Dynamic Delay-Sensitive Observation-Data-Processing Task Offloading for Satellite Edge Computing: A Fully-Decentralized Approach
Abstract
:1. Introduction
- This paper establishes a mixed-integer linear programming (MILP) model for delay-sensitive task offloading in SEC, which aims to reduce the deadline violation of delay-sensitive tasks while minimizing the system’s energy consumption.
- Considering the limited ISL connections, we propose a fully decentralized PITO algorithm. The PITO operates on each satellite in parallel and only relies on local communication via ISLs. It iterates between two stages, called task inclusion and consensus and task removal. The first stage aims to include appropriate tasks in each satellite. The second stage reaches consensus on the removal impact of tasks among all satellites and removes conflict tasks which may increase the objective value. Using PITO, tasks can be directly offloaded on board without depending on any central server. Its effectiveness and polynomial complexity are demonstrated.
- To handle the dynamic arrival of delay-sensitive tasks, a fast re-offloading mechanism is further introduced, which reduces the tasks involved and avoids unnecessary insertion attempts, by pruning. It enables PITO to perform online re-offloading during the computing serving process.
2. Related Works
3. Problem Description and Modeling
3.1. Scenario
3.2. Communication Model
3.3. Computational Model
- : the time that offloaded satellite s is available for task ti;
- : the time that all required data of ti are received by s;
- : the time at which ti is performed;
- : the finish time of task ti.
3.4. Energy Model
3.5. Problem Formulation
4. The PI-Based Task Offloading Algorithm
4.1. General Framework
- (1)
- Removal impact: for task t ∈ θs, the removal impact (θs ⊖ t) indicates the variation of F(θs) after removing t from θs; then, we have
- (2)
- Inclusion impact: for task t ∉ θs, the inclusion impact (θs ⊕ t) represents the minimum variation of F(θs) after inserting t into θs; then, we have
- (1)
- Rs = [Rs1, Rs2, …, Rsn]T is a vector recording the latest removal impacts of tasks in T. Initially, we set Rst = (θs ⊖ t) for ∀ t ∈ θs, and otherwise Rst = ∞.
- (2)
- Ws = [Ws1, Ws2, …, Wsn]T is a vector recording the considered offloaded satellite of tasks in T. The entry Wst = k represents the fact that satellite s believes t is offloaded to satellite k. Initially, we set Wst = s for ∀ t ∈ θs, and otherwise, Wst = 0.
- (3)
- Qs = [Qs1, Qs2, …, Qsm]T is a vector where entry Qsk is the timestamp where satellite s thinks it receives the latest information from satellite k. Initially, Qsk = 0 for ∀ k ∈ S. During the communication process, Qsk is updated under the following rules:
Algorithm 1. PITO |
Input: satellites S, delay-sensitive tasks T, network topology G. Output: offloading assignment θ.
|
4.2. Task Inclusion
Algorithm 2. Task Inclusion |
Input: task set T, task sequence θs, and vectors Rs and Ws. Output: new task sequence θs′, new vectors Rs′ and Ws′.
|
4.3. Consensus and Task Removal
4.3.1. Consensus
4.3.2. Task Removal
Algorithm 3. Task Removal |
Input: task sequence θs, and vectors Rs and Ws. Output: new task sequence θs′, new vectors Rs′ and Ws′.
|
4.4. Convergence and Complexity Analysis
4.5. Re-Offloading Mechanism
Algorithm 4. Task classification |
Input: satellites S, original assignment θ. Output: vectors Us, ∀s ∈ S.
|
Algorithm 5. Pruning approach |
Input: task sequence θs* and vectors Us. Output: candidate positions Φs.
|
5. Computational Experiments
5.1. Experimental Setup
- (1)
- RV: the relative value of F(θ) for an algorithm compared with others; we have
- (2)
- CT: the communication times, indicating the communication burden between satellites during task offloading.
- (3)
- RT: the running time required for the task offloading process.
