Remote Sensing Application in Ecological Restoration Monitoring: A Systematic Review
Abstract
:1. Introduction
2. Meta-Analysis of the Literature
2.1. Annual Statistics of Literature Quantity
2.2. Keyword Network Diagram of the Literature
2.3. Keyword Network Diagram of the Literature
3. Sensors and Products for Monitoring Ecological Restoration
3.1. Spaceborne Sensors
3.2. Unmanned Aerial Vehicle (UAV) Sensors
3.3. Remote Sensing Products
4. The Indicators for Monitoring Ecological Restoration
4.1. Major Indicator Selection in Ecological Restoration Monitoring
4.2. The Indicators for Monitoring Forest Ecological Restoration
Indicators | Formula or Method | Literature |
---|---|---|
FVC | Regression Model | [27,28] |
Mixed Pixel Decomposition | [29] | |
Machine Learning | [30,31,32] | |
Spectral Gradient Method | [33] | |
FCD Grading | [34] | |
LAI | Empirical Statistical Model | [35,36,37] |
Machine Learning | [38,39,40] | |
Canopy Reflectance Model | [41] | |
NPP | Empirical Statistical Model | [42] |
Carnegie–Ames–Stanford Approach (CASA) | [43] | |
Vegetation Photosynthesis Model (VPM) | [44] | |
Physiological Principles for Predicting Growth (3-P) | [45] | |
Forest Growing Stock | Empirical Statistical Model | [46] |
Levenberg–Marquardt backpropagation (LM–BP) | [47] | |
Machine Learning | [48] | |
Water Conservation Function | Equivalent Method | [49] |
Water Balance Method | [50] | |
Comprehensive Water Storage Capacity Method | [51] | |
Precipitation Storage Quantity Method | [52] | |
Multifactor Regression Method | [53] |
Index | Formula | Literature |
---|---|---|
NDVI | [2] | |
RVI | [3] | |
TVI | [2] | |
TVDI | [55] | |
SAVI | [56] | |
OSAVI | [57] | |
SBI | [58] |
4.3. The Indicator for Monitoring Soil Ecological Restoration
Indicators | Formula or Method | Literature |
---|---|---|
Soil Conservation | Revised Universal Soil Loss Equation (RUSLE) | |
Soil Moisture | Empirical Statistical Model | [55] |
Thermal Inertia Method | [68] | |
Triangle Method | [69] | |
Extended Kalman Filter | [70] | |
Machine Learning | [71] | |
Soil Heavy Metal Content | Empirical Statistical Model | [72] |
Machine Learning | [73] | |
Soil pH | Empirical Statistical Model | [74] |
Machine Learning | [75] | |
LST | Single-Channel (SC) Algorithm | [76] |
Split-Window/Double-Window (SW/DW) Algorithm | [77] | |
Temperature and Emissivity Separation (TES) Algorithm | [78] | |
Day/Night (D/N) Algorithm | [79] | |
Machine Learning | [80] | |
Topographic Relief | Mean Change Point Analysis Method | [81] |
Soil Organic Matter | Empirical Statistical Model | [82] |
Ground-Based Non-Imaging Spectrometer Estimation | [83] | |
Machine Learning | [84] | |
Soil Salinity | Empirical Statistical Model | [85] |
Machine Learning | [86] |
4.4. The Indicators for Monitoring Water Ecological Restoration
Indicators | Formula or Method | Literature |
---|---|---|
Eutrophication of Water Body | Trophic Status Index (TSI) | [89,90] |
Comprehensive Trophic Level Index (TLI) | [91] | |
TSM, Chl-a, CDOM | Empirical Statistical Model | [92,93,94,95,96] |
Machine Learning | [97,98] | |
Quantitative Assessment of Absorption (QAA) | [99,100] | |
Case 2 Regional Coast Colour (C2RCC) | [101,102] | |
COD | Empirical Statistical Model | [103] |
Backpropagation Neural Network (BPMN) Model | [104] | |
TP and TN | Empirical Statistical Model | [105] |
Machine Learning | [105,106,107] | |
Water Transparency | Semi-Analytical Algorithm | [108] |
Transparency Inversion Algorithm Based on FUI Water Color Index and Hue Angle | [109] | |
DO | Empirical Statistical Model | [110] |
Machine Learning | [111] | |
Black and Smelly Water Bodies | Optical Threshold Method | [112] |
Recognition Method Based on Typical Remote Sensing Water Quality Indicators | [113] | |
Colorimetric Method | [114] | |
River Sinuosity | S: Sinuosity; Lr: River Centerline, which refers to the actual length of the river segment being measured; Lv: Centerline of the River Basin, which is the straight-line distance between two points upstream and downstream of the river segment being measured | [115] |
4.5. The Indicators for Monitoring Atmosphere Ecological Restoration
5. The Method for Evaluating Ecological Restoration Effectiveness
6. Challenges and Future Prospects
6.1. Challenges
6.1.1. Ecological Indicators Present Challenges in Meeting the Demand for High-Precision Extraction
6.1.2. Spatial Resolution Affects the Effectiveness of Remote Sensing Data in Extracting Ecological Indicators
6.1.3. The Accuracy of Remote Sensing Data Requires Validation through Ground Observations
6.1.4. Acquiring High-Quality and Multi-Temporal Remote Sensing Data Faces Challenges
6.1.5. Universality of Algorithms and Models
6.1.6. A Unified Method for Evaluating Ecological Restoration Effectiveness Is Lacking
6.2. Future Prospects
6.2.1. The Fusion of Multiple Sensors and Multiple Data
6.2.2. High-Precision Sensor Technology and Satellite and Aircraft Technology Improvements
6.2.3. Establish an Intelligent Ecological Restoration Monitoring System That Integrates Air, Space, and Ground
6.2.4. Application of Advanced Technologies in Remote Sensing Monitoring for Ecological Restoration
6.2.5. The Widespread Use of Artificial Intelligence Technologies Such as Machine Learning
6.2.6. Support of Digital Twin Technology for the Remote Sensing Monitoring of Ecological Restoration
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Xiao, W.; Ruan, L.L.; Yue, W.Z.; Zhou, Y.; Zhang, L.J.; Hu, Y.M. Construction of a multi-scale effectiveness evaluation system for ecological restoration and protection of territorial space. Ying Yong Sheng Tai Xue Bao = J. Appl. Ecol. 2023, 34, 2566–2574. [Google Scholar]
- Rouse, J.W., Jr.; Haas, R.H.; Deering, D.W.; Schell, J.A.; Harlan, J.C. Monitoring the Vernal Advancement and Retrogradation (Green Wave Effect) of Natural Vegetation; Texas A&M University Remote Sensing Center: College Station, TX, USA, 1974. [Google Scholar]
- Pearson, R.L.; Miller, L.D. Remote Mapping of Standing Crop Biomass for Estimation of the Productivity of the Shortgrass Prairie, Pawnee National Grasslands, Colorado. In Proceedings of the Eighth International Symposium on Remote Sensing of Environment, Ann Arbor, MI, USA, 2–6 October 1972. [Google Scholar]
