Changes in Global Aviation Turbulence in the Remote Sensing Era (1979–2018)
Abstract
:1. Introduction
2. Data (Sources and Processing) and Methods
2.1. Quality-Assured Hourly ERA5 Reanalysis
2.2. Pathfinder Atmospheric Extended (PATMOS-x) Cloud Properties Products
2.3. Definition of Indicators of Aviation Turbulence
3. Results and Discussion
3.1. More Frequent Turbulent Conditions
3.2. The Decline in Turbulence due to Severe Convective Instability
4. Summary and Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Estimation of PBL Depth from Sounding
Appendix B. Polar Amplification of the Second Kind (PAOSK)
Appendix B.1. The Setting of Parameters
Appendix B.2. Simulation Experiments
Appendix B.3. Results and Conclusions
References
- Ren, D.; Fu, R.; Dickinson, R.E.; Leslie, L.M.; Wang, X. Aviation impacts on fuel efficiency of a future more viscous atmosphere. Bull. Amer. Meteor. Soc. 2020, 101, E1761–E1780. [Google Scholar] [CrossRef]
- Zbrozek, J. Atmospheric turbulence and its relation to aircraft. Nature 1962, 193, 933–934. [Google Scholar] [CrossRef]
- Zillman, J. Atmospheric science and public policy. Science 1997, 276, 1084–1086. [Google Scholar] [CrossRef]
- Lee, D.; Fahey, D.; Forster, P.; Newton, P.; Wit, R.; Lim, L.; Owen, B.; Sausen, R. Aviation and global climate change in the 21st century. Atmos. Environ. 2009, 43, 3520–3537. [Google Scholar] [CrossRef] [PubMed]
- ICAO. 2013–2028 Global Air Navigation Capacity and Efficiency Plan; International Civil Aviation Organization: Montréal, QC, Canada, 2014; 137p. [Google Scholar]
- Ren, D.; Dickinson, R.E.; Fu, R.; Bornman, J.F.; Guo, W.; Yang, S.; Leslie, L.M. The impacts of climate warming on maximum aviation payloads. J. Clim. Dyn. 2019, 52, 1711–1721. [Google Scholar] [CrossRef]
- Airbus. Global Market Forecast 2017–2036; Airbus: Roquefort-la-Bédoule, France, 2017. [Google Scholar]
- Boeing. Orders and Deliveries for January 2018; Boeing: Arlington County, VA, USA, 2018. [Google Scholar]
- WMO. WMO Aviation and Environmental Workshop on March 12, 2021; WMO: Geneva, Switzerland, 2021. [Google Scholar]
- Sharman, R.; Lane, T. Aviation Turbulence: Processes, Detection, Prediction; Springer: Berlin/Heidelberg, Germany, 2016; p. 538. [Google Scholar]
- Irvine, E.A.; Hoskins, B.J.; Shine, K.P.; Lunnon, R.W.; Froemming, C. Characterizing North Atlantic weather patterns for climate-optimal aircraft routing. Meteorol. Appl. 2013, 20, 80–93. [Google Scholar] [CrossRef]
- Storer, L.; Williams, P.; Gill, P. Aviation Turbulence: Dynamics, Forecasting, and Response to Climate Change. Pure Appl. Geophys. 2019, 176, 2081–2095. [Google Scholar] [CrossRef]
- Ren, D.; Leslie, L. Impacts of climate warming on aviation fuel consumption. J. Appl. Meteorol. Clim. 2019, 58, 1593–1602. [Google Scholar] [CrossRef]
- Wallace, J.; Hobbs, P. Atmospheric Science: An Introductory Survey; Academic Press: Cambridge, MA, USA, 2006. [Google Scholar]
- Emanuel, K. On assessing local conditional symmetric instability from atmospheric soundings. Mon. Weather. Rev. 1983, 111, 2016–2033. [Google Scholar] [CrossRef]
- Mellor, G.; Yamada, T. Development of a turbulence closure model for geophysical fluid problems. Rev. Geophys. Space Phys. 1982, 20, 851–875. [Google Scholar] [CrossRef]