5.2. Comparison with Existing Distributed Algorithms
5.3. Validation of the Re-Offloading Mechanism
6. Discussion
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Leyva-Mayorga, I.; Martinez-Gost, M.; Moretti, M.; Peŕez-Neira, A.; Vázquez, M.Á.; Popovski, P.; Soret, B. Satellite edge computing for real-time and very-high resolution earth observation. IEEE Trans. Commun. 2023, 71, 6180–6194. [Google Scholar] [CrossRef]
- Kim, T.; Kwak, J.; Choi, J.P. Satellite Edge Computing Architecture and Network Slice Scheduling for IoT Support. IEEE Internet Things J. 2022, 9, 14938–14951. [Google Scholar] [CrossRef]
- Gomes, V.C.F.; Queiroz, G.R.; Ferreira, K.R. An Overview of Platforms for Big Earth Observation Data Management and Analysis. Remote Sens. 2020, 12, 1253. [Google Scholar] [CrossRef]
- Yao, X.; Li, G.; Xia, J.; Ben, J.; Cao, Q.; Zhao, L.; Ma, Y.; Zhang, L.; Zhu, D. Enabling the Big Earth Observation Data via Cloud Computing and DGGS: Opportunities and Challenges. Remote Sens. 2020, 12, 62. [Google Scholar] [CrossRef]
- Ma, Y.; Wu, H.; Wang, L.; Huang, B.; Ranjan, R.; Zomaya, A.; Jie, W. Remote sensing big data computing: Challenges and opportunities. Future Gener. Comput. Syst. 2015, 51, 47–60. [Google Scholar] [CrossRef]
- Abbas, N.; Zhang, Y.; Taherkordi, A.; Skeie, T. Mobile Edge Computing: A Survey. IEEE Internet Things J. 2018, 5, 450–465. [Google Scholar] [CrossRef]
- Xie, R.; Tang, Q.; Wang, Q.; Liu, X.; Yu, F.R.; Huang, T. Satellite-Terrestrial Integrated Edge Computing Networks: Architecture, Challenges, and Open Issues. IEEE Netw. 2020, 34, 224–231. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhang, W.; Tseng, F.-H. Satellite Mobile Edge Computing: Improving QoS of High-Speed Satellite-Terrestrial Networks Using Edge Computing Techniques. IEEE Netw. 2019, 33, 70–76. [Google Scholar] [CrossRef]
- Wang, S.; Li, Q. Satellite Computing: Vision and Challenges. IEEE Internet Things J. 2023, 10, 22514–22529. [Google Scholar] [CrossRef]
- Lv, W.; Yang, P.; Ding, Y.; Wang, Z.; Lin, C.; Wang, Q. Energy-Efficient and QoS-Aware Computation Offloading in GEO/LEO Hybrid Satellite Networks. Remote Sens. 2023, 15, 3299. [Google Scholar] [CrossRef]
- Hu, Y.; Gong, W.; Zhou, F. A Lyapunov-Optimized Dynamic Task Offloading Strategy for Satellite Edge Computing. Appl. Sci. 2023, 13, 4281. [Google Scholar] [CrossRef]
- Bekmezci, I.; Alagöz, F. Energy efficient, delay sensitive, fault tolerant wireless sensor network for military monitoring. Int. J. Distrib. Sens. Netw. 2009, 5, 729–747. [Google Scholar] [CrossRef]
- Deng, X.; Li, J.; Guan, P.; Zhang, L. Energy-Efficient UAV-Aided Target Tracking Systems Based on Edge Computing. IEEE Internet Things J. 2022, 9, 2207–2214. [Google Scholar] [CrossRef]