- Muller, E.; Decamps, H.; Dobson, M.K. Contribution of Space Remote-Sensing to River Studies. Freshwater Biol. 1993, 29, 301–312. [Google Scholar] [CrossRef]
- Veitch, N.; Webb, N.R.; Wyatt, B.K. The Application of Geographic Information-Systems and Remotely-Sensed Data to the Conservation of Heathland Fragments. Biol. Conserv. 1995, 72, 91–97. [Google Scholar] [CrossRef]
- Morales, R.M.; Miura, T.; Idol, T. An assessment of Hawaiian dry forest condition with fine resolution remote sensing. Forest Ecol. Manag. 2008, 255, 2524–2532. [Google Scholar] [CrossRef]
- Zerger, A.; Mcintyre, S.; Gobbett, D.; Stol, J. Remote detection of grassland nutrient status for assessing ground layer vegetation condition and restoration potential of eucalypt grassy woodlands. Landscape Urban Plan. 2011, 102, 226–233. [Google Scholar] [CrossRef]
- Cabello, J.; Fernández, N.; Alcaraz-Segura, D.; Oyonarte, C.; Piñeiro, G.; Altesor, A.; Delibes, M.; Paruelo, J.M. The ecosystem functioning dimension in conservation: Insights from remote sensing. Biodivers. Conserv. 2012, 21, 3287–3305. [Google Scholar] [CrossRef]
- Das, S.; Pradhan, B.; Shit, P.K.; Alamri, A.M. Assessment of Wetland Ecosystem Health Using the Pressure-State-Response (PSR) Model: A Case Study of Mursidabad District of West Bengal (India). Sustainability 2020, 12, 5932. [Google Scholar] [CrossRef]
- Del Río-Mena, T.; Willemen, L.; Tesfamariam, G.T.; Beukes, O.; Nelson, A. Remote sensing for mapping ecosystem services to support evaluation of ecological restoration interventions in an arid landscape. Ecol. Indic. 2020, 113, 106182. [Google Scholar] [CrossRef]
- Sun, C. Study on the Monitoring and Evaluation Model of Ecological Restoration Based on Remote Sensing Technology. Master’s Thesis, Liaoning Technical University, Fuxin, China, 2021. [Google Scholar]
- Zhuo, L.; Cao, X.; Chen, J.; Chen, Z.; Shi, P. Assessment of Grassland Ecological Restoration Project in Xilin Gol Grassland. Acta Geogr. Sin. 2007, 62, 471–480. [Google Scholar]
- Liu, J.; Shao, Q.; Fan, J. The integrated assessment indicator system of grassland ecosystem in the Three-River Headwaters region. Geogr. Res. 2009, 28, 273–283. [Google Scholar]
- Li, H.; Cai, Y.; Chen, R.; Chen, Q.; Yan, X. Effect assessment of the project of grain for green in the karst region in Southwestern China:a case study of Bijie Prefecture. Acta Ecol. Sin. 2011, 31, 3255–3264. [Google Scholar]
- Zhao, L.L.; Jia, K.; Liu, X.; Li, J.; Xia, M. Assessment of land degradation in Inner Mongolia between 2000 and 2020 based on remote sensing data. Geogr. Sustainability 2023, 4, 100–111. [Google Scholar] [CrossRef]
- Sun, X.; Wang, L.; Li, Y.; Yang, Q.; Wu, Z.; Gao, F.; Lu, L.; Xiao, F.; Ling, F. Remote Sensing Assessment of the Water Conservation Function of Ecological System in Dabieshan Mountain Area of Hubei Province. Resour. Environ. Yangtze Basin 2023, 32, 487–497. [Google Scholar]
- Lian, Z.K.; Hao, H.C.; Zhao, J.; Cao, K.Z.; Wang, H.S.; He, Z.C. Evaluation of Remote Sensing Ecological Index Based on Soil and Water Conservation on the Effectiveness of Management of Abandoned Mine Landscaping Transformation. Int. J. Environ. Res. Public Health 2022, 19, 9750. [Google Scholar] [CrossRef] [PubMed]
- Wu, T.X.; Sang, S.; Wang, S.D.; Yang, Y.Y.; Li, M.Y. Remote sensing assessment and spatiotemporal variations analysis of ecological carrying capacity in the Aral Sea Basin. Sci. Total Environ. 2020, 735, 139562. [Google Scholar] [CrossRef] [PubMed]
- Wu, C.Y.; Chen, W. Indicator system construction and health assessment of wetland ecosystem-Taking Hongze Lake Wetland, China as an example. Ecol. Indic. 2020, 112, 106164. [Google Scholar] [CrossRef]
- Cheng, W.J.; Xi, H.Y.; Sindikubwabo, C.; Si, J.H.; Zhao, C.G.; Yu, T.F.; Li, A.L.; Wu, T.R. Ecosystem health assessment of desert nature reserve with entropy weight and fuzzy mathematics methods: A case study of Badain Jaran Desert. Ecol. Indic. 2020, 119, 106843. [Google Scholar] [CrossRef]
- Adjovu, G.E.; Stephen, H.; James, D.; Ahmad, S. Overview of the Application of Remote Sensing in Effective Monitoring of Water Quality Parameters. Remote Sens. 2023, 15, 1938. [Google Scholar] [CrossRef]
- Jia, K.; Yao, Y.J.; Wei, X.Q.; Gao, S.; Jiang, B.; Zhao, X. A Review on Fractional Vegetation Cover Estimation Using Remote Sensing. Advance in Earth Sciences. Adv. Earth Sci. 2013, 28, 774–782. [Google Scholar]
- Fang, H.; Baret, F.; Plummer, S.; Schaepman Strub, G. An Overview of Global Leaf Area Index (LAI): Methods, Products, Validation, and Applications. Rev. Geophys. 2019, 57, 739–799. [Google Scholar] [CrossRef]
- Shit, P.K.; Pourghasemi, H.R.; Das, P.; Bhunia, G.S. Estimation of Net Primary Productivity: An Introduction to Different Approaches; Springer International Publishing AG: Cham, Switzerland, 2021; pp. 33–69. [Google Scholar]
- Cheng, W.X.; Yang, C.J.; Zhou, J.M.; Zhou, W.C.; Liu, Y.C. Research Summary of Forest Volume Quantitative Estimation Based on Remote Sensing Technology. J. Anhui Agric. Sci. 2009, 37, 7746–7750. [Google Scholar]
- Zhang, B.; Li, W.H.; Xie, G.D.; Xiao, Y. Water conservation function and its measurement methods of forest ecosystem. Chin. J. Ecol. 2009, 28, 529–534. [Google Scholar]
- North, P.R.J. Estimation of fAPAR, LAI, and vegetation fractional cover from ATSR-2 imagery. Remote Sens. Environ. 2002, 80, 114–121. [Google Scholar] [CrossRef]
- Boyd, D.S.; Foody, G.M.; Ripple, W.J. Evaluation of approaches for forest cover estimation in the Pacific Northwest, USA, using remote sensing. Appl. Geogr. 2002, 22, 375–392. [Google Scholar] [CrossRef]
- Zhang, X.W.; Liu, J.F.; Zhang, B. Spatial Distribution Analysis of Vegetation Fraction in Yiluo River Basin. Heilongjiang Agric. Sci. 2010, 10, 105–108. [Google Scholar]
- Van de Voorde, T.; Vlaeminck, J.; Canters, F. Comparing Different Approaches for Mapping Urban Vegetation Cover from Landsat ETM+ Data: A Case Study on Brussels. Sensors 2008, 8, 3880–3902. [Google Scholar] [CrossRef]
