A Strategy for Neighboring Pixel Collaboration in Landslide Susceptibility Prediction
Abstract
:1. Introduction
2. Materials
2.1. Study Area
2.2. Experiment Data
2.2.1. Source of Data
2.2.2. Production of Landslide Interpretation Database
2.2.3. Factors That Influence Landslide Susceptibility
2.3. Production of Datasets on Susceptibility Prediction
3. Methods
3.1. Description of the Applied Models
3.1.1. Unified Perceptual Parsing Network (UPerNet)
3.1.2. Vision Transformer (ViT)
3.1.3. Vision Graph Neural Networks (ViG)
3.2. Evaluation of Model Accuracy
4. Results
4.1. Application of the UPerNet, ViT, and ViG Models
4.2. Validation of the UPerNet, ViT, and ViG Models
5. Discussion
5.1. Comparing Datasets with Different Data Volumes
5.2. Comparison of Models for Susceptibility Zones
5.3. Comparison with the Traditional Method
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Yong, C.; Jinlong, D.; Fei, G.; Bin, T.; Tao, Z.; Hao, F.; Li, W.; Qinghua, Z. Review of landslide susceptibility assessment based on knowledge mapping. Stoch. Environ. Res. Risk Assess. 2022, 36, 2399–2417. [Google Scholar] [CrossRef]
- Chen, X.; Chen, W. GIS-based landslide susceptibility assessment using optimized hybrid machine learning methods. Catena 2021, 196, 104833. [Google Scholar] [CrossRef]
- Segoni, S.; Pappafico, G.; Luti, T.; Catani, F. Landslide susceptibility assessment in complex geological settings: Sensitivity to geological information and insights on its parameterization. Landslides 2020, 17, 2443–2453. [Google Scholar] [CrossRef]
- Bui, D.T.; Tsangaratos, P.; Nguyen, V.-T.; Liem, N.V.; Trinh, P.T. Comparing the prediction performance of a Deep Learning Neural Network model with conventional machine learning models in landslide susceptibility assessment. Catena 2020, 188, 104426. [Google Scholar] [CrossRef]
- Hodasová, K.; Bednarik, M. Effect of using various weighting methods in a process of landslide susceptibility assessment. Nat. Hazards 2020, 105, 481–499. [Google Scholar] [CrossRef]
- Yang, C.; Liu, L.-L.; Huang, F.; Huang, L.; Wang, X.-M. Machine learning-based landslide susceptibility assessment with optimized ratio of landslide to non-landslide samples. Gondwana Res. 2023, 123, 198–216. [Google Scholar] [CrossRef]
- Pourghasemi, H.R.; Sadhasivam, N.; Amiri, M.; Eskandari, S.; Santosh, M. Landslide susceptibility assessment and mapping using state-of-the art machine learning techniques. Nat. Hazards 2021, 108, 1291–1316. [Google Scholar] [CrossRef]
- Wu, R.; Zhang, Y.; Guo, C.; Yang, Z.; Tang, J.; Su, F. Landslide susceptibility assessment in mountainous area: A case study of Sichuan–Tibet railway, China. Environ. Earth Sci. 2020, 79, 1–16. [Google Scholar] [CrossRef]
- Zhang, Y.-X.; Lan, H.-X.; Li, L.-P.; Wu, Y.-M.; Chen, J.-H.; Tian, N.-M. Optimizing the frequency ratio method for landslide susceptibility assessment: A case study of the Caiyuan Basin in the southeast mountainous area of China. J. Mt. Sci. 2020, 17, 340–357. [Google Scholar] [CrossRef]
- Chen, L.; Guo, H.; Gong, P.; Yang, Y.; Zuo, Z.; Gu, M. Landslide susceptibility assessment using weights-of-evidence model and cluster analysis along the highways in the Hubei section of the Three Gorges Reservoir Area. Comput. Geosci. 2021, 156, 104899. [Google Scholar] [CrossRef]
- Yi, Y.; Zhang, W.; Xu, X.; Zhang, Z.; Wu, X. Evaluation of neural network models for landslide susceptibility assessment. Int. J. Digit. Earth 2022, 15, 934–953. [Google Scholar] [CrossRef]
- Alsabhan, A.H.; Singh, K.; Sharma, A.; Alam, S.; Pandey, D.D.; Rahman, S.A.S.; Khursheed, A.; Munshi, F.M. Landslide susceptibility assessment in the Himalayan range based along Kasauli—Parwanoo road corridor using weight of evidence, information value, and frequency ratio. J. King Saud Univ.-Sci. 2022, 34, 101759. [Google Scholar] [CrossRef]
- Sur, U.; Singh, P.; Meena, S.R. Landslide susceptibility assessment in a lesser Himalayan road corridor (India) applying fuzzy AHP technique and earth-observation data. Geomat. Nat. Hazards Risk 2020, 11, 2176–2209. [Google Scholar] [CrossRef]