- Zhang, Y.; Chen, C.; Liu, L.; Lan, D.; Jiang, H.; Wan, S. Aerial Edge Computing on Orbit: A Task Offloading and Allocation Scheme. IEEE Trans. Netw. Sci. Eng. 2023, 10, 275–285. [Google Scholar] [CrossRef]
- Hu, Y.; Gong, W. An On-Orbit Task-Offloading Strategy Based on Satellite Edge Computing. Sensors 2023, 23, 4271. [Google Scholar] [CrossRef] [PubMed]
- Song, Z.; Hao, Y.; Liu, Y.; Sun, X. Energy-Efficient Multiaccess Edge Computing for Terrestrial-Satellite Internet of Things. IEEE Internet Things J. 2021, 8, 14202–14218. [Google Scholar] [CrossRef]
- Ding, C.; Wang, J.-B.; Zhang, H.; Lin, M.; Li, G.Y. Joint Optimization of Transmission and Computation Resources for Satellite and High Altitude Platform Assisted Edge Computing. IEEE Trans. Wirel. Commun. 2022, 21, 1362–1377. [Google Scholar] [CrossRef]
- Wang, C.; Ren, Z.; Cheng, W.; Zhang, H. CDMR: Effective Computing-Dependent Multi-Path Routing Strategies in Satellite and Terrestrial Integrated Networks. IEEE Trans. Netw. Sci. Eng. 2022, 9, 3715–3730. [Google Scholar] [CrossRef]
- Qiu, C.; Yao, H.; Yu, F.R.; Xu, F.; Zhao, C. Deep Q-Learning Aided Networking, Caching, and Computing Resources Allocation in Software Defined Satellite-Terrestrial Networks. IEEE Trans. Veh. Technol. 2019, 68, 5871–5883. [Google Scholar] [CrossRef]
- Mao, B.; Tang, F.; Kawamoto, Y.; Kato, N. Optimizing Computation Offloading in SatelliteUAV-Served 6G IoT: A Deep Learning Approach. IEEE Netw. 2021, 35, 102–108. [Google Scholar] [CrossRef]
- Yu, S.; Gong, X.; Shi, Q.; Wang, X.; Chen, X. EC-SAGINs: Edge-computing-enhanced space–air–ground-integrated networks for internet of vehicles. IEEE Internet Things J. 2021, 9, 5742–5754. [Google Scholar] [CrossRef]
- Cui, G.; Duan, P.; Xu, L.; Wang, W. Latency Optimization for Hybridf GEO–LEO Satellite Assisted IoT Networks. IEEE Internet Things J. 2023, 10, 6286–6297. [Google Scholar] [CrossRef]
- Zhang, H.; Liu, R.; Kaushik, A.; Gao, X. Satellite Edge Computing with Collaborative Computation Offloading: An Intelligent Deep Deterministic Policy Gradient Approach. IEEE Internet Things J. 2023, 10, 9092–9107. [Google Scholar] [CrossRef]
- Chen, X.; Xie, S.; Yu, L.; Fan, C. Sun Iterated Bidding-based Autonomous Mission Planning of Multiple Agile Earth Observation Satellites. In Proceedings of the 2023 35th Chinese Control and Decision Conference (CCDC), Yichang, China, 20–23 May 2023. [Google Scholar]
- Wang, C.; Ren, Z.; Cheng, W.; Zheng, S.; Zhang, H. Time-Expanded Graph-Based Dispersed Computing Policy for LEO Space Satellite Computing. In Proceedings of the 2021 IEEE Wireless Communications and Networking Conference (WCNC), Nanjing, China, 29 March–1 April, 2021; pp. 1–6. [Google Scholar]
