Machine Learning Vegetation Filtering of Coastal Cliff and Bluff Point Clouds
Abstract
:1. Introduction
2. Materials and Methods
2.1. Vegetation Classification and Indices
2.2. ML Models
2.2.1. Deriving 3D Standard Deviation
2.2.2. Multi-Layer Perceptron (MLP) Architecture and Inputs
- RGB: These models only included RGB values as model inputs;
- RGB_SIMPLE: These models included the RGB values as well as ExR, ExG, ExB, and ExRG vegetation indices; these four indices were included because each one is relatively simple, abundant in previously published literature, and efficient to calculate;
- ALL: These models included RGB and all stable vegetation indices listed in Table 1;
- SDRGB: These models included RGB and the 3D StDev computed using the X, Y, and Z coordinates of every point within a given radius;
- XYZRGB: These models included RGB and the XYZ coordinate values for every point.
2.2.3. ML Model Evaluation
2.3. Case Study: Elwha Bluffs, Washington, USA
3. Results
4. Discussion
5. Conclusions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
Model Name | Inputs | Number of Nodes per Dense Layer |
---|---|---|
rgb_8 | RGB | 8 |
rgb_8_8 | RGB | 8, 8 |
rgb_8_8_8 | RGB | 8, 8, 8 |
rgb_16 | RGB | 16 |
rgb_16_16 | RGB | 16, 16 |
rgb_16_16_16 | RGB | 16, 16, 16 |
rgb_16_32 | RGB | 16, 32 |
rgb_16_32_64 | RGB | 16, 32, 64 |
rgb_16_32_64_128 | RGB | 16, 32, 64, 128 |
rgb_16_32_64_128_256 | RGB | 16, 32, 64, 128, 256 |
rgb_16_32_64_128_256_512 | RGB | 16, 32, 64, 128, 256, 512 |
rgb_simple_8 | RGB, ExR, ExG, ExB, ExGR | 8 |
rgb_simple_8_8 | RGB, ExR, ExG, ExB, ExGR | 8, 8 |
rgb_simple_8_8_8 | RGB, ExR, ExG, ExB, ExGR | 8, 8, 8 |
rgb_simple_16 | RGB, ExR, ExG, ExB, ExGR | 16 |
rgb_simple_16_16 | RGB, ExR, ExG, ExB, ExGR | 16, 16 |
rgb_simple_16_16_16 | RGB, ExR, ExG, ExB, ExGR | 16, 16, 16 |
rgb_simple_16_32 | RGB, ExR, ExG, ExB, ExGR | 16, 32 |
rgb_simple_16_32_64 | RGB, ExR, ExG, ExB, ExGR | 16, 32, 64 |
rgb_simple_16_32_64_128 | RGB, ExR, ExG, ExB, ExGR | 16, 32, 64, 128 |
rgb_simple_16_32_64_128_256 | RGB, ExR, ExG, ExB, ExGR | 16, 32, 64, 128, 256 |
rgb_simple_16_32_64_128_256_512 | RGB, ExR, ExG, ExB, ExGR | 16, 32, 64, 128, 256, 512 |
all_8 | RGB, all vegetation indices | 8 |
all_8_8 | RGB, all vegetation indices | 8, 8 |
all_8_8_8 | RGB, all vegetation indices | 8, 8, 8 |
all_16 | RGB, all vegetation indices | 16 |
all_16_16 | RGB, all vegetation indices | 16, 16 |
all_16_16_16 | RGB, all vegetation indices | 16, 16, 16 |
all_16_32 | RGB, all vegetation indices | 16, 32 |
all_16_32_64 | RGB, all vegetation indices | 16, 32, 64 |
all_16_32_64_128 | RGB, all vegetation indices | 16, 32, 64, 128 |
all_16_32_64_128_256 | RGB, all vegetation indices | 16, 32, 64, 128, 256 |
all_16_32_64_128_256_512 | RGB, all vegetation indices | 16, 32, 64, 128, 256, 512 |
sdrgb_8_8_8 | RGB, SD | 8, 8, 8 |
sdrgb_16_16_16 | RGB, SD | 16, 16, 16 |
xyzrgb_8_8_8 | RGB, XYZ | 8, 8, 8 |
xyzrgb_16_16_16 | RGB, XYZ | 16, 16, 16 |
Model | Layers | Tunable Parameters | Training | Evaluation | ||