- Huang, C.; Song, K.; Kim, S.; Townshend, J.R.G.; Davis, P.; Masek, J.G.; Goward, S.N. Use of a dark object concept and support vector machines to automate forest cover change analysis. Remote Sens. Environ. 2008, 112, 970–985. [Google Scholar] [CrossRef]
- Hansen, M.C.; DeFries, R.S.; Townshend, J.R.G.; Sohlberg, R.; Dimiceli, C.; Carroll, M. Towards an operational MODIS continuous field of percent tree cover algorithm: Examples using AVHRR and MODIS data. Remote Sens. Environ. 2002, 83, 303–319. [Google Scholar] [CrossRef]
- Tang, S.H.; Zhu, Q.J.; Wang, J.D.; Zhou, Y.Y.; Zhao, F. Theoretical basis and application of Tri-band gradient difference vegetation index. Sci. China (Ser. D) 2003, 33, 1094–1102. [Google Scholar]
- Jiang, H.; Wang, X.Q.; Chen, X. A Method for Abstraction of Vegetation Density from SPOT Image. Geo-information Science. 2005, 7, 113–116. [Google Scholar]
- Darvishzadeh, R.; Atzberger, C.; Skidmore, A.K.; Abkar, A.A. Leaf Area Index derivation from hyperspectral vegetation indicesand the red edge position. Int. J. Remote Sens. 2009, 30, 6199–6218. [Google Scholar] [CrossRef]
- Kamal, M.; Phinn, S.; Johansen, K. Assessment of multi-resolution image data for mangrove leaf area index mapping. Remote Sens. Environ. 2016, 176, 242–254. [Google Scholar] [CrossRef]
- Biudes, M.S.; Machado, N.G.; Danelichen, V.H.D.M.; Souza, M.C.; Vourlitis, G.L.; Nogueira, J.D.S. Ground and remote sensing-based measurements of leaf area index in a transitional forest and seasonal flooded forest in Brazil. Int. J. Biometeorol. 2014, 58, 1181–1193. [Google Scholar] [CrossRef] [PubMed]
- Lewis, P.; Gómez-Dans, J.; Kaminski, T.; Settle, J.; Quaife, T.; Gobron, N.; Styles, J.; Berger, M. An Earth Observation Land Data Assimilation System (EO-LDAS). Remote Sens. Environ. 2012, 120, 219–235. [Google Scholar] [CrossRef]
- Verrelst, J.; Rivera, J.P.; Leonenko, G.; Alonso, L.; Moreno, J. Optimizing LUT-Based RTM Inversion for Semiautomatic Mapping of Crop Biophysical Parameters from Sentinel-2 and -3 Data: Role of Cost Functions. IEEE Trans. Geosci. Remote Sens. 2014, 52, 257–269. [Google Scholar] [CrossRef]
- Camacho, F.; Cernicharo, J.; Lacaze, R.; Baret, F.; Weiss, M. GEOV1: LAI, FAPAR essential climate variables and FCOVER global time series capitalizing over existing products. Part 2: Validation and intercomparison with reference products. Remote Sens. Environ. 2013, 137, 310–329. [Google Scholar] [CrossRef]
- Zarco-Tejada, P.J.; Miller, J.R.; Noland, T.L.; Mohammed, G.H.; Sampson, P.H. Scaling-Up and Model Inversion Methods with Narrowband Optical Indices for Chlorophyll Content Estimation in Closed Forest Canopies with Hyperspectral Data. IEEE Trans. Geosci. Remote Sens. 2001, 39, 1491–1507. [Google Scholar] [CrossRef]
- Liu, J.; Chen, J.M.; Cihlar, J.; Park, W.M. A process-based boreal ecosystem productivity simulator using remote sensing inputs. Remote Sens. Environ. 1997, 62, 158–175. [Google Scholar] [CrossRef]
- Potter, C.S.; Randerson, J.T.; Field, C.B.; Matson, P.A.; Vitousek, P.M.; Mooney, H.A.; Klooster, S.A. Terrestrial ecosystem production: A process model based on global. Global Biogeochem. Cycles 1993, 4, 811–841. [Google Scholar] [CrossRef]
- Xiao, X.; Hollinger, D.; Aber, J.; Goltz, M.; Davidson, E.A.; Zhang, Q.; Moore, B. Satellite-based modeling of gross primary production in an evergreen needleleaf forest. Remote Sens. Environ. 2004, 89, 519–534. [Google Scholar] [CrossRef]
- Coops, N.C.; Waring, R.H.; Law, B.E. Assessing the past and future distribution and productivity of ponderosa pine in the Pacific Northwest using a process model, 3-PG. Ecol. Model. 2005, 183, 107–124. [Google Scholar] [CrossRef]
- McRoberts, R.E.; Erik, N.; Terje, G. Inference for lidar-assisted estimation of forest growing stock volume. Remote Sens. Environ. 2013, 128, 268–275. [Google Scholar] [CrossRef]
- Zhou, R.; Wu, D.; Fang, L.; Xu, A.; Lou, X. A Levenberg–Marquardt Backpropagation Neural Network for Predicting Forest Growing Stock Based on the Least-Squares Equation Fitting Parameters. Forests. 2018, 9, 757. [Google Scholar] [CrossRef]
- Novo-Fernández, A.; Barrio-Anta, M.; Recondo, C.; Cámara-Obregón, A.; López-Sánchez, C.A. Integration of National Forest Inventory and Nationwide Airborne Laser Scanning Data to Improve Forest Yield Predictions in North-Western Spain. Remote Sens. 2019, 11, 1693. [Google Scholar] [CrossRef]
- Xie, G.D.; Lu, C.X.; Leng, Y.F.; Zheng, D.; Li, S.C. Ecological assets valuation of the Tibetan Plateau. J. Nat. Resour. 2003, 18, 189–196. [Google Scholar]
- Han, X.; Ouyang, Z.Y.; Zhao, J.Z.; Wang, X.K. Forest ecosystem services and their ecological valuation—A case study of tropical forest in Jianfengling of Hainan island. Chin. J. Appl. Ecol. 2000, 11, 481–484. [Google Scholar]
- Lang, K.J.; Li, Z.S.; You, Y.; Lang, P.M.; Wang, W.F.; Peng, L.; Gang, L. The Measurement Theory and Method of 10 Forest Ecological Benefits for Forestry Ecological Engineering. J. Northeast For. Univ. 2000, 28, 1. [Google Scholar]
- Zhang, S.H.; Zhao, G.Z.; Tian, Y.Z.; Xuan, L.Y. Study on value the ecological environment valuation of forestry resources--For case by Hunchun forestry in Changbai Mountain. J. Yanbian Univ. (Nat. Sci.) 2001, 27, 126–134. [Google Scholar]
- Zhang, Q.F.; Zhou, X.F. Influence of forest on runoff discharges in Tangwang River and Hulan River basins of Heilongjiang Province. J. Plant Resour. Environ. 1999, 8, 22–27. [Google Scholar]
- Ao, D.; Yang, J.H.; Ding, W.T.; An, S.S.; He, H.L. Review of 54 Vegetation Indices. Anhui Agric. Sci. 2023, 51, 13–21. [Google Scholar]
- Sandholt, I.; Rasmussen, K.; Andersen, J. A simple interpretation of the surface temperature/vegetation index space for assessment of surface moisture status. Remote Sens. Environ. 2002, 79, 213–224. [Google Scholar] [CrossRef]
- Huete, A.R. A soil-adjusted vegetation index (SAVI). Remote Sens. Environ. 1988, 25, 295–309. [Google Scholar] [CrossRef]
- Rondeaux, G.; Steven, M.; Baret, F. Optimization of soil-adjusted vegetation indices. Remote Sens. Environ. 1996, 55, 95–107. [Google Scholar] [CrossRef]
- Kauth, R.J.; Thomas, G.S. The tasselled cap—A graphic description of the spectral-temporal development of agricultural crops as seen by Landsat. In Proceedings of the LARS Symposia, West Lafayette, IN, USA, 29 June–1 July 1976; p. 159. [Google Scholar]