- Ma, B.; Ren, Z.; Guo, W.; Cheng, W.; Zhang, H. Computation-Dependent Routing Based Low-Latency Decentralized Collaborative Computing Strategy for Satellite-Terrestrial Integrated Network. In Proceedings of the 2022 14th International Conference on Wireless Communications and Signal Processing (WCSP), Nanjing, China, 1–3 November 2022; pp. 1–5. [Google Scholar]
- Tang, Q.; Fei, Z.; Li, B.; Han, Z. Computation Offloading in LEO Satellite Networks With Hybrid Cloud and Edge Computing. IEEE Internet Things J. 2021, 8, 9164–9176. [Google Scholar] [CrossRef]
- Zhou, J.; Yang, Q.; Zhao, L.; Dai, H.; Xiao, F. Mobility-Aware Computation Offloading in Satellite Edge Computing Networks. IEEE. Trans. Mob. Computing 2024, 99, 1–15. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, S.; Zhao, Q.; Du, S.; Zhou, A.; Ma, X.; Yang, F. Dependency-Aware Task Scheduling in Vehicular Edge Computing. IEEE Internet Things J. 2020, 7, 4961–4971. [Google Scholar] [CrossRef]
- Sthapit, S.; Lakshminarayana, S.; He, L.; Epiphaniou, G.; Maple, C. Reinforcement Learning for Security-Aware Computation Offloading in Satellite Networks. IEEE Internet Things J. 2022, 9, 12351–12363. [Google Scholar] [CrossRef]
- Liu, Y.; Jiang, L.; Qi, Q.; Xie, S. Energy-Efficient Space–Air–Ground Integrated Edge Computing for Internet of Remote Things: A Federated DRL Approach. IEEE Internet Things J. 2023, 10, 4845–4856. [Google Scholar] [CrossRef]
- Ding, C.; Wang, J.-B.; Cheng, M.; Lin, M.; Cheng, J. Dynamic Transmission and Computation Resource Optimization for Dense LEO Satellite Assisted Mobile-Edge Computing. IEEE Trans. Commun. 2023, 71, 3087–3102. [Google Scholar] [CrossRef]
- Zhao, W.; Meng, Q.; Chung, P.W.H. A Heuristic Distributed Task Allocation Method for Multivehicle Multitask Problems and Its Application to Search and Rescue Scenario. IEEE Trans. Cybern. 2016, 46, 902–915. [Google Scholar] [CrossRef]
- Turner, J.; Meng, Q.; Schaefer, G.; Whitbrook, A.; Soltoggio, A. Distributed Task Rescheduling With Time Constraints for the Optimization of Total Task Allocations in a Multirobot System. IEEE Trans. Cybern. 2018, 48, 2583–2597. [Google Scholar] [CrossRef] [PubMed]
- Choi, H.-L.; Brunet, L.; How, J.P. Consensus-Based Decentralized Auctions for Robust Task Allocation. IEEE Trans. Robot. 2009, 25, 912–926. [Google Scholar] [CrossRef]
- Ng, W.C.; Lim, W.Y.B.; Xiong, Z.; Niyato, D.; Miao, C.; Han, Z.; Kim, D.I. Stochastic Coded Offloading Scheme for Unmanned-Aerial-Vehicle-Assisted Edge Computing. IEEE Internet Things J. 2023, 10, 5626–5643. [Google Scholar] [CrossRef]
- Ng, W.C.; Lim, W.Y.B.; Xiong, Z.; Niyato, D.; Poor, H.V.; Shen, X.S.; Miao, C. Stochastic Resource Optimization for Wireless Powered Hybrid Coded Edge Computing Networks. IEEE Trans. Mob. Comput. 2024, 23, 2022–2038. [Google Scholar] [CrossRef]