---|---|---|---|---|---|---|
Epochs | Time (s) | TrAcc | EvAcc | |||
rgb_16 | 1 | 81 | 7 | 545 | 91.5% | 92.1% |
rgb_16_32 | 2 | 641 | 11 | 884 | 93.9% | 93.8% |
rgb_16_32_64 | 3 | 2785 | 7 | 576 | 94.0% | 93.9% |
rgb_16_32_64_128 | 4 | 11,169 | 7 | 592 | 94.0% | 93.7% |
rgb_16_32_64_128_256 | 5 | 44,321 | 7 | 592 | 94.0% | 93.9% |
rgb_16_32_64_128_256_512 | 6 | 176,161 | 7 | 621 | 94.0% | 93.9% |
rgb_simple_16 | 1 | 145 | 7 | 741 | 91.6% | 92.3% |
rgb_simple_16_32 | 2 | 705 | 7 | 700 | 94.0% | 94.0% |
rgb_simple_16_32_64 | 3 | 2849 | 7 | 749 | 94.0% | 94.0% |
rgb_simple_16_32_64_128 | 4 | 11,233 | 10 | 1075 | 94.1% | 94.1% |
rgb_simple_16_32_64_128_256 | 5 | 44,385 | 9 | 1009 | 94.1% | 94.1% |
rgb_simple_16_32_64_128_256_512 | 6 | 176,225 | 11 | 1314 | 94.1% | 94.1% |
all_16 | 1 | 241 | 11 | 1648 | 93.1% | 93.5% |
all_16_32 | 2 | 801 | 7 | 1013 | 94.0% | 94.0% |
all_16_32_64 | 3 | 2945 | 7 | 1061 | 94.0% | 94.0% |
all_16_32_64_128 | 4 | 11,329 | 10 | 1505 | 94.1% | 94.1% |
all_16_32_64_128_256 | 5 | 44,481 | 13 | 2047 | 94.2% | 94.2% |
all_16_32_64_128_256_512 | 6 | 176,321 | 9 | 1455 | 94.2% | 94.2% |
rgb_16_16 | 2 | 353 | 8 | 624 | 93.5% | 93.9% |
rgb_simple_16_16 | 2 | 417 | 7 | 724 | 93.9% | 94.0% |
all_16_16 | 2 | 513 | 7 | 1033 | 94.0% | 94.0% |
rgb_16_16_16 | 3 | 625 | 7 | 513 | 93.9% | 93.9% |
rgb_simple_16_16_16 | 3 | 689 | 7 | 742 | 94.0% | 94.0% |
all_16_16_16 | 3 | 785 | 7 | 1018 | 94.0% | 94.0% |
rgb_8_8 | 2 | 113 | 11 | 850 | 85.7% | 89.5% |
rgb_simple_8_8 | 2 | 145 | 11 | 1154 | 92.6% | 93.9% |
all_8_8 | 2 | 193 | 7 | 1037 | 92.6% | 93.9% |
rgb_8_8_8 | 3 | 185 | 7 | 536 | 93.6% | 93.8% |
rgb_simple_8_8_8 | 3 | 217 | 7 | 733 | 93.9% | 94.0% |
all_8_8_8 | 3 | 265 | 7 | 1011 | 93.6% | 94.0% |
xyzrgb_8_8_8 | 3 | 209 | 6 | 589 | 50.0% | 50.0% |
xyzrgb_16_16_16 | 3 | 673 | 6 | 585 | 50.0% | 50.0% |
sdrgb_8_8_8 | 3 | 193 | 10 | 889 | 95.1% | 95.3% |
sdrgb_16_16_16 | 3 | 641 | 11 | 967 | 95.3% | 95.3% |
References
- Limber, P.W.; Barnard, P.L.; Vitousek, S.; Erikson, L.H. A Model Ensemble for Projecting Multidecadal Coastal Cliff Retreat During the 21st Century. J. Geophys. Res. Earth Surf. 2018, 123, 1566–1589. [Google Scholar] [CrossRef]
- Wernette, P.; Houser, C. Short Communication: Evidence for Geologic Control of Rip Channels along Prince Edward Island, Canada. Phys. Geogr. 2022, 43, 145–162. [Google Scholar] [CrossRef]
- George, E.; Lunardi, B.; Smith, A.; Lehner, J.; Wernette, P.; Houser, C. Short Communication: Storm Impact and Recovery of a Beach-Dune System in Prince Edward Island. Geomorphology 2021, 384, 107721. [Google Scholar] [CrossRef]
- Wernette, P.; Shortridge, A.; Lusch, D.P.; Arbogast, A.F. Accounting for Positional Uncertainty in Historical Shoreline Change Analysis without Ground Reference Information. Int. J. Remote Sens. 2017, 38, 3906–3922. [Google Scholar] [CrossRef]
- Grottoli, E.; Biausque, M.; Rogers, D.; Jackson, D.W.T.; Cooper, J.A.G. Structure-from-Motion-Derived Digital Surface Models from Historical Aerial Photographs: A New 3D Application for Coastal Dune Monitoring. Remote Sens. 2020, 13, 95. [Google Scholar] [CrossRef]