- Lee, J.H.; Kim, J.; Sharman, R.; Kim, J.; Son, S. Climatology of Clear-Air Turbulence in upper troposphere and lower strato-sphere in the Northern Hemisphere using ERA5 reanalysis data. J. Geophys. Res. Atmos. 2023, 128, e2022JD037679. [Google Scholar] [CrossRef]
- Prosser, M.; Williams, P.; Marlton, G.; Harrison, R. Evidence for large increase in clear-air turbulence over the past four decades. Geophys. Res. Lett. 2023, 50, e2023GL10384. [Google Scholar] [CrossRef]
- Williams, P.D. Increased light, moderate, and severe clear-air turbulence in response to climate change. Adv. Atmos. Sci. 2017, 34, 576–586. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, S.; Huang, C.; Huang, K.; Gong, Y.; Gan, Q.; Zhang, Y. Statistical study of atmospheric turbulence by Thorpe analysis. J. Geophys. Res. Atmos. 2019, 124, 2897–2908. [Google Scholar] [CrossRef]
- Hersbach, H.; Bell, B.; Berrisford, P.; Hirahara, S.; Horányi, A.; Muñoz-Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Schepers, D.; et al. The ERA5 global reanalysis. Q. J. R. Meteorol. Soc. 2020, 146, 1999–2049. [Google Scholar] [CrossRef]
- Jaeger, E.; Sprenger, M. A Northern Hemispheric climatology of indices for clear air turbulence in the tropopause region derived from ERA40 reanalysis data. J. Geophys. Res. Atmos. 2007, 112, D20106. [Google Scholar] [CrossRef]
- Ellrod, G.; Knapp, D. An objective clear-air turbulence forecasting technique: Verification and operational use. Weather. Forecast. 1992, 7, 150–165. [Google Scholar] [CrossRef]
- Ellrod, G.; Lester, P.; Ehernberger, L. Clear Air Turbulence. Encyclopedia of Atmospheric Sciences; Holton, J.R., Curry, J.A., Eds.; Academic Press: Cambridge, MA, USA, 2003; Volume 1, pp. 393–403. [Google Scholar]
- Sharman, R.; Tebaldi, C.; Wiener, G.; Wolff, J. An integrated approach to mid- and upper-level turbulence forecasting. Weather Forecast. 2006, 21, 268–287. [Google Scholar] [CrossRef]
- Dee, D.P.; Uppala, S.M.; Simmons, A.J.; Berrisford, P.; Poli, P.; Kobayashi, S.; Andrae, U.; Balmaseda, M.A.; Balsamo, G.; Bauer, D.P.; et al. The ERA Interim reanalysis: Configuration and performance of the data assimilation system. Q. J. R. Meteorol. Soc. 2011, 137, 553–597. [Google Scholar] [CrossRef]
- Kalnay, E.; Kanamitsu, M.; Kistler, R.; Collins, W.; Deaven, D.; Gandin, L.; Iredell, M.; Saha, S.; White, G.; Woollen, J.; et al. The NCEP/NCAR 40-year reanalysis project. Bull. Am. Meteorol. Soc. 1996, 77, 437–471. [Google Scholar] [CrossRef]
- Suarez, M.; Suarez, M.J.; Todling, R.; Bacmeister, J.; Takacs, L.; Liu, H.-C.; Gu, W.; Sienkiewicz, M.; Koster, R.D.; Gelaro, R.; et al. The GEOS-5 Data Assimilation System—Documentation of Versions 5.0.1, 5.1.0, and 5.2.0; NASA/TM–2008–104606; Goddard Space Flight Center: Glenn Dale, MD, USA, 2008; Volume 27. [Google Scholar]
- Kobayashi, S.; Ota, Y.; Harada, Y.; Ebita, A.; Moriya, M.; Onoda, H.; Onogi, K.; Kamahori, H.; Kobayashi, C.; Endo, H.; et al. The JRA-55 reanalysis: General specifications and basic characteristics. J. Meteorol. Soc. Jpn Ser. II 2015, 93, 5–48. [Google Scholar] [CrossRef]
