
- Zhang, H.; Kang, M.; Shen, L.; Wu, J.; Li, J.; Du, H.; Wang, C.; Yang, H.; Zhou, Q.; Liu, Z.; et al. Rapid change in Yangtze fisheries and its implications for global freshwater ecosystem management. Fish Fish. 2020, 21, 601–620. [Google Scholar] [CrossRef]
- Alexandridis, T.K.; Topaloglou, C.A.; Lazaridou, E.; Zalidis, G.C. The performance of satellite images in mapping aquacultures. Ocean Coast. Manag. 2008, 51, 638–644. [Google Scholar] [CrossRef]
- Gusmawati, N.; Soulard, B.; Selmaoui-Folcher, N.; Proisy, C.; Mustafa, A.; Le Gendre, R.; Laugier, T.; Lemonnier, H. Surveying shrimp aquaculture pond activity using multitemporal VHSR satellite images–case study from the Perancak estuary, Bali, Indonesia. Mar. Pollut. Bull. 2018, 131, 49–60. [Google Scholar] [CrossRef]
- Peng, Y.; Sengupta, D.; Duan, Y.; Chen, C.; Tian, B. Accurate mapping of Chinese coastal aquaculture ponds using biophysical parameters based on Sentinel-2 time series images. Mar. Pollut. Bull. 2022, 181, 113901. [Google Scholar] [CrossRef]
- Jiang, Y.-H.; Zhang, G.; Tang, X.-M.; Li, D.; Huang, W.-C.; Pan, H.-B. Geometric Calibration and Accuracy Assessment of ZiYuan-3 Multispectral Images. IEEE Trans. Geosci. Remote Sens. 2014, 52, 4161–4172. [Google Scholar] [CrossRef]
- Ottinger, M.; Clauss, K.; Kuenzer, C. Large-Scale Assessment of Coastal Aquaculture Ponds with Sentinel-1 Time Series Data. Remote Sens. 2017, 9, 440. [Google Scholar] [CrossRef]
- Liu, C.; Xu, J.; Wang, D.; Yu, J. Extracting aquaculture pond using multi-feature optimization of GF-3 PolSAR Imagery. Trans. Chin. Soc. Agric. Eng. 2022, 38, 206–214. [Google Scholar] [CrossRef]
- Han, Y.; Huang, J.; Ling, F.; Qiu, J.; Liu, Z.; Li, X.; Chang, C.; Chi, H. Dynamic Mapping of Inland Freshwater Aquaculture Areas in Jianghan Plain, China. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2023, 16, 4349–4361. [Google Scholar] [CrossRef]
- Dai, Y.; Feng, L.; Hou, X.; Choi, C.Y.; Liu, J.; Cai, X.; Shi, L.; Zhang, Y.; Gibson, L. Policy-driven changes in enclosure fisheries of large lakes in the Yangtze Plain: Evidence from satellite imagery. Sci. Total Environ. 2019, 688, 1286–1297. [Google Scholar] [CrossRef] [PubMed]
- Torres, R.; Snoeij, P.; Geudtner, D.; Bibby, D.; Davidson, M.; Attema, E.; Potin, P.; Rommen, B.; Floury, N.; Brown, M.; et al. GMES Sentinel-1 mission. Remote Sens. Environ. 2012, 120, 9–24. [Google Scholar] [CrossRef]
- Zhang, Q.; Li, L.; Sun, R.; Zhu, D.; Zhang, C.; Chen, Q. Retrieval of the Soil Salinity from Sentinel-1 Dual-Polarized SAR Data Based on Deep Neural Network Regression. IEEE Geosci. Remote Sens. Lett. 2022, 19, 1–5. [Google Scholar] [CrossRef]
- Otsu, N. A threshold selection method from gray-level histogram. IEEE Trans. Syst. Man Cybern. 1979, 9, 62–66. [Google Scholar] [CrossRef]
- Li, X.; Gong, P.; Liang, L. A 30-year (1984–2013) record of annual urban dynamics of Beijing City derived from Landsat data. Remote Sens. Environ. 2015, 166, 78–90. [Google Scholar] [CrossRef]
- Yin, Y.; Gao, M.; Cao, X.; Wei, J.; Zhong, X.; Li, S.; Peng, K.; Gao, J.; Gong, Z.; Cai, Y. Restore polder and aquaculture enclosure to the lake: Balancing environmental protection and economic growth for sustainable development. Sci. Total Environ. 2024, 933, 173036. [Google Scholar] [CrossRef]
- Du, C.; Li, Y.; Lyu, H.; Shi, K.; Liu, N.; Yan, C.; Pan, J.; Guo, Y.; Li, Y. Characteristics of the Total Suspended Matter Concentration in the Hongze Lake during 1984–2019 Based on Landsat Data. Remote Sens. 2022, 14, 2919. [Google Scholar] [CrossRef]