- Wernette, P.; Houser, C.; Lehner, J.; Evans, A.; Weymer, B. Investigating the Impact of Hurricane Harvey and Driving on Beach-Dune Morphology. Geomorphology 2020, 358, 107119. [Google Scholar] [CrossRef]
- Houser, C.; Bishop, M.; Wernette, P. Short Communication: Multi-Scale Topographic Anisotropy Patterns on a Barrier Island. Geomorphology 2017, 297, 153–158. [Google Scholar] [CrossRef]
- Sherwood, C.R.; Ritchie, A.C.; Over, J.R.; Kranenburg, C.J.; Warrick, J.A.; Brown, J.A.; Wright, C.W.; Aretxabaleta, A.L.; Zeigler, S.L.; Wernette, P.A.; et al. Sound-Side Inundation and Seaward Erosion of a Barrier Island During Hurricane Landfall. JGR Earth Surf. 2023, 128, e2022JF006934. [Google Scholar] [CrossRef]
- Guisado-Pintado, E.; Jackson, D.W.T.; Rogers, D. 3D Mapping Efficacy of a Drone and Terrestrial Laser Scanner over a Temperate Beach-Dune Zone. Geomorphology 2019, 328, 157–172. [Google Scholar] [CrossRef]
- Sturdivant, E.; Lentz, E.; Thieler, E.R.; Farris, A.; Weber, K.; Remsen, D.; Miner, S.; Henderson, R. UAS-SfM for Coastal Research: Geomorphic Feature Extraction and Land Cover Classification from High-Resolution Elevation and Optical Imagery. Remote Sens. 2017, 9, 1020. [Google Scholar] [CrossRef]
- Di Paola, G.; Minervino Amodio, A.; Dilauro, G.; Rodriguez, G.; Rosskopf, C.M. Shoreline Evolution and Erosion Vulnerability Assessment along the Central Adriatic Coast with the Contribution of UAV Beach Monitoring. Geosciences 2022, 12, 353. [Google Scholar] [CrossRef]
- Anderson, S.W. Uncertainty in Quantitative Analyses of Topographic Change: Error Propagation and the Role of Thresholding. Earth Surf. Process. Landf. 2019, 44, 1015–1033. [Google Scholar] [CrossRef]
- Young, A.P. Decadal-Scale Coastal Cliff Retreat in Southern and Central California. Geomorphology 2018, 300, 164–175. [Google Scholar] [CrossRef]
- Alessio, P.; Keller, E.A. Short-Term Patterns and Processes of Coastal Cliff Erosion in Santa Barbara, California. Geomorphology 2020, 353, 106994. [Google Scholar] [CrossRef]
- Hayakawa, Y.S.; Obanawa, H. Volumetric Change Detection in Bedrock Coastal Cliffs Using Terrestrial Laser Scanning and UAS-Based SfM. Sensors 2020, 20, 3403. [Google Scholar] [CrossRef]
- Kuhn, D.; Prufer, S. Coastal Cliff Monitoring and Analysis of Mass Wasting Processes with the Application of Terrestrial Laser Scanning: A Case Study of Rugen, Germany. Geomorphology 2014, 213, 153–165. [Google Scholar] [CrossRef]
- Young, A.P.; Guza, R.T.; Matsumoto, H.; Merrifield, M.A.; O’Reilly, W.C.; Swirad, Z.M. Three Years of Weekly Observations of Coastal Cliff Erosion by Waves and Rainfall. Geomorphology 2021, 375, 107545. [Google Scholar] [CrossRef]
- Young, A.P.; Guza, R.T.; O’Reilly, W.C.; Flick, R.E.; Gutierrez, R. Short-Term Retreat Statistics of a Slowly Eroding Coastal Cliff. Nat. Hazards Earth Syst. Sci. 2011, 11, 205–217. [Google Scholar] [CrossRef]