- Zhang, D.; Zhou, G. Estimation of Soil Moisture from Optical and Thermal Remote Sensing: A Review. Sensors 2016, 16, 1308. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Y.S.; Zhou, Y. Research progress and trend of quantitative monitoring of hyperspectral remote sensing for heavy metals in soil. Chin. J. Nonferrous Met. 2021, 31, 3450–3467. [Google Scholar]
- Guo, Y.; Bi, R.T.; Zheng, C.; Yuan, Y.Z.; Chai, M.; Guo, Z.X. Review of Hyperspectral Remote Sensing Retrieval of Soil Heavy Metals. Environ. Sci. Technol. 2018, 31, 67–72. [Google Scholar]
- Zhang, H.; Liang, T.B.; Song, X.D.; Jiang, H.; Guo, W.M.; Dai, H.X.; Qu, Z.; Feng, C.C.; Zhang, Y.L. Estimation of soil pH in tobacco field based on hyperspectral imaging. Southwest China J. Agric. Sci. 2023, 36, 2771–2779. [Google Scholar]
- Li, Z.L.; Wu, H.; Duan, S.B.; Zhao, W.; Ren, H.; Liu, X.; Leng, P.; Tang, R.; Ye, X.; Zhu, J.; et al. Satellite Remote Sensing of Global Land Surface Temperature: Definition, Methods, Products, and Applications. Rev. Geophys. 2023, 61, e2022RG000777. [Google Scholar] [CrossRef]
- Liu, J.L.; Ma, S.E.; Liu, L. Topography Characteristics and Vegetation Restoration of Open Pit Mining Area Based on GIS. Soil Water Conserv. China 2016, 62–66. [Google Scholar] [CrossRef]
- Xingyou, L.I.; Fei, Z.; Zheng, W. Present situation and development trend in building remote sensing monitoring models of soil salinization. Remote Sens. Nat. Resour. 2022, 34, 11–21. [Google Scholar]
- Ding, M.Q. Study on Soil Quality Evaluation of Land Developmentand Consolidation Region Based on Quantitative RemoteSensing. Ph.D. Dissertation, Central South University, Changsha, China, 2014. [Google Scholar]
- Ma, Y.; Tashpolat, N. Current Status and Development Trend of Soil Salinity Monitoring Research in China. Sustainability 2023, 15, 5874. [Google Scholar] [CrossRef]
- Pratt, D.A.; Ellyett, C.D. The thermal inertia approach to mapping of soil moisture and geology. Remote Sens. Environ. 1979, 8, 151–168. [Google Scholar] [CrossRef]
- Przeździecki, K.; Zawadzki, J. Modification of the Land Surface Temperature—Vegetation Index Triangle Method for soil moisture condition estimation by using SYNOP reports. Ecol. Indic. 2020, 119, 106823. [Google Scholar] [CrossRef]
- Entekhabi, D.; Nakamura, H.; Njoku, E.G. Solving the inverse problem for soil moisture and temperature profiles by sequential assimilation of multifrequency remotely sensed observations. IEEE Trans. Geosci. Remote Sens. 1994, 32, 438–448. [Google Scholar] [CrossRef]
- Yu, J.; Zheng, W.; Xu, L.; Meng, F.; Li, J.; Zhangzhong, L. TPE-CatBoost: An adaptive model for soil moisture spatial estimation in the main maize-producing areas of China with multiple environment covariates. J. Hydrol. 2022, 613, 128465. [Google Scholar] [CrossRef]
- Moros, J.; Vallejuelo, S.F.D.; Gredilla, A.; Diego, A.D.; Madariaga, J.M.; Garrigues, S.; Guardia, M.D.L. Use of Reflectance Infrared Spectroscopy for Monitoring the Metal Content of the Estuarine Sediments of the Nerbioi-Ibaizabal River (Metropolitan Bilbao, Bay of Biscay, Basque Country). Environ. Sci. Technol. 2009, 43, 9314–9320. [Google Scholar] [CrossRef] [PubMed]
- Zou, Z.; Wang, Q.; Wu, Q.; Li, M.; Zhen, J.; Yuan, D.; Zhou, M.; Xu, C.; Wang, Y.; Zhao, Y.; et al. Inversion of heavy metal content in soil using hyperspectral characteristic bands-based machine learning method. J. Environ. Manag. 2024, 355, 120503. [Google Scholar] [CrossRef] [PubMed]
- Grafton, M.; Kaul, T.; Palmer, A.; Bishop, P.; White, M. Technical Note: Regression Analysis of Proximal Hyperspectral Data to Predict Soil pH and Olsen P. Agriculture 2019, 9, 55. [Google Scholar] [CrossRef]
- de Santana, F.B.; Grunsky, E.C.; Fitzsimons, M.M.; Gallagher, V.; Daly, K. Diffuse reflectance mid infra-red spectroscopy combined with machine learning algorithms can differentiate spectral signatures in shallow and deeper soils for the prediction of pH and organic matter content. Catena 2022, 218, 106552. [Google Scholar] [CrossRef]
- Price, J.C. Land surface temperature measurements from the split window channels of the NOAA 7 Advanced Very High Resolution Radiometer. J. Geophys. Res. 1984, 89, 7231–7237. [Google Scholar] [CrossRef]
- Li, Z.; Tang, B.; Wu, H.; Ren, H.; Yan, G.; Wan, Z.; Trigo, I.F.; Sobrino, J.A. Satellite-derived land surface temperature: Current status and perspectives. Remote Sens. Environ. 2013, 131, 14–37. [Google Scholar] [CrossRef]
- Zhou, S.; Cheng, J. An Improved Temperature and Emissivity Separation Algorithm for the Advanced Himawari Imager. IEEE Trans. Geosci. Remote Sens. 2020, 58, 7105–7124. [Google Scholar] [CrossRef]
- Becker, F.; Li, Z. Temperature-independent spectral indices in thermal infrared bands. Remote Sens. Environ. 1990, 32, 17–33. [Google Scholar] [CrossRef]
- Yoo, C.; Im, J.; Cho, D.; Yokoya, N.; Xia, J.; Bechtel, B. Estimation of All-Weather 1 km MODIS Land Surface Temperature for Humid Summer Days. Remote Sens. 2020, 12, 1398. [Google Scholar] [CrossRef]
- Chen, X.X.; Chang, Q.R.; Bi, R.T.; Liu, Z.C.; Zhang, X.J. Comparison Study on the Best Statistical Unit Algorithms of Relief Amplitude. Res. Soil Water Conserv. 2018, 25, 52–56. [Google Scholar]
- Gomez, C.; Viscarra Rossel, R.A.; McBratney, A.B. Soil organic carbon prediction by hyperspectral remote sensing and field vis-NIR spectroscopy: An Australian case study. Geoderma 2008, 146, 403–411. [Google Scholar] [CrossRef]
- Stoner, E.R.; Baumgardner, M.F. Characteristic Variations in Reflectance of Surface Soils. Soil Sci. Soc. Am. J. 1981, 45, 1161–1165. [Google Scholar] [CrossRef]
- Gholizadeh, A.; Borůvka, L.; Saberioon, M.; Vašát, R. Visible, Near-Infrared, and Mid-Infrared Spectroscopy Applications for Soil Assessment with Emphasis on Soil Organic Matter Content and Quality: State-of-the-Art and Key Issues. Appl. Spectrosc. 2013, 67, 1349–1362. [Google Scholar] [CrossRef]
- Rossel, R.A.V.; Behrens, T. Using data mining to model and interpret soil diffuse reflectance spectra. Geoderma 2010, 158, 46–54. [Google Scholar] [CrossRef]