- Qiao, F.; Ma, Y.; Zhou, M.; Wu, Q. A novel rescheduling method for dynamic semiconductor manufacturing systems. IEEE Trans. Syst. Man Cybern.: Syst. 2018, 50, 1679–1689. [Google Scholar] [CrossRef]
- Zhang, R.; Feng, Y.; Yang, Y.; Li, X. A Deadlock-Free Hybrid Estimation of Distribution Algorithm for Cooperative Multi-UAV Task Assignment With Temporally Coupled Constraints. IEEE Trans. Aerosp. Electron. Syst. 2023, 59, 3329–3344. [Google Scholar] [CrossRef]
- Wang, Z.; Zhang, J.; Yang, S. An improved particle swarm optimization algorithm for dynamic job shop scheduling problems with random job arrivals. Swarm Evol. Comput. 2019, 51, 100594. [Google Scholar] [CrossRef]
Notation | Description |
---|---|
m | Total number of SEC satellites. |
n | Total number of observation satellites. |
S | Set of SEC satellites. |
D | Set of observation satellites. |
Cs | Computing capacity of SEC satellite s. |
Ms | Buffer space of SEC satellite s. |
Hs | Energy consumption limitation on SEC satellite s. |
G | Network topology matrix. |
T = {t1, t2, …, tn} | Set of tasks t. |
θ = {θ1, θ2, …, θm} | Task offloading solution. |
F(θ) | Objective value of solution θ. |
(θs ⊖ t) | Removal impact, indicating the variation of F(θs) after removing t from θs. |
(θs ⊕ t) | Inclusion impact, indicating the minimum variation of F(θs) after inserting t into θs. |
Rs = [Rs1, Rs2, …, Rsn]T, Ws = [Ws1, Ws2, …, Wsn]T, Qs = [Qs1, Qs2, …, Qsm]T | Consensus vectors of satellite s, where Rs implies the removal impacts of tasks, Ws represents the considered offloaded satellites of tasks, and Qs indicates the latest timestamp of satellites. |
Ψs | Pending removal tasks in satellite s. |
[μa, μb] | Influence horizon. |
Us = [Us1, Us2, …, Us(n+q)]T | Task classification vector of satellite s. |
Φs | Candidate insertion positions of sequence θs. |
Value of Wst from Sending Satellite s | Value of Wkt from Receiving Satellite k | Actions Taken by k |
---|---|---|
s | k | if Rst < Rkt → Update |
s | Update | |
l ∉ {s, k} | if Qsl > Qkl or Rst < Rkt → Update | |
0 | Update | |
k | k | Maintain |
s | Reset | |
l ∉ {s, k} | if Qsl > Qkl → Reset | |
0 | Maintain | |
l ∉ {s, k} | k | if Qsl > Qkl and Rst < Rkt → Update |
s | if Qsl > Qkl → Update else → Reset | |
l | Qsl > Qkl → Update | |
q ∉ {s, k, l} | if Qsl > Qkl and Qsq > Qkq → Update if Qsl > Qkl and Rst < Rkt → Update if Qsq > Qkq and Qsl < Qkl → Reset | |
0 | if Qsl > Qkl → Update | |
0 | k | Maintain |
s | Update | |
l ∉ {s, k} | if Qsl > Qkl → Update | |
0 | Maintain |
Constellation | Altitude (km) | Inclination (deg) | Planes | Satellites (m) |
---|---|---|---|---|
A | 5000 | 97.4 | 2 | 6 |
B | 5000 | 53.8 | 3 | 9 |
C | 3000 | 60 | 4 | 16 |
D | 480 | 97.4 | 3 | 24 |
E | 550 | 60 | 6 | 36 |
F | 780 | 86.4 | 6 | 66 |