- Chanu, M.L.; Bakimchandra, O. Landslide susceptibility assessment using AHP model and multi resolution DEMs along a highway in Manipur, India. Environ. Earth Sci. 2022, 81, 1–11. [Google Scholar] [CrossRef]
- Okalp, K.; Akgün, H. Landslide susceptibility assessment in medium-scale: Case studies from the major drainage basins of Turkey. Environ. Earth Sci. 2022, 81. [Google Scholar] [CrossRef]
- Di Napoli, M.; Marsiglia, P.; Di Martire, D.; Ramondini, M.; Ullo, S.L.; Calcaterra, D. Landslide Susceptibility Assessment of Wildfire Burnt Areas through Earth-Observation Techniques and a Machine Learning-Based Approach. Remote Sens. 2020, 12, 2505. [Google Scholar] [CrossRef]
- Rong, G.; Li, K.; Su, Y.; Tong, Z.; Liu, X.; Zhang, J.; Zhang, Y.; Li, T. Comparison of Tree-Structured Parzen Estimator Optimization in Three Typical Neural Network Models for Landslide Susceptibility Assessment. Remote Sens. 2021, 13, 4694. [Google Scholar] [CrossRef]
- Dias, H.C.; Gramani, M.F.; Grohmann, C.H.; Bateira, C.; Vieira, B.C. Statistical-based shallow landslide susceptibility assessment for a tropical environment: A case study in the southeastern Brazilian coast. Nat. Hazards 2021, 108, 205–223. [Google Scholar] [CrossRef]
- Deng, N.; Li, Y.; Ma, J.; Shahabi, H.; Hashim, M.; de Oliveira, G.; Chaeikar, S.S. A comparative study for landslide susceptibility assessment using machine learning algorithms based on grid unit and slope unit. Front. Environ. Sci. 2022, 10, 1009433. [Google Scholar] [CrossRef]
- Ge, Y.; Liu, G.; Tang, H.; Zhao, B.; Xiong, C. Comparative analysis of five convolutional neural networks for landslide susceptibility assessment. Bull. Eng. Geol. Environ. 2023, 82, 377. [Google Scholar] [CrossRef]
- Pandey, A.; Sarkar, M.S.; Palni, S.; Parashar, D.; Singh, G.; Kaushik, S.; Chandra, N.; Costache, R.; Singh, A.P.; Mishra, A.P.; et al. Multivariate statistical algorithms for landslide susceptibility assessment in Kailash Sacred landscape, Western Himalaya. Geomat. Nat. Hazards Risk 2023, 14, 2227324. [Google Scholar] [CrossRef]
- Zou, Q.; Jiang, H.; Cui, P.; Zhou, B.; Jiang, Y.; Qin, M.; Liu, Y.; Li, C. A new approach to assess landslide susceptibility based on slope failure mechanisms. Catena 2021, 204, 105388. [Google Scholar] [CrossRef]
- Tekin, S.; Çan, T. Slide type landslide susceptibility assessment of the Büyük Menderes watershed using artificial neural network method. Environ. Sci. Pollut. Res. 2022, 29, 47174–47188. [Google Scholar] [CrossRef] [PubMed]
- Chen, T.; Wang, Q.; Zhao, Z.; Liu, G.; Dou, J.; Plaza, A. LCFSTE: Landslide Conditioning Factors and Swin Transformer Ensemble for Landslide Susceptibility Assessment. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2024, 17, 6444–6454. [Google Scholar] [CrossRef]
- Depicker, A.; Jacobs, L.; Delvaux, D.; Havenith, H.-B.; Mateso, J.-C.M.; Govers, G.; Dewitte, O. The added value of a regional landslide susceptibility assessment: The western branch of the East African Rift. Geomorphology 2020, 353, 106886. [Google Scholar] [CrossRef]
- Azarafza, M.; Azarafza, M.; Akgün, H.; Atkinson, P.M.; Derakhshani, R. Deep learning-based landslide susceptibility mapping. Sci. Rep. 2021, 11, 24112. [Google Scholar] [CrossRef]
- Yin, Y.; Wang, F.; Sun, P. Landslide hazards triggered by the 2008 Wenchuan earthquake, Sichuan, China. Landslides 2009, 6, 139–152. [Google Scholar] [CrossRef]
- Li, Y.; Lin, F.; Lou, L.; Li, J.; Xu, Z.; Zhu, S.; Luo, X.; Huo, G.; Zhao, Q. Performance analysis of landslide susceptibility assessment under different factor-filtering models. Arab. J. Geosci. 2021, 14, 1160. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, S.; Zhang, H.; Wang, D.; Bai, M.; Li, W.; Li, S.; Sun, T.; Wang, Y. Prediction of landslide susceptibility in Wenchuan County based on pixel-level samples. Bull. Eng. Geol. Environ. 2023, 82, 203. [Google Scholar] [CrossRef]
- Tang, C.; Zhu, J.; Liang, J. Emergency assessment of seismic landslide susceptibility: A case study of the 2008 Wenchuan earthquake affected area. Earthq. Eng. Eng. Vib. 2