- Wernette, P.; Miller, I.M.; Ritchie, A.W.; Warrick, J.A. Crowd-Sourced SfM: Best Practices for High Resolution Monitoring of Coastal Cliffs and Bluffs. Cont. Shelf Res. 2022, 245, 104799. [Google Scholar] [CrossRef]
- Warrick, J.A.; Ritchie, A.C.; Schmidt, K.M.; Reid, M.E.; Logan, J. Characterizing the Catastrophic 2017 Mud Creek Landslide, California, Using Repeat Structure-from-Motion (SfM) Photogrammetry. Landslides 2019, 16, 1201–1219. [Google Scholar] [CrossRef]
- Weidner, L.; van Veen, M.; Lato, M.; Walton, G. An Algorithm for Measuring Landslide Deformation in Terrestrial Lidar Point Clouds Using Trees. Landslides 2021, 18, 3547–3558. [Google Scholar] [CrossRef]
- Kogure, T. Rocky Coastal Cliffs Reinforced by Vegetation Roots and Potential Collapse Risk Caused by Sea-Level Rise. Catena 2022, 217, 106457. [Google Scholar] [CrossRef]
- Agisoft LLC Agisoft Metashape 1.8.5—Professional Edition 2020. Available online: https://www.agisoft.com/ (accessed on 1 May 2020).
- Brodu, N.; Lague, D. 3D Terrestrial Lidar Data Classification of Complex Natural Scenes Using a Multi-Scale Dimensionality Criterion: Applications in Geomorphology. ISPRS J. Photogramm. Remote Sens. 2012, 68, 121–134. [Google Scholar] [CrossRef]
- Weidner, L.; Walton, G.; Kromer, R. Classification Methods for Point Clouds in Rock Slope Monitoring: A Novel Machine Learning Approach and Comparative Analysis. Eng. Geol. 2019, 263, 105326. [Google Scholar] [CrossRef]
- CloudCompare 2019. Available online: https://www.danielgm.net/cc/ (accessed on 1 May 2020).
- Buscombe, D. Doodler—A Web Application Built with Plotly/Dash for Image Segmentation with Minimal Supervision; U.S. Geological Survey Software Release: Reston, VA, USA, 2022. [Google Scholar]
- Buscombe, D.; Goldstein, E.B.; Sherwood, C.R.; Bodine, C.; Brown, J.A.; Favela, J.; Fitzpatrick, S.; Kranenburg, C.J.; Over, J.R.; Ritchie, A.C.; et al. Human-in-the-Loop Segmentation of Earth Surface Imagery. Earth Space Sci. 2022. [Google Scholar] [CrossRef]
- Anders, N.; Valente, J.; Masselink, R.; Keesstra, S. Comparing Filtering Techniques for Removing Vegetation from UAV-Based Photogrammetric Point Clouds. Drones 2019, 3, 61. [Google Scholar] [CrossRef]
- Chen, Y.; Wu, R.; Yang, C.; Lin, Y. Urban Vegetation Segmentation Using Terrestrial LiDAR Point Clouds Based on Point Non-Local Means Network. Int. J. Appl. Earth Obs. Geoinf. 2021, 105, 102580. [Google Scholar] [CrossRef]
- Mesas-Carrascosa, F.-J.; de Castro, A.I.; Torres-Sánchez, J.; Triviño-Tarradas, P.; Jiménez-Brenes, F.M.; García-Ferrer, A.; López-Granados, F. Classification of 3D Point Clouds Using Color Vegetation Indices for Precision Viticulture and Digitizing Applications. Remote Sens. 2020, 12, 317. [Google Scholar] [CrossRef]
- Handcock, R.N.; Gobbett, D.L.; González, L.A.; Bishop-Hurley, G.J.; McGavin, S.L. A Pilot Project Combining Multispectral Proximal Sensors and Digital Camerasfor Monitoring Tropical Pastures. Biogeosciences 2016, 13, 4673–4695. [Google Scholar] [CrossRef]