- Das, A.; Bhattacharya, B.K.; Setia, R.; Jayasree, G.; Sankar Das, B. A novel method for detecting soil salinity using AVIRIS-NG imaging spectroscopy and ensemble machine learning. ISPRS J. Photogramm. 2023, 200, 191–212. [Google Scholar] [CrossRef]
- Zhou, B.T.; Zhang, Y.Y.; Shi, K. Research progress on remote sensing assessment of lake nutrient status and retrieval algorithms of characteristic parameters. J. Remote Sens. 2022, 26, 77–91. [Google Scholar] [CrossRef]
- Yang, H.; Kong, J.; Hu, H.; Du, Y.; Gao, M.; Chen, F. A Review of Remote Sensing for Water Quality Retrieval: Progress and Challenges. Remote Sens. 2022, 14, 1770. [Google Scholar] [CrossRef]
- Duan, H.; Zhang, Y.; Zhang, B.; Song, K.; Wang, Z. Assessment of Chlorophyll-a Concentration and Trophic State for Lake Chagan Using Landsat TM and Field Spectral Data. Environ. Monit. Assess. 2007, 129, 295–308. [Google Scholar] [CrossRef] [PubMed]
- Olmanson, L.G.; Bauer, M.E.; Brezonik, P.L. A 20-year Landsat water clarity census of Minnesota’s 10,000 lakes. Remote Sens. Environ. 2008, 112, 4086–4097. [Google Scholar] [CrossRef]
- Xiang, B.; Song, J.; Wang, X.; Zhen, J. Improving the accuracy of estimation of eutrophication state index using a remote sensing data-driven method: A case study of Chaohu Lake, China. Water SA 2015, 41, 753–761. [Google Scholar] [CrossRef]
- Miller, R.L.; McKee, B.A. Using MODIS Terra 250 m imagery to map concentrations of total suspended matter in coastal waters. Remote Sens. Environ. 2004, 93, 259–266. [Google Scholar] [CrossRef]
- Rundquist, D.C.; Han, L.; Schalles, J.F.; Peake, J.S. Remote Measurement of Algal Chlorophyll in Surface Waters: The Case for the First Derivative of Reflectance Near 690 nm. Photogramm.Eng.Remote Sens. 1996, 62, 195–200. [Google Scholar]
- Gitelson, A.A.; Gurlin, D.; Moses, W.J.; Barrow, T. A bio-optical algorithm for the remote estimation of the chlorophyll-a concentration in case 2 waters. Environ. Res. Lett. 2009, 4, 045003. [Google Scholar] [CrossRef]
- Kutser, T.; Pierson, D.C.; Kallio, K.Y.; Reinart, A.; Sobek, S. Mapping lake CDOM by satellite remote sensing. Remote Sens. Environ. 2005, 94, 535–540. [Google Scholar] [CrossRef]
- Kowalczuk, P.; Olszewski, J.; Darecki, M.; Kaczmarek, S. Empirical relationships between coloured dissolved organic matter (CDOM) absorption and apparent optical properties in Baltic Sea waters. Int. J. Remote Sens. 2005, 26, 345–370. [Google Scholar] [CrossRef]
- Chen, J.; Quan, W.; Cui, T.; Song, Q. Estimation of total suspended matter concentration from MODIS data using a neural network model in the China eastern coastal zone. Estuar. Coast. Shelf Sci. 2015, 155, 104–113. [Google Scholar] [CrossRef]
- Zhang, Y.; Pulliainen, J.; Koponen, S.; Hallikainen, M. Application of an empirical neural network to surface water quality estimation in the Gulf of Finland using combined optical data and microwave data. Remote Sens. Environ. 2002, 81, 327–336. [Google Scholar] [CrossRef]
- Gordon, H.R.; Brown, J.W.; Brown, O.B.; Evans, R.H.; Smith, R.C. A semianalytic radiance model of ocean color. J. Geophys. Res. 1988, 93, 10909–10924. [Google Scholar] [CrossRef]
- Watanabe, F.; Mishra, D.R.; Astuti, I.; Rodrigues, T.; Alcântara, E.; Imai, N.N.; Barbosa, C. Parametrization and calibration of a quasi-analytical algorithm for tropical eutrophic waters. ISPRS J. Photogramm. 2016, 121, 28–47. [Google Scholar] [CrossRef]
- Li, X.W.; Wei, A.H.; Jiang, S.; Wang, T.T.; Ji, X.Y. Retrieval of Chlorophyll-a and Total Suspended Matter Concentrations from Sentinel-3 OLCI Imagery by C2 RCC Algorithm in South Yellow Sea. Environ. Monit. Forewarning. 2020, 12, 6–12. [Google Scholar]
- Asim, M.; Brekke, C.; Mahmood, A.; Eltoft, T.; Reigstad, M. Improving Chlorophyll-A Estimation From Sentinel-2 (MSI) in the Barents Sea Using Machine Learning. IEEE J.-Stars. 2021, 14, 5529–5549. [Google Scholar] [CrossRef]
- Wang, Y.P.; Xia, H.; Fu, J.M.; Sheng, G.Y. Water quality change in reservoirs of Shenzhen, China: Detection using LANDSAT/TM data. Sci. Total Environ. 2004, 328, 195–206. [Google Scholar] [CrossRef] [PubMed]
- Yang, B.; Liu, Y.; Ou, F.; Yuan, M. Temporal and Spatial Analysis of COD Concentration in East Dongting Lake by Using of Remotely Sensed Data. Procedia Environ. Sci. 2011, 10, 2703–2708. [Google Scholar] [CrossRef]
- Isenstein, E.M.; Park, M. Assessment of nutrient distributions in Lake Champlain using satellite remote sensing. J. Environ. Sci.-China 2014, 26, 1831–1836. [Google Scholar] [CrossRef]
- Chebud, Y.; Naja, G.M.; Rivero, R.G.; Melesse, A.M. Water Quality Monitoring Using Remote Sensing and an Artificial Neural Network. Water Air Soil Pollut. 2012, 223, 4875–4887. [Google Scholar] [CrossRef]
- Chang, N.; Xuan, Z.; Yang, Y.J. Exploring spatiotemporal patterns of phosphorus concentrations in a coastal bay with MODIS images and machine learning models. Remote Sens. Environ. 2013, 134, 100–110. [Google Scholar] [CrossRef]
- Yin, Z.; Li, J.; Liu, Y.; Xie, Y.; Zhang, F.; Wang, S.; Sun, X.; Zhang, B. Water clarity changes in Lake Taihu over 36 years based on Landsat TM and OLI observations. Int. J. Appl. Earth Obs. 2021, 102, 102457. [Google Scholar] [CrossRef]
- Wang, S.; Li, J.; Zhang, B.; Lee, Z.; Spyrakos, E.; Feng, L.; Liu, C.; Zhao, H.; Wu, Y.; Zhu, L.; et al. Changes of water clarity in large lakes and reservoirs across China observed from long-term MODIS. Remote Sens. Environ. 2020, 247, 111949. [Google Scholar] [CrossRef]
- Zhu, X.; Liu, L.M.; Ye, Z.L. UAV-Based Remote Sensing Method for Water Quality Monitoring. China Water Transp. 2021, 157–159. [Google Scholar] [CrossRef]
- Peterson, K.T.; Sagan, V.; Sloan, J.J. Deep learning-based water quality estimation and anomaly detection using Landsat-8/Sentinel-2 virtual constellation and cloud computing. Gisci. Remote Sens. 2020, 57, 510–525. [Google Scholar] [CrossRef]
- Xiao-lei, D.; Yun-mei, L.I.; Heng, L.; Li, Z.; Shuang, W.; Shao-hua, L. Analysis of Absorption Characteristics of Urban Black-odor Water. Environ. Sci. 2018, 39, 4519–4529. [Google Scholar]
- Hai-xia, J.; Jian, P. Urban Black-Odor Water Body Remote Sensing Monitoring Based onGF-2 Satellite Data Fusion. Sci. Technol. Manag. Land Resour. 2017, 34, 107–117. [Google Scholar]