Instance Type | Constellations | Task Number | Task Density | Deadline | Combination Number |
---|---|---|---|---|---|
Small | A, B | 3, 5 | low, high | emergency, normal | 2 × 2 × 2 × 2 = 16 |
Medium | C, D | 10, 20 | low, high | emergency, normal | 2 × 2 × 2 × 2 = 16 |
Large | E, F | 50, 100 | low, high | emergency, normal | 2 × 2 × 2 × 2 = 16 |
Parameters | Default Values |
---|---|
Data size of tasks λi | 10~30 Mbit |
Workload of task μi | 1~1.5 Kcycle/bit |
Computing capacity of satellites Cs | 5 GHz |
Memory space of satellites Ms | 500 Mbit |
Energy consumption limitation of satellites Hs | 5000 J |
Rate of LISL rLISL | 100 Mbps |
Transmission power of RISL ε1 | 2 w |
Transmission power of LISL ε2 | 1 w |
Effective capacitance coefficient κ | 10−28 |
Weight factors α and β | 0.5 |
Instance Type | CNP | DETS | ADMM | PITO | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
aRV | aCT | aRT | aRV | aCT | aRT | aRV | aCT | aRT | aRV | aCT | aRT | |
{A, 3, low, emergency} | 0.0380 | 12 | 0.0172 | 0.0141 | 17.59 | 0.0172 | 0.0103 | 52 | 0.7014 | 0.0014 | 8 | 0.0177 |
{A, 3, low, normal} | 0.0427 | 12 | 0.0172 | 0 | 17.85 | 0.0187 | 0.0079 | 52 | 0.6914 | 0.0016 | 8 | 0.0169 |
{A, 3, high, emergency} | 0.0450 | 12 | 0.0021 | 0.0196 | 16.00 | 0.0029 | 0.0155 | 52 | 0.3789 | 0.0033 | 7.75 | 0.0031 |
{A, 3, high, normal} | 0.0497 | 12 | 0.0228 | 0.0207 | 21.44 | 0.0185 | 0.0105 | 54 | 0.5845 | 0.0028 | 9.36 | 0.0187 |
{A, 5, low, emergency} | 0.0449 | 20 | 0.0226 | 0.0274 | 36.00 | 0.0435 | 0.0110 | 50 | 2.5463 | 0.0002 | 15 | 0.0567 |
{A, 5, low, normal} | 0.0413 | 20 | 0.0224 | 0 | 36.00 | 0.0431 | 0.0155 | 50 | 2.5087 | 0.0002 | 15 | 0.0591 |
{A, 5, high, emergency} | 0.0346 | 20 | 0.0186 | 0.0954 | 38.77 | 0.0438 | 0.0248 | 52 | 2.5411 | 0.0001 | 16 | 0.0565 |
{A, 5, high, normal} | 0.0337 | 20 | 0.0192 | 0.0932 | 38.42 | 0.0434 | 0.0280 | 52 | 2.5181 | 0.0006 | 16 | 0.0590 |
{B, 3, low, emergency} | 0.0401 | 15 | 0.0030 | 0.0287 | 18.59 | 0.0038 | 0.0239 | 84 | 1.1158 | 0.0022 | 8 | 0.0074 |
{B, 3, low, normal} | 0.0383 | 15 | 0.0029 | 0.0250 | 18.65 | 0.0037 | 0.0232 | 84 | 1.1061 | 0.0019 | 8 | 0.0045 |
{B, 3, high, emergency} | 0.0436 | 15 | 0.0023 | 0.0459 | 18.74 | 0.0032 | 0.0244 | 87 | 1.0348 | 0.0038 | 9 | 0.0041 |
{B, 3, high, normal} | 0.0421 | 15 | 0.0036 | 0.0372 | 23.39 | 0.0048 | 0.0194 | 81 | 1.0032 | 0.0035 | 7 | 0.0046 |
{B, 5, low, emergency} | 0.0430 | 25 | 0.0097 | 0.0060 | 36.59 | 0.0309 | 0.0175 | 93 | 6.8399 | 0.0011 | 12 | 0.0409 |
{B, 5, low, normal} | 0.0433 | 25 | 0.0180 | 0.0040 | 36.76 | 0.0302 | 0.0158 | 93 | 6.9443 | 0.0010 | 12 | 0.0412 |
{B, 5, high, emergency} | 0.0698 | 25 | 0.0191 | 0.0656 | 38.74 | 0.0345 | 0.0481 | 93 | 7.0396 | 0.0004 | 13 | 0.0350 |
{B, 5, high, normal} | 0.0691 | 25 | 0.0237 | 0.0552 | 38.34 | 0.1103 | 0.0428 | 93 | 6.0205 | 0.0010 | 13 | 0.0269 |