- Chedzey, H.; Menzel, W.P.; Lynch, M. Changes in HIRS Detection of Cloud over Australia from 1985 to 2001. Remote Sens. 2021, 13, 917. [Google Scholar] [CrossRef]
- Heidinger, A.K.; Foster, M.J.; Evan, A.T. A naive Bayesian cloud-detection scheme derived from CALIPSO and applied within PATMOS-x. J. Appl. Meteor. Climatol. 2012, 51, 1129–1144. [Google Scholar] [CrossRef]
- Tokuno, M.; Kumabe, R. Satellite Nephanalysis Information Chart (SNIC); Meteorological Satellite Center Technical Note Special Issue; Meteorological Satellite Center: Tokyo, Japan, 1996; pp. 119–138. [Google Scholar]
- Jin, D.; Oreopoulos, L.; Lee, D.; Cho, N.; Tan, J. Contrasting the co-variability of daytime cloud and precipitation over tropical land and ocean. Atmos. Chem. Phys. 2018, 18, 3065–3082. [Google Scholar] [CrossRef] [PubMed]
- Kang, M.; Chun, H.; Garcia, R. Role of equatorial waves and convective gravity waves in the 2015/16 quasi-biennial oscillation disruption. Atmos. Chem. Phys. 2020, 20, 669–693. [Google Scholar] [CrossRef]
- He, Y.; Zhu, X.; Sheng, Z.; He, M.; Feng, Y. Observations of inertial gravity waves in the western Pacific and their characteristic in the 2015/2016 quasi-biennial oscillation disruption. J. Geophys. Res. Atmos. 2022, 127, e2022JD037208. [Google Scholar] [CrossRef]
- Trier, S.; Sharman, R.; Lane, T. Influences of moist convection on a cold-season outbreak of clear-air turbulence (CAT). Mon. Weather. Rev. 2012, 140, 2477–2496. [Google Scholar] [CrossRef]
- Sharman, R.D.; Trier, S.B.; Lane, T.P.; Doyle, J.D. Sources and dynamics of turbulence in the upper troposphere and lower stratosphere: A review. Geophys. Res. Lett. 2012, 39, L12803. [Google Scholar] [CrossRef]
- Lindborg, E. Can the atmospheric kinetic energy spectrum be explained by two-dimensional turbulence? J. Fluid Mech. 1999, 388, 259–288. [Google Scholar] [CrossRef]
- Luce, H. Simultaneous observations of tropospheric turbulence from radiosondes using Thorpe analysis and the VHF MU radar. Radio Sci. 2014, 49, 1106–1123. [Google Scholar] [CrossRef]
- Ko, H.; Chun, H. Potential sources of atmospheric turbulence estimated using the Thorpe method and operational radiosonde data in the United States. Atmos. Res. 2022, 265, 105891. [Google Scholar] [CrossRef]
- Wang, A.; Sardeshmukh, P. Inconsistent global kinetic energy spectra in reanalyses and models. J. Atm. Sci. 2021, 78, 2589–2603. [Google Scholar]
- Pauluis, O. Boundary layer dynamics and cross-equatorial Hadley circulation. J. Atmos. Sci. 2004, 61, 1161–1173. [Google Scholar] [CrossRef]
- Guo, J.; Li, Y.; Cohen, J.B.; Li, J.; Chen, D.; Xu, H.; Liu, L.; Yin, J.; Hu, K.; Zhai, P. Shift in the temporal trend of boundary layer height in China using long-term (1979–2016) radiosonde data. Geophys. Res. Lett. 2019, 46, 6080–6089. [Google Scholar] [CrossRef]
- Hanna, S. The Thickness of the planetary boundary layer. Atmos. Environ. 1969, 3, 519–536. [Google Scholar] [CrossRef]
- Rouse, H.; Howe, J. Basic Mechanics of Fluids; Wiley: New York, NY, USA, 1953; 245p, ISBN 1114699233. [Google Scholar]
- Wang, K.; Dickinson, R.E. A review of global terrestrial evapotranspiration: Observation, modeling, climatology, and climatic variability. Rev. Geophys. 2012, 50, 373. [Google Scholar] [CrossRef]