- Kawashima, S.; Nakatani, M. An Algorithm for Estimating Chlorophyll Content in Leaves Using a Video Camera. Ann. Bot. 1998, 81, 49–54. [Google Scholar] [CrossRef]
- Lu, J.; Eitel, J.U.H.; Engels, M.; Zhu, J.; Ma, Y.; Liao, F.; Zheng, H.; Wang, X.; Yao, X.; Cheng, T.; et al. Improving Unmanned Aerial Vehicle (UAV) Remote Sensing of Rice Plant Potassium Accumulation by Fusing Spectral and Textural Information. Int. J. Appl. Earth Obs. Geoinf. 2021, 104, 102592. [Google Scholar] [CrossRef]
- Meyer, G.E.; Hindman, T.W.; Laksmi, K. Machine Vision Detection Parameters for Plant Species Identification. In Proceedings of the SPIE; Meyer, G.E., DeShazer, J.A., Eds.; SPIE: Boston, MA, USA, 1998; Volume 3543, pp. 327–335. [Google Scholar]
- Meyer, G.E.; Neto, J.C. Verification of Color Vegetation Indices for Automated Crop Imaging Applications. Comput. Electron. Agric. 2008, 63, 282–293. [Google Scholar] [CrossRef]
- Neto, J.C. A Combined Statistical-Soft Computing Approach for Classification and Mapping Weed Species in Minimum—Tillage Systems; University of Nebraska: Lincoln, NE, USA, 2004. [Google Scholar]
- Wan, L.; Li, Y.; Cen, H.; Zhu, J.; Yin, W.; Wu, W.; Zhu, H.; Sun, D.; Zhou, W.; He, Y. Combining UAV-Based Vegetation Indices and Image Classification to Estimate Flower Number in Oilseed Rape. Remote Sens. 2018, 10, 1484. [Google Scholar] [CrossRef]
- Mao, W.; Wang, Y.; Wang, Y. Real-Time Detection of Between-Row Weeds Using Machine Vision. In Proceedings of the 2003 American Society of Agricultural and Biological Engineers, Las Vegas, NV, USA, 27–30 July 2003; American Society of Agricultural and Biological Engineers: St. Josepth, MI, USA, 2003. [Google Scholar]
- Woebbecke, D.M.; Meyer, G.E.; Von Bargen, K.; Mortensen, D.A. Color Indices for Weed Identification Under Various Soil, Residue, and Lighting Conditions. Trans. ASAE 1995, 38, 259–269. [Google Scholar] [CrossRef]
- Woebbecke, D.M.; Meyer, G.E.; Von Bargen, K.; Mortensen, D.A. Plant Species Identification, Size, and Enumeration Using Machine Vision Techniques on near-Binary Images. In Proceedings of the SPIE: The International Society for Optical Engineering; DeShazer, J.A., Meyer, G.E., Eds.; SPIE: Boston, MA, USA, 1993; pp. 208–219. [Google Scholar]
- Yang, M.-D.; Tseng, H.-H.; Hsu, Y.-C.; Tsai, H.P. Semantic Segmentation Using Deep Learning with Vegetation Indices for Rice Lodging Identification in Multi-Date UAV Visible Images. Remote Sens. 2020, 12, 633. [Google Scholar] [CrossRef]
- Yang, W.; Wang, S.; Zhao, X.; Zhang, J.; Feng, J. Greenness Identification Based on HSV Decision Tree. Inf. Process. Agric. 2015, 2, 149–160. [Google Scholar] [CrossRef]
- Ventura, D.; Napoleone, F.; Cannucci, S.; Alleaume, S.; Valentini, E.; Casoli, E.; Burrascano, S. Integrating Low-Altitude Drone Based-Imagery and OBIA for Mapping and Manage Semi Natural Grassland Habitats. J. Environ. Manag. 2022, 321, 115723. [Google Scholar] [CrossRef]
- Hunt, E.R.; Cavigelli, M.; Daughtry, C.S.T.; Mcmurtrey, J.E.; Walthall, C.L. Evaluation of Digital Photography from Model Aircraft for Remote Sensing of Crop Biomass and Nitrogen Status. Precis. Agric. 2005, 6, 359–378. [Google Scholar] [CrossRef]