- Wen, S.; Wang, Q.; Li, Y.M.; Zhu, L.; Lv, H.; Lei, S.H.; Ding, X.L.; Miao, S. Remote Sensing Identification of Urban Black-Odor Water Bodies Based on High-Resolution Images: A Case Study in Nanjing. Huan Jing Ke Xue = Huanjing Kexue 2018, 39, 57–67. [Google Scholar] [PubMed]
- Meng, W.; Zhang, Y.; Qu, X.D. River Ecology Survey Techniques and Methods; Science Press: Beijing, China, 2011. [Google Scholar]
- Yuming, T.; Ruru, D.; Yongming, L.; Longhai, X. Research Review of Remote Sensing for Atmospheric Aerosol Retrieval. Remote Sens. Technol. Appl. 2018, 33, 25–34. [Google Scholar]
- Ma, Z.; Dey, S.; Christopher, S.; Liu, R.; Bi, J.; Balyan, P.; Liu, Y. A review of statistical methods used for developing large-scale and long-term PM2.5 models from satellite data. Remote Sens. Environ. 2022, 269, 112827. [Google Scholar] [CrossRef]
- Holben, B.N.; Tanré, D.; Smirnov, A.; Eck, T.F.; Slutsker, I.; Abuhassan, N.; Newcomb, W.W.; Schafer, J.S.; Chatenet, B.; Lavenu, F.; et al. An emerging ground-based aerosol climatology: Aerosol optical depth from AERONET. J. Geophys. Res. Atmos. 2001, 106, 12067–12097. [Google Scholar] [CrossRef]
- Chen, C.; Li, Z.Q.; Hou, W.Z.; Li, D.H.; Zhang, Y.H. Dynamic model in retrieving aerosol optical depth from polarimetric measurements of PARASOL. J. Remote Sens. 2014, 19, 25–33. [Google Scholar]
- Wang, Q. A Dissertation Submitted in Partia Fulfillment of the Requirements for the Degree of Master of Science. Master’s Thesis, Nanjing Normal University, Nanjing, China, 2014. [Google Scholar]
- Li, C.F.; Dai, Y.Y.; Liu, F.; Zhao, J.J. Inversion of Aerosol Optical Depth Based on MODIS Remote Sensor. Appl. Mech. Mater. 2015, 738–739, 209–212. [Google Scholar] [CrossRef]
- Waquet, F.; Riedi, J.; Labonnote, L.C.; Goloub, P.; Cairns, B.; Deuzé, J.; Tanré, D. Aerosol Remote Sensing over Clouds Using A-Train Observations. J. Atmos. Sci. 2009, 66, 2468–2480. [Google Scholar] [CrossRef]
- Yang, Q.; Yuan, Q.; Yue, L.; Li, T.; Shen, H.; Zhang, L. The relationships between PM2.5 and aerosol optical depth (AOD) in mainland China: About and behind the spatio-temporal variations. Environ. Pollut. 2019, 248, 526–535. [Google Scholar] [CrossRef] [PubMed]
- Shogrkhodaei, S.Z.; Razavi-Termeh, S.V.; Fathnia, A. Spatio-temporal modeling of PM2.5 risk mapping using three machine learning algorithms. Environ. Pollut. 2021, 289, 117859. [Google Scholar] [CrossRef] [PubMed]
- Wu, D.; Gao, Z.T.; Li, J.P.; Ma, Y.M.; Mu, J.; Wu, Y.J. Remote sensing estimation and spatial-temporal distribution of PM2.5 concentration in Northeast China. Sci. Geogr. Sin. 2023, 43, 1869–1878. [Google Scholar]
- Nasa, P.; Jain, R.; Juneja, D. Delphi methodology in healthcare research: How to decide its appropriateness. World J. Methodol. 2021, 11, 116–129. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Fan, Q.Y.; Zhang, T.T.; Li, J. Research on user experience satisfaction of water-cooled case integrating fuzzy delphi method and structural equation model. J. Mach. Design 2023, 40, 163–169. [Google Scholar]
- Yang, T.; Wang, S.; Li, X.; Wu, T.; Li, L.; Chen, J. River habitat assessment for ecological restoration of Wei River Basin, China. Environ. Sci. Pollut. Res. 2018, 25, 17077–17090. [Google Scholar] [CrossRef]
- Ji, H.; Shao-jie, Z. Evaluation of Inter-Provincial Ecological Data in China based on Entropy Method. Inf. Sci. 2021, 39, 157–162. [Google Scholar]
- Zhang, X.L.; Yu, W.B.; Cai, H.S.; Guo, X.M. Review of the evaluation methods of regional eco-environmental vulnerability. Acta Ecol. Sin. 2018, 38, 5970–5981. [Google Scholar]
- Guo, K.; Wang, B.; Niu, X. A Review of Research on Forest Ecosystem Quality Assessment and Prediction Methods. Forests 2023, 14, 317. [Google Scholar] [CrossRef]
- Li, J.; Huang, L.; Zhu, K. Ecological Health Assessment of an Urban River: The Case Study of Zhengzhou City, China. Sustainability 2023, 15, 8288. [Google Scholar] [CrossRef]
- Xu, W.; He, M.; Meng, W.; Zhang, Y.; Yun, H.; Lu, Y.; Huang, Z.; Mo, X.; Hu, B.; Liu, B.; et al. Temporal-spatial change of China’s coastal ecosystems health and driving factors analysis. Sci. Total Environ. 2022, 845, 157319. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.F.; Xie, N.M.; Jeffery, F. On new models of grey incidence analysis based on visual angle of similarity and nearness. Syst. Eng.-Theory Pract. 2010, 30, 881–887. [Google Scholar]
- Li, J.; Min, Q.; Li, W.; Bai, Y.; Yang, L.; Dhruba Bijaya, G.C. Evaluation of water resources conserved by forests in the Hani rice terraces system of Honghe County, Yunnan, China: An application of the fuzzy comprehensive evaluation model. J. Mt. Sci. 2016, 13, 744–753. [Google Scholar] [CrossRef]
- Wu, G.J. The Study on Indicator System and Evaluation Method of Forestresources Quality at County-Level. Ph.D. Dissertation, Beijing Forestry University, Beijing, China, 2010. [Google Scholar]
Category | Satellite Sensor | Spectrum or Frequency Range | Bands | Spatial Resolution (m) | Revisit Period |
---|---|---|---|---|---|
Multispectral Sensor | GF-1 | 0.45–0.90 | 5 | 2; 8 | 4 days |
GF-2 | 0.45–0.90 | 5 | 1; 4 | 5 days | |
GF-7 | 0.45–0.90 | 5 | 0.8; 3.2 | 5 days | |
WorldView-2 | 0.45–0.92 | 9 | 0.46; 1.84 | 1.1 days | |
WorldView-3 | 0.45–2.36 | 29 | 0.31; 1.24; 3.70; 30 | 97 min | |
SPOT-6 | 0.45–0.89 | 5 | 1.5 | Daily | |
SPOT-7 | 0.45–0.89 | 5 | 1.5 | Daily | |
Planet Scope | 0.455–0.86 | 8 | 3; 3.5–4 | Daily | |
ZY-3 | 0.45–0.9 | 5 | 2.1; 2.5; 5.8 | 3–5 days | |
Landsat-7 (ETM+) | 0.45–2.35 | 7 | 15; 30 | 16 days | |
Landsat 8 (OLI) | 0.43–2.29 | 9 | 15; 30 | 16 days | |
Landsat 9 (OLI-2) | 0.43–2.29 | 9 | 15; 30 | 16 days | |
Sentinel-2 | 0.44–2.19 | 13 | 10; 20; 60 | 5 days | |
GF-4 | 0.45–4.10 | 6 | 50; 400 | 20 s | |
GF-6 | 0.40–0.90 | 13 | 2; 8; 16 | 2 days, 4 days | |
ASTER | 0.52–2.43 | 10 | 15; 30 | 15 days | |
HJ-1B | 0.43–3.90 | 7 | 30; 150 | 4 days | |
MODIS | 0.405–2.155 | 19 | 250; 500; 1000 | Daily | |
AVHRR | 0.55–3.93 | 3 | 1100 | Twice daily | |
VIIRS | 0.41–4.00 | 18 | 375–750 | Twice daily | |
GOCI | 0.40–0.86 | 8 | 250 | 8 days | |
Hyperspectral Sensor | GF-5 | 0.4–12.5 | 342 | 20; 30; 40 | 5 days |
PRISMA | 0.40–2.50 | 239 | 30 | —— | |