- Santer, B.D.; Sausen, R.; Wigley, T.M.L.; Boyle, J.S.; AchutaRao, K.; Doutriaux, C.; Hansen, J.E.; Meehl, G.A.; Roeckner, E.; Ruedy, R.; et al. Behavior of tropopause height and atmospheric temperature in models, reanalyses, and observations: Decadal changes. J. Geophys. Res. 2003, 108, 4002. [Google Scholar] [CrossRef]
- Reichler, T.; Martin, D.; Sausen, R. Determining the tropopause height from gridded data. Geophys. Res. Lett. 2003, 30, 2042. [Google Scholar] [CrossRef]
- Lorenz, D.; DeWeaver, E. Tropopause height and zonal wind response to global warming in the IPCC scenario integrations. J. Geophys. Res. 2007, 112, D10119. [Google Scholar] [CrossRef]
- Wilcox, L.; Hoskins, B.; Shine, K. A global blended tropopause based on ERA data. Part I: Climatology. Q. J. R. Meteorol. Soc. 2012, 138, 561–575. [Google Scholar] [CrossRef]
- Vallis, G.K.; Zurita-Gotor, P.; Cairns, C.; Kidston, J. Response of the large-scale structure of the atmosphere to global warming. Q. J. R. Meteorol. Soc. 2015, 141, 1479–1501. [Google Scholar] [CrossRef]
- Woollings, T.; Blackburn, M. The North Atlantic jet stream under climate change and its relation to the NAO and EA patterns. J. Clim. 2012, 25, 886–902. [Google Scholar] [CrossRef]
- Doyle, J.; Shapiro, M.; Jiang, Q.; Bartels, D. Large-amplitude mountain wave breaking over Greenland. J. Atmos. Sci. 2005, 62, 3106–3126. [Google Scholar] [CrossRef]
- Han, W.; Meehl, G.A.; Hu, A.; Alexander, M.A.; Yamagata, T.; Yuan, D.; Ishii, M.; Pegion, P.; Zheng, J.; Hamlington, B.D.; et al. Intensification of decadal and multi-decadal sea level variability in the western tropical Pacific during recent decades. Clim. Dyn. 2014, 43, 1357–1379. [Google Scholar] [CrossRef]
- Cai, W.; Wu, L.; Lengaigne, M.; Li, T.; McGregor, S.; Kug, J.-S.; Yu, J.-Y.; Stuecker, M.F.; Santoso, A.; Li, X.; et al. Pantropical climate interactions. Science 2019, 363, eaav4236. [Google Scholar] [CrossRef] [PubMed]
- Meehl, G.; Arblaster, J.; Fasullo, J.; Hu, A.; Trenberth, K. Model-based evidence of deep-ocean heat uptake during surface-temperature hiatus periods. Nat. Clim. Chang. 2011, 1, 360–364. [Google Scholar] [CrossRef]
- Sprintall, J.; Gordon, A.L.; Koch-Larrouy, A.; Lee, T.; Potemra, J.T.; Pujiana, K.; Wijffels, S.E. The Indonesian seas and their role in the coupled ocean–climate system. Nat. Geosci. 2014, 7, 487–492. [Google Scholar] [CrossRef]
- Johnson, N.; Xie, S. Changes in the sea surface temperature threshold for tropical convection. Nat. Geosci. 2010, 3, 842–845. [Google Scholar] [CrossRef]
- McGregor, S.; Timmermann, A.; Stuecker, M.F.; England, M.H.; Merrifield, M.; Jin, F.-F.; Chikamoto, Y. Recent Walker circu-lation strengthening and Pacific cooling amplified by Atlantic warming. Nat. Clim. Change 2014, 4, 888–892. [Google Scholar] [CrossRef]
- Li, X.; Xie, S.; Gille, S.; Yoo, C. Atlantic induced pan-tropical climate change over the past three decades. Nat. Clim. Change 2016, 6, 275–279. [Google Scholar] [CrossRef]
- Mahrt, L. Modeling the depth of the stable boundary layer. Bound.-Layer Meteorol. 1981, 21, 3–19. [Google Scholar] [CrossRef]