- Jiang, Z.; Liao, Y.; Liu, J.; Shou, L.; Chen, Q.; Yan, X.; Zhu, G.; Zeng, J. Effects of fish farming on phytoplankton community under the thermal stress caused by a power plant in a eutrophic, semi-enclosed bay: Induce toxic dinoflagellate (Prorocentrum minimum) blooms in cold seasons. Mar. Pollut. Bull. 2013, 76, 315–324. [Google Scholar] [CrossRef]
- Alongi, D.M.; McKinnon, A.D.; Brinkman, R.; Trott, L.A.; Undu, M.C. The fate of organic matter derived from small-scale fish cage aquaculture in coastal waters of Sulawesi and Sumatra, Indonesia. Aquaculture 2009, 295, 60–75. [Google Scholar] [CrossRef]
- Pan, X.; Wang, Z.; Ullah, H.; Chen, C.; Wang, X.; Li, X.; Li, H.; Zhuang, Q.; Xue, B.; Yu, Y. Evaluation of Eutrophication in Jiaozhou Bay via Water Color Parameters Determination with UAV-Borne Hyperspectral Imagery. Atmosphere 2023, 14, 387. [Google Scholar] [CrossRef]
- Wang, Y.W.; Xu, J.; Li, J.Y.; Liu, J.E. Changes of Aquatic Vegetation and Water Quality after removal of Pen Aquaculture in Lake East Taihu. J. Ecol. Rural Environ. 2022, 38, 104–111. (In Chinese) [Google Scholar] [CrossRef]
Feature Types | Description | Parameters | Formula |
---|---|---|---|
Original backscatter feature | Normalized backscatter coefficient | VV | |
VH | |||
Radar index | Polarimetric Total Power | SPAN | |
Normal difference index | NDI | ||
Ratio of backscatter coefficient | Ratio | ||
Square difference index | SDI | ||
Sentinel-1 Dual-Polarized Water Index | SDWI |
Value of D | Value of Xi | Temporal Vector Combination | Need to Correct | Correction Result |
---|---|---|---|---|
0 | 0 | (0, 0, 0) | N | / |
1 | 0 | (0, 0, 1) | N | / |
1 | 1 | (0, 1, 0) | Y | (0, 1, 0)→(0, 0, 0) |
1 | 0 | (1, 0, 0) | N | / |
2 | 1 | (0, 1, 1) | N | / |
2 | 1 | (1, 1, 0) | N | / |
2 | 0 | (1, 0, 1) | Y | (1, 0, 1)→(1, 1, 1) |
3 | 1 | (1, 1, 1) | N | / |
Name | Lake Area (km2) | Aquaculture Area (km2) | FD (km/km2) | APEC (%) | Accuracy (%) | Removal Rate (%) | |||
---|---|---|---|---|---|---|---|---|---|
Initial | Recent | Initial | Recent | Initial | Recent | ||||
Luoma | 242.19 | 28.92 | 11.14 | 0.83 | 0.51 | 11.94 | 4.21 | 87.96 | 61.48 |
Hung-tse | 1229.96 | 81.64 | 51.66 | 0.46 | 0.21 | 6.64 | 4.20 | 87.47 | 36.72 |
Gehu | 146.61 | 16.37 | 0.00 | 2.29 | 0.00 | 11.17 | 0.00 | 87.26 | 100.00 |
Gaoyou | 616.54 | 114.64 | 114.94 | 1.08 | 1.15 | 18.59 | 18.64 | 88.54 | −0.26 |
Eastern Taihu | 131.79 | 36.69 | 0.00 | 5.57 | 0.00 | 27.84 | 0.00 | 92.05 | 100.00 |
Changdang | 75.99 | 19.26 | 8.67 | 4.64 | 1.90 | 25.35 | 11.41 | 90.74 | 54.98 |
Baoying | 35.72 | 15.82 | 11.95 | 6.14 | 4.52 | 44.29 | 33.27 | 91.30 | 24.46 |
Baima | 42.28 | 6.46 | 6.48 | 1.70 | 1.88 | 15.28 | 15.33 | 90.98 | −0.31 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ding, H.; Xu, K.; Liu, C.; Yu, J. Monitoring Monthly Net-Pen Aquaculture Dynamics of Shallow Lakes Using Sentinel-1 Data: Case Study of Shallow Lakes in Jiangsu Province, China. Remote Sens. 2024, 16, 1922. https://doi.org/10.3390/rs16111922
Ding H, Xu K, Liu C, Yu J. Monitoring Monthly Net-Pen Aquaculture Dynamics of Shallow Lakes Using Sentinel-1 Data: Case Study of Shallow Lakes in Jiangsu Province, China. Remote Sensing. 2024; 16(11):1922. https://doi.org/10.3390/rs16111922
Chicago/Turabian StyleDing, Han, Kang Xu, Chongbin Liu, and Juanjuan Yu. 2024. "Monitoring Monthly Net-Pen Aquaculture Dynamics of Shallow Lakes Using Sentinel-1 Data: Case Study of Shallow Lakes in Jiangsu Province, China" Remote Sensing 16, no. 11: 1922. https://doi.org/10.3390/rs16111922
APA StyleDing, H., Xu, K., Liu, C., & Yu, J. (2024). Monitoring Monthly Net-Pen Aquaculture Dynamics of Shallow Lakes Using Sentinel-1 Data: Case Study of Shallow Lakes in Jiangsu Province, China. Remote Sensing, 16(11), 1922. https://doi.org/10.3390/rs16111922