Instance Type | CNP | DETS | ADMM | PITO | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
aRV | aCT | aRT | aRV | aCT | aRT | aRV | aCT | aRT | aRV | aCT | aRT | |
{C, 10, low, emergency} | 0.0725 | 50 | 0.0516 | 0.0752 | 76.80 | 0.1100 | 0.0270 | 490.24 | 79.1380 | 0.0004 | 47 | 0.3098 |
{C, 10, low, normal} | 0.0778 | 50 | 0.0351 | 0.0661 | 76.35 | 0.1249 | 0.0267 | 490.72 | 78.9001 | 0.0005 | 47 | 0.3202 |
{C, 10, high, emergency} | 0.0486 | 50 | 0.0185 | 0.0326 | 65.00 | 0.0729 | 0.0559 | 506.08 | 82.4659 | 0.0009 | 43.28 | 0.3141 |
{C, 10, high, normal} | 0.0481 | 50 | 0.0180 | 0.0293 | 65.00 | 0.0713 | 0.0455 | 506.64 | 81.9928 | 0.0008 | 43.78 | 0.3106 |
{C, 20, low, emergency} | 0.0961 | 100 | 0.1143 | 0.0703 | 193.82 | 0.5209 | 0.0471 | 1317.76 | 994.6563 | 0 | 92 | 1.0020 |
{C, 20, low, normal} | 0.0964 | 100 | 0.1112 | 0.0739 | 193.97 | 0.6528 | 0.0477 | 1317.92 | 993.6440 | 0 | 92 | 1.0063 |
{C, 20, high, emergency} | 0.0580 | 100 | 0.0611 | 0.0909 | 186.79 | 0.6226 | 0.0388 | 1349.44 | 1022.2295 | 0 | 100 | 0.9560 |
{C, 20, high, normal} | 0.0583 | 100 | 0.0667 | 0.0869 | 186.99 | 0.5507 | 0.0395 | 1349.76 | 1024.8514 | 0 | 100 | 1.8343 |
{D, 10, low, emergency} | 0.0350 | 50 | 0.0165 | 0.0401 | 78.48 | 0.0681 | 0.0272 | 1592 | 307.8734 | 0.0049 | 38 | 0.4731 |
{D, 10, low, normal} | 0.0360 | 50 | 0.0165 | 0.0452 | 78.82 | 0.0689 | 0.0274 | 1592 | 306.6067 | 0.0048 | 38 | 0.4596 |
{D, 10, high, emergency} | 0.0403 | 50 | 0.0158 | 0.0156 | 76.37 | 0.0776 | 0.0212 | 952 | 186.0931 | 0.0011 | 37 | 0.4362 |
{D, 10, high, normal} | 0.0407 | 50 | 0.0161 | 0.0148 | 76.63 | 0.0797 | 0.0179 | 952 | 188.0270 | 0.0011 | 37 | 0.4368 |
{D, 20, low, emergency} | 0.0437 | 100 | 0.0388 | 0.0409 | 153.49 | 0.3190 | 0.0303 | 2424 | 1377.0521 | 0.0090 | 87 | 3.2001 |
{D, 20, low, normal} | 0.0408 | 100 | 0.0386 | 0.0393 | 153.83 | 0.3346 | 0.0337 | 2424 | 1484.6625 | 0.0079 | 87 | 3.1638 |
{D, 20, high, emergency} | 0.1193 | 100 | 0.0740 | 0.0704 | 165.00 | 0.4541 | 0.0393 | 2424 | 1528.1982 | 0.0036 | 81 | 3.0737 |
{D, 20, high, normal} | 0.1063 | 100 | 0.0960 | 0.0675 | 165.00 | 0.5563 | 0.0360 | 2424 | 1514.9961 | 0.0005 | 81 | 3.2331 |
Instance Type | CNP | DETS | ADMM | PITO | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
aRV | aCT | aRT | aRV | aCT | aRT | aRV | aCT | aRT | aRV | aCT | aRT | |
{E, 50, low, emergency} | 0.0745 | 250 | 0.1506 | 0.0767 | 456.57 | 0.5345 | 0.0339 | 2352 | 1335.7939 | 0 | 169.59 | 5.8748 |
{E, 50, low, normal} | 0.0767 | 250 | 0.1541 | 0.0696 | 456.18 | 0.5302 | 0.0300 | 2352 | 1335.2840 | 0 | 169.91 | 5.9403 |
{E, 50, high, emergency} | 0.0750 | 250 | 0.1440 | 0.0667 | 460.00 | 0.5649 | 0.0327 | 1964 | 1754.5021 | 0.0002 | 203.17 | 22.9450 |