CHRIS (PROBA-1) | 0.40–1.05 | 62 | 17 | 2 days | |
EnMAP | 0.43–2.45 | 228 | 30 | 27 days | |
Microwave Sensor | TerraSAR-X/TanDEM-X | X-band | 1 | 0.6; 1.2; 1.7–3.3 | 11 days |
Cosmo-SkyMed | X-band | 1 | 1; 3; 15; 30; 100 | 16 days | |
Sentinel-1 | C-band | 1 | 5 | 6 days | |
KOMPSAT-5 | X-band | 1 | 1; 3; 20 | 28 days | |
HJ-1C | S-band | 1 | 5; 20 | —— | |
ALOS-2 | L-band | 1 | 1; 3; 6; 10 | 14 days | |
RADARSAT-2 | C-band | 1 | 1–100 | 24 days | |
GF-3 | C-band | 1 | 1–500 | 1.5 days, 3 days | |
SAOCOM-1A | L-band | 1 | 10–100 | 16 days | |
SMAP | L-Band | 1 | Passive: 40,000 Active: 1000–3000 | 8 days | |
SMOS | L-Band | 1 | 30,000–50,000 | 3–7 days | |
Thermal Infrared Sensor | Landsat 7 (ETM+) | 10.4–12.5 | 1 | 60 | 16 days |
ECOSTRESS | 8.5–12.5 | 5 | 70 | —— | |
ASTER | 8.13–11.66 | 15 | 90 | 15 days | |
Landsat 8 (TIRS) | 10.6–12.51 | 2 | 100 | 16 days | |
Landsat 9 (TIRS-2) | 10.6–12.51 | 2 | 100 | 16 days | |
HJ-1B | 10.50–12.50 | 1 | 300 | 4 days | |
VIIRS | 8.00–12.00 | 4 | 375–750 | —— | |
AVHRR | 10.50–12.50 | 2 | 1100 | Twice daily | |
MODIS | 1.36–14.38 | 17 | 1000 | Daily | |
Laser Sensor | ICESat-2 | 0.532 | —— | 14 | 91 days |
GEDI | 1.064 | 1 | 25 | A few days to a few weeks |
Category | Satellite Sensor | Spectrum or Frequency Range | Bands | Spatial Resolution (m) |
---|---|---|---|---|
Optical Sensor | ADS40 | 0.4–1 | 5 | 0.3–1 |
ADS80 | 5 | 0.15–0.5 | ||
Hyspex ODIN-1024 | 0.40–2.50 | 1024 | 0.5 m at 2000 m Altitude | |
AVIRIS | 0.40–2.50 | 224 | 17 | |
HYDICE | 0.40–2.50 | 210 | 0.8–4 | |
Hymap | 0.40–2.50 | 126 | 3–10 | |
CASI-1500 | 0.40–1.00 | 15–288 | 0.5–3 | |
Daedalus | 0.42–14.00 | 12 | 25 | |
Microwave Sensor | E-SAR | 0.3–12 ghz | 4 | ≤10 m |
F-SAR | 0.3–110 ghz | 7 | ≤10 m | |
Orbisar | 0.3–12 ghz | 2 | 1 | |
RAMSES | ≤10 m | |||
SETHI | ≤10 m | |||
Laser Sensor | Optech ALTM | 1.064 | 1 | A Few Centimeters to Several Meters |
Leica ALS | 1.064 | 1 | Centimeter-Level | |
RIEGL Airborne Laser Scanner | 1.064 | 1 | Centimeter-Level |
Indicator | Product | Sensor | Spatial Scale | Spatial Resolution | Temporal Resolution | |
---|---|---|---|---|---|---|
Vegetation Cover Indicator | MODIS | MOD13 Series | MODIS | Global | 500 m | 16 days |
MYD13 Series | MODIS | 1 km | 16 days | |||
MOD13Q1 | MODIS | 1 km | Monthly | |||
MuSyQ High-Resolution 16 m/10-day Vegetation Coverage Product | GF1 | China | 16 m | 10 days | ||
GEOV | GEOV1, GEOV2, GEOV3 | SPOT VGT | Global | GEOV1, GEOV2: 1 km; GEOV3: 300 m | 10 days | |
GLASS | GLASS MODIS | MODIS | Global | 500 m | 8 days | |
GLASS AVHRR | AVHRR | Global | 5 km | 8 days | ||
EUMETSAT/LSA SAF | SEVIRI | Europe, South America, Africa | 3 km | Daily | ||
Leaf Area Index (LAI) | Musyq High-Resolution 16 m Leaf Area Index Product with 10-Day Synthesis | GF1 | China | 16 km | 10 days | |
MISR | MISR | Global | 1.1 km | 1 day | ||
PROBA-V | PROBA-V | Global | 300 m | 10 days | ||
MODIS | MODIS | Global | 500 m | 4 days | ||
VIIRS | SNPP/VIIRS | Global | 500 m | 8 days | ||
GEOV2 | SPOT/VEGETATION, MODIS | Global | 1 km | 10 days | ||
GLASS | SPOT/VEGETATION, MODIS | Global | 1 km | 8 days | ||
Net Primary Productivity | MOD17A3 | MODIS | Global | 1 km | Yearly | |
MOD17A3HGF | MODIS | Global | 500 m | Yearly | ||
Forest Growing Stock | ATL08 | ICESat-2 (ATLAS) | Global | Laser Footprint Diameter of 17 m, with One Footprint Every 0.7 m Along the Track | 91 days | |
Soil Moisture | SMOS | SMOS MIRAS | Global | 43 km | Daily | |
ERS/MetOp | Radar Altimeters on ERS-1 and ERS-2 Satellites/ASCAT | Global | 25 km | Daily | ||
SMAP | SMAP L3 | SMAP | Global | 9 km | Daily | |
SMAP L4 | SMAP | Global | 9 km | 3 h | ||
SMAP/Sentinel-1 L2 Radiometer | SMAP/Sentinel-1 | Global | 1 km | Each Orbital Pass | ||
AMSR2-JAXA | GCOM-W1 AMSR | Global | 0.1° | Twice Daily | ||
AMSR2-LPRM | GCOM-W1 AMSR | Global | 0.1° | Twice Daily | ||
Land Surface Temperature | LST_AVHRR | AVHRR/NOAA | Global | 1.1 km | Twice Daily (Day and Night) | |
MODIS | MxD11_L2 | MODIS | Global | 1 km | Twice Daily | |
MxD21_L2 | MODIS | Global | 1 km | Twice Daily | ||
TM | Landsat 4–5 | Global | 30 m | 16 days | ||
ETM+ | Landsat 7 | Global | 30 m | 16 days | ||
TIRS | Landsat 8 | Global | 30 m | 16 days | ||
ECO2LSTE | ECOSTRESS/International Space Station | Global | 70 m | |||
Atmosphere | GEOS-FP | Multiple satellites | Global | 0.25° × 0.3125° | Hourly/3 h | |
MERRA-2 | Multiple Satellites | Global | 0.5° × 0.625° | Hourly/3 h/6 h/Daily | ||
ECMWF ERA5 | Multiple Satellites | Global | 31 km | Hourly |
Indicators | Formula or Method | Literature |
---|---|---|
AOD | Ground-Based Remote Sensing Inversion | [118] |
Multi-Angle Remote Sensing | [119] | |
Twin-Satellite Cooperative | [120] | |
Improved Dark Pixel | [121] | |
Cloud-Top AOD | [122] | |
PM2.5 | Spatio-Temporal Geographically Weighted Method | [123] |
Machine Learning | [124] | |
Empirical Statistical Model | [125] |
Category | Evaluation Method | Description | Advantages | Disadvantages |
---|---|---|---|---|
Subjective Evaluation Method | Delphi [126] | Through the extensive solicitation of expert opinions and multiple feedback revisions, the experts’ opinions on the evaluation object gradually converge. Finally, combined with the comprehensive opinions of experts, a quantitative and qualitative method is used to evaluate the evaluation object. | Able to effectively bring together and integrate the knowledge and opinions of experts in different fields. | Time-consuming and dependent on expert choices, sometimes leading to biased outcomes. |
FDM [127] | Fuzzy set theory is integrated on the basis of traditional Delphi to deal with the ambiguity of thoughts and expressions in decision-making and achieve the selection of important indicators. | Able to more accurately handle and interpret uncertainty and ambiguity in expert opinions and provide more refined evaluation results. | The lack of unbiased expert selection contributes to the significant application challenges. | |