- Jozef, G.; Cassano, J.; Dahlke, S.; de Boer, G. Testing the efficacy of atmospheric boundary layer height detection algorithms using uncrewed aircraft system data from MOSAiC. AMT 2022, 15, 4001–4022. [Google Scholar] [CrossRef]
- Nieuwstadt, F. The steady-state height and resistance laws of the nocturnal boundary layer compared with Cabauw observations. Bound.-Layer Meteorol. 1981, 20, 3–17. [Google Scholar] [CrossRef]
- Budyko, M.I. The effect of solar radiation variations on the climate of the earth. Tellus 1969, 21, 611–619. [Google Scholar] [CrossRef]
- Charney, J.; Stern, M. On the instability of internal baroclinic jets in a rotating atmosphere. J. Atmos. Sci. 1962, 19, 159–172. [Google Scholar] [CrossRef]
- Charney, J.; Drazin, P. Propagation of planetary-scale disturbances from the lower into the upper atmosphere. J. Geophys. Res. 1961, 66, 83–109. [Google Scholar] [CrossRef]
- Stommel, H. Thermohaline convection with two stable regimes of flow. Tellus 1961, 13, 224–230. [Google Scholar] [CrossRef]
- Dickinson, R.; Henderson-Sellers, A. Modelling tropical deforestation: A study of GCM land-surface parametrizations. Q. J. R. Meteorol. Soc. 1988, 114, 439–462. [Google Scholar]
- Deardorff, J. Efficient prediction of ground surface temperature and moisture, with inclusion of a layer of vegetation. J. Geophys. Res. 1978, 83, 1889–1903. [Google Scholar] [CrossRef]
- Sun, D.; Liu, Z. Dynamic ocean-atmosphere coupling: A thermostat for the tropics. Science 1996, 272, 1148–1150. [Google Scholar] [CrossRef] [PubMed]
- Hoskins, B.; Karoly, D. The steady linear response of a spherical atmosphere to thermal and orographic forcing. J. Atmos. Sci. 1981, 38, 1179–1196. [Google Scholar] [CrossRef]
- Eliassen, A. On the vertical circulation in frontal zones. Geofry. Publ. 1962, 24, 147–160. [Google Scholar]
- Sawyer, J. The vertical circulation at meteorological fronts and its relation to frontogenesis. Proc. R. Soc. Lond. Ser. A 1956, 234, 346–362. [Google Scholar]
- Shapiro, M.; Kennedy, P. Research aircraft measurements of jet stream geostrophic and ageostrophic winds. J. Atmos. Sci. 1981, 38, 2642–2652. [Google Scholar] [CrossRef]
- Shapiro, M. Frontogenesis and geostrophically forced secondary circulation in the vicinity of jet stream-frontal zone system. J. Atmos. Sci. 1981, 38, 954–973. [Google Scholar] [CrossRef]
- Bluestein, H. Synoptic-Dynamic Meteorology in Midlatitudes. Vol. II: Observations and Theory of Weather Systems; Oxford University Press: Oxford, UK, 1993. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ren, D.; Lynch, M.J. Changes in Global Aviation Turbulence in the Remote Sensing Era (1979–2018). Remote Sens. 2024, 16, 2038. https://doi.org/10.3390/rs16112038
Ren D, Lynch MJ. Changes in Global Aviation Turbulence in the Remote Sensing Era (1979–2018). Remote Sensing. 2024; 16(11):2038. https://doi.org/10.3390/rs16112038
Chicago/Turabian StyleRen, Diandong, and Mervyn J. Lynch. 2024. "Changes in Global Aviation Turbulence in the Remote Sensing Era (1979–2018)" Remote Sensing 16, no. 11: 2038. https://doi.org/10.3390/rs16112038
APA StyleRen, D., & Lynch, M. J. (2024). Changes in Global Aviation Turbulence in the Remote Sensing Era (1979–2018). Remote Sensing, 16(11), 2038. https://doi.org/10.3390/rs16112038