{E, 50, high, normal} | 0.1037 | 250 | 0.1814 | 0.0965 | 545.00 | 0.8223 | 0.0387 | 1964 | 1907.0651 | 0.0002 | 217 | 32.2933 |
{E, 100, low, emergency} | 0.2919 | 500 | 0.8558 | 0.1197 | 1153.46 | 1.9715 | 0.0713 | 3744 | 2251.2133 | 0 | 337.34 | 90.3036 |
{E, 100, low, normal} | 0.2711 | 500 | 0.9952 | 0.1438 | 1088.29 | 2.0296 | 0.0751 | 3744 | 2362.8377 | 0 | 373.81 | 158.2195 |
{E, 100, high, emergency} | 0.3003 | 500 | 2.1974 | 0.1355 | 1278.63 | 3.0104 | 0.0905 | 3858 | 2634.2013 | 0 | 358.68 | 147.7549 |
{E, 100, high, normal} | 0.3068 | 500 | 2.2224 | 0.1204 | 1278.98 | 2.7709 | 0.0871 | 3924 | 2756.0978 | 0 | 358.64 | 156.2090 |
{F, 50, low, emergency} | 0.0439 | 250 | 0.0931 | 0.0537 | 445.00 | 0.4262 | 0.0330 | 2574 | 1393.1036 | 0.0082 | 164 | 34.4894 |
{F, 50, low, normal} | 0.0449 | 250 | 0.1209 | 0.0494 | 445.00 | 0.6396 | 0.0312 | 2574 | 1445.8109 | 0.0070 | 164 | 35.5420 |
{F, 50, high, emergency} | 0.0625 | 250 | 0.1138 | 0.0472 | 383.92 | 0.4567 | 0.0251 | 2552 | 2783.5166 | 0.0028 | 192.31 | 37.9846 |
{F, 50, high, normal} | 0.0550 | 250 | 0.1523 | 0.0165 | 441.85 | 0.4779 | 0.0150 | 2816 | 2609.7868 | 0.0024 | 191.38 | 60.5440 |
{F, 100, low, emergency} | 0.1388 | 500 | 0.4792 | 0.1054 | 936.68 | 1.2663 | 0.0473 | 4092 | 3436.2467 | 0.0006 | 316.96 | 163.3933 |
{F, 100, low, normal} | 0.0859 | 500 | 0.3493 | 0.0483 | 1008.56 | 1.3893 | 0.0305 | 4224 | 3792.8678 | 0.0006 | 389.23 | 256.1243 |
{F, 100, high, emergency} | 0.2422 | 500 | 0.5703 | 0.0874 | 1008.98 | 1.3540 | 0.0443 | 4224 | 3851.9423 | 0 | 332 | 236.6883 |
{F, 100, high, normal} | 0.2377 | 500 | 0.6161 | 0.0909 | 1008.29 | 1.6362 | 0.0420 | 4686 | 4013.7642 | 0 | 332 | 221.7397 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, R.; Feng, Y.; Yang, Y.; Li, X.; Li, H. Dynamic Delay-Sensitive Observation-Data-Processing Task Offloading for Satellite Edge Computing: A Fully-Decentralized Approach. Remote Sens. 2024, 16, 2184. https://doi.org/10.3390/rs16122184
Zhang R, Feng Y, Yang Y, Li X, Li H. Dynamic Delay-Sensitive Observation-Data-Processing Task Offloading for Satellite Edge Computing: A Fully-Decentralized Approach. Remote Sensing. 2024; 16(12):2184. https://doi.org/10.3390/rs16122184
Chicago/Turabian StyleZhang, Ruipeng, Yanxiang Feng, Yikang Yang, Xiaoling Li, and Hengnian Li. 2024. "Dynamic Delay-Sensitive Observation-Data-Processing Task Offloading for Satellite Edge Computing: A Fully-Decentralized Approach" Remote Sensing 16, no. 12: 2184. https://doi.org/10.3390/rs16122184
APA StyleZhang, R., Feng, Y., Yang, Y., Li, X., & Li, H. (2024). Dynamic Delay-Sensitive Observation-Data-Processing Task Offloading for Satellite Edge Computing: A Fully-Decentralized Approach. Remote Sensing, 16(12), 2184. https://doi.org/10.3390/rs16122184