AHP [128] | By building a hierarchical model, complex decision problems are broken down into more manageable parts; then, the relative importance of these parts is evaluated through quantitative and qualitative analysis and, finally, these evaluations are aggregated to determine the best decision overall. | Clear ideas and simple methods when analyzing problems with multiple goals, factors, and criteria. | A certain degree of subjectivity exists. | |
Objective Evaluation Methods | Entropy [129] | Uses the characteristic that entropy is an uncertain measurement to judge the effectiveness and value of existing indicators. | Avoids possible biases caused by human factors on indicator weight results. | Lack of horizontal comparison between indicators. |
Entropy Weighting | This is an extension of the entropy method. It not only calculates the information entropy of each indicator but also further determines the weight of each indicator based on the information entropy. | Makes the evaluation results more reasonable; suitable for various types of evaluation and decision analysis. | In actual operation, the calculation process is relatively complex. | |
PCA [130] | Calculates eigenvalues and eigenvectors, obtains principal components through cumulative contribution rate calculation, and, finally, performs comprehensive analysis. | The original indicators can be recombined into new comprehensive indicators to ensure the authenticity of the original indicator information and strong objectivity. | Shortage of information loss is present. | |
Machine Learning [131] | Automatically extracts valuable information from data to support decision-making and predict future ecological changes. | Reduces the impact of subjective weights on evaluation results to a great extent; uses artificial intelligence and other means to invert parameters and improve evaluation accuracy. | The accuracy of the evaluation is highly dependent on the quality and quantity of data. | |
Factor Analysis [132,133] | This is a technique for simplifying multiple variables. Assuming that multicollinearity is removed between variables, factor analysis classifies highly correlated variables into one category. | Ability to simplify complex data into key factors for easy analysis and interpretation. | Not suitable for small samples or situations with a lot of missing data. | |
Mean–Variance Comprehensive Analysis [131] | Evaluation is performed by calculating the mean (average level) and variance (fluctuation or stability) of a set of data or indicators. The mean reflects the overall level of the evaluation object and the variance reflects its stability or consistency. | Easy to understand and calculate | Only considers the mean and variance, other important distribution characteristics of the data may be ignored. | |
Grey Relational Analysis [134] | Based on the similarity of the geometric shapes of sequence curves, it can be judged whether the connection between different sequences is close, and the degree of similarity or dissimilarity of development trends between various factors can be quantitatively described, which is suitable for dynamic process analysis. | Handles data with incomplete information or high uncertainty; it is suitable for situations where the amount of data is small or the quality is low. | Evaluation results differ depending on the selected model and parameters, different choices will lead to different outcomes. | |
Comprehensive Evaluation Methods | FCE [135] | By establishing a fuzzy relationship matrix and combining the evaluation indicator set and the evaluation grade set, multiple attributes or performances of the object can be comprehensively evaluated. | Able to handle incomplete or ambiguous information; able to conduct comprehensive evaluations. | May involve subjective judgment; evaluation process is relatively complex. |
Matter Element Analysis [136] | Uses the rules and methods for studying matter elements and their changes to solve contradictory problems. | Multiple evaluation indicators can be comprehensively considered; suitable for handling complex evaluation problems. | The definition of uncertainty, classical domain, and spectral domain evaluation criteria is problematic. | |
Composite Indicator [136] | Comprehensively observes the extent and direction of the influence on a certain phenomenon or outcome when multiple indicators change simultaneously. | Strong comprehensiveness, logic, and systematicity are evident. | Extensive content may obscure certain factors with significant impact, leading to biases in the evaluation results. | |
Set Pair Analysis | Effectively depicts the corresponding unified relationship of certain uncertain systems, which is in line with the dialectics of nature and the way of human thinking. | Simple calculation and easy method. | A lack of clarity exists in determining the coefficient value. | |
MLSW | The composite weight method used for multi-indicator decision analysis groups multiple indicators into different levels or categories and determines the weight of each indicator and each group of indicators step by step. | Handles complex indicator systems at multiple levels and categories; the evaluation becomes more comprehensive and systematic. | Establishing and implementing a multi-level and progressive weighting system can be relatively complex. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, R.; Sun, Y.; Zong, J.; Wang, Y.; Cao, X.; Wang, Y.; Cheng, X.; Zhang, W. Remote Sensing Application in Ecological Restoration Monitoring: A Systematic Review. Remote Sens. 2024, 16, 2204. https://doi.org/10.3390/rs16122204
Wang R, Sun Y, Zong J, Wang Y, Cao X, Wang Y, Cheng X, Zhang W. Remote Sensing Application in Ecological Restoration Monitoring: A Systematic Review. Remote Sensing. 2024; 16(12):2204. https://doi.org/10.3390/rs16122204
Chicago/Turabian StyleWang, Ruozeng, Yonghua Sun, Jinkun Zong, Yihan Wang, Xuyue Cao, Yanzhao Wang, Xinglu Cheng, and Wangkuan Zhang. 2024. "Remote Sensing Application in Ecological Restoration Monitoring: A Systematic Review" Remote Sensing 16, no. 12: 2204. https://doi.org/10.3390/rs16122204
APA StyleWang, R., Sun, Y., Zong, J., Wang, Y., Cao, X., Wang, Y., Cheng, X., & Zhang, W. (2024). Remote Sensing Application in Ecological Restoration Monitoring: A Systematic Review. Remote Sensing, 16(12), 2204. https://doi.org/10.3390/rs16122204