- Bendig, J.; Yu, K.; Aasen, H.; Bolten, A.; Bennertz, S.; Broscheit, J.; Gnyp, M.L.; Bareth, G. Combining UAV-Based Plant Height from Crop Surface Models, Visible, and near Infrared Vegetation Indices for Biomass Monitoring in Barley. Int. J. Appl. Earth Obs. Geoinf. 2015, 39, 79–87. [Google Scholar] [CrossRef]
- Louhaichi, M.; Borman, M.M.; Johnson, D.E. Spatially Located Platform and Aerial Photography for Documentation of Grazing Impacts on Wheat. Geocarto Int. 2001, 16, 65–70. [Google Scholar] [CrossRef]
- Otsu, N. A Threshold Selection Method from Gray-Level Histograms. IEEE Trans. Syst. Man Cybern. 1979, 9, 62–66. [Google Scholar] [CrossRef]
- Torres-Sánchez, J.; Peña, J.M.; de Castro, A.I.; López-Granados, F. Multi-Temporal Mapping of the Vegetation Fraction in Early-Season Wheat Fields Using Images from UAV. Comput. Electron. Agric. 2014, 103, 104–113. [Google Scholar] [CrossRef]
- Weinmann, M.; Jutzi, B.; Mallet, C.; Weinmann, M. Geometric Features and Their Relevance for 3D Point Cloud Classification. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 2017, IV-1/W1, 157–164. [Google Scholar] [CrossRef]
- Virtanen, P.; Gommers, R.; Oliphant, T.E.; Haberland, M.; Reddy, T.; Cournapeau, D.; Burovski, E.; Peterson, P.; Weckesser, W.; Bright, J.; et al. SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nat. Methods 2020, 17, 261–272. [Google Scholar] [CrossRef]
- Weinmann, M.; Jutzi, B.; Hinz, S.; Mallet, C. Semantic Point Cloud Interpretation Based on Optimal Neighborhoods, Relevant Features and Efficient Classifiers. ISPRS J. Photogramm. Remote Sens. 2015, 105, 286–304. [Google Scholar] [CrossRef]
- Alifu, H.; Vuillaume, J.-F.; Johnson, B.A.; Hirabayashi, Y. Machine-Learning Classification of Debris-Covered Glaciers Using a Combination of Sentinel-1/-2 (SAR/Optical), Landsat 8 (Thermal) and Digital Elevation Data. Geomorphology 2020, 369, 107365. [Google Scholar] [CrossRef]
- Çelik, O.İ.; Gazioğlu, C. Coast Type Based Accuracy Assessment for Coastline Extraction from Satellite Image with Machine Learning Classifiers. Egypt. J. Remote Sens. Space Sci. 2022, 25, 289–299. [Google Scholar] [CrossRef]
- Yang, Z.; Xu, C.; Li, L. Landslide Detection Based on ResU-Net with Transformer and CBAM Embedded: Two Examples with Geologically Different Environments. Remote Sens. 2022, 14, 2885. [Google Scholar] [CrossRef]
- Kestur, R.; Meenavathi, M.B. Vegetation Mapping of a Tomato Crop Using Multilayer Perceptron (MLP) Neural Network in Images Acquired by Remote Sensing from a UAV. IJCA 2018, 182, 13–17. [Google Scholar] [CrossRef]
- Abadi, M.; Agarwal, A.; Barham, P.; Brevdo, E.; Chen, Z.; Citro, C.; Corrado, G.S.; Davis, A.; Dean, J.; Devin, M.; et al. TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems 2015. Available online: https://www.tensorflow.org/ (accessed on 1 May 2020).
- Chollet, F. Others Keras 2015. Available online: https://keras.io/ (accessed on 1 May 2020).
- Kingma, D.P.; Ba, J. Adam: A Method for Stochastic Optimization. arXiv 2014, arXiv:1412.6980. [Google Scholar]
- Ruder, S. An Overview of Gradient Descent Optimization Algorithms. arXiv 2016, arXiv:1609.04747. [Google Scholar]
- Geisz, J.K.; Wernette, P.A.; Esselman, P.C. Classification of Lakebed Geologic Substrate in Autonomously Collected Benthic Imagery Using Machine Learning. Remote Sens. 2024, 16, 1264. [Google Scholar] [CrossRef]
- Geisz, J.K.; Wernette, P.A.; Esselman, P.C.; Morris, J.M. Autonomously Collected Benthic Imagery for Substrate Prediction, Lake Michigan 2020–2021. U.S. Geol. Surv. Data Release 2024. [Google Scholar] [CrossRef]
- Gómez-Ríos, A.; Tabik, S.; Luengo, J.; Shihavuddin, A.; Krawczyk, B.; Herrera, F. Towards Highly Accurate Coral Texture Images Classification Using Deep Convolutional Neural Networks and Data Augmentation. Expert Syst. Appl. 2019, 118, 315–328. [Google Scholar] [CrossRef]
- Raphael, A.; Dubinsky, Z.; Iluz, D.; Netanyahu, N.S. Neural Network Recognition of Marine Benthos and Corals. Diversity 2020, 12, 29. [Google Scholar] [CrossRef]
- Shihavuddin, A.S.M.; Gracias, N.; Garcia, R.; Gleason, A.; Gintert, B. Image-Based Coral Reef Classification and Thematic Mapping. Remote Sens. 2013, 5, 1809–1841. [Google Scholar] [CrossRef]
- Stokes, M.D.; Deane, G.B. Automated Processing of Coral Reef Benthic Images: Coral Reef Benthic Imaging. Limnol. Oceanogr. Methods 2009, 7, 157–168. [Google Scholar] [CrossRef]
- Chen, R.; Wu, J.; Luo, Y.; Xu, G. PointMM: Point Cloud Semantic Segmentation CNN under Multi-Spatial Feature Encoding and Multi-Head Attention Pooling. Remote Sens. 2024, 16, 1246. [Google Scholar] [CrossRef]
- Wernette, P. Coastal Bluff Point Clouds Derived from SfM near Elwha River Mouth, Washington from 18 April 2016 to 8 May 2020. Dryad 2020. [Google Scholar] [CrossRef]
- Weinmann, M.; Jutzi, B.; Mallet, C. Semantic 3D Scene Interpretation: A Framework Combining Optimal Neighborhood Size Selection with Relevant Features. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 2014, II–3, 181–188. [Google Scholar] [CrossRef]
- Gitelson, A.A.; Kaufman, Y.J.; Stark, R.; Rundquist, D. Novel Algorithms for Remote Estimation of Vegetation Fraction. Remote Sens. Environ. 2002, 80, 76–87. [Google Scholar] [CrossRef]
- Ashapure, A.; Jung, J.; Chang, A.; Oh, S.; Maeda, M.; Landivar, J. A Comparative Study of RGB and Multispectral Sensor-Based Cotton Canopy Cover Modelling Using Multi-Temporal UAS Data. Remote Sens. 2019, 11, 2757. [Google Scholar] [CrossRef]
Vegetation Index | Formula | Value Range (Lower, Upper) | Source |
---|---|---|---|
Excess Red (ExR) | (−1, 1.4) | [36] | |
Excess Green (ExG) | (−1, 2) | [35,40] | |
Excess Blue (ExB) | (−1, 1.4) | [39] | |
Excess Red Minus Green (ExGR) | (−2.4, 3) | [37] | |
Normal Green-Red Difference Index (NGRDI) | (−1, 1) | [45] | |
Modified Green Red Vegetation Index (MGRVI) | (−1, 1) | [46] | |
Green Leaf Index (GLI) | (−1, 1) | [47] | |
Red Green Blue Vegetation Index (RGBVI) | (−1, 1) | [46] | |
Kawashima Index (IKAW) | (−1, 1) | [33] | |
Green Leaf Algorithm (GLA) | (−1, 1) | [47] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wernette, P.A. Machine Learning Vegetation Filtering of Coastal Cliff and Bluff Point Clouds. Remote Sens. 2024, 16, 2169. https://doi.org/10.3390/rs16122169
Wernette PA. Machine Learning Vegetation Filtering of Coastal Cliff and Bluff Point Clouds. Remote Sensing. 2024; 16(12):2169. https://doi.org/10.3390/rs16122169
Chicago/Turabian StyleWernette, Phillipe Alan. 2024. "Machine Learning Vegetation Filtering of Coastal Cliff and Bluff Point Clouds" Remote Sensing 16, no. 12: 2169. https://doi.org/10.3390/rs16122169
APA StyleWernette, P. A. (2024). Machine Learning Vegetation Filtering of Coastal Cliff and Bluff Point Clouds. Remote Sensing, 16(12), 2169. https://doi.org/10.3390/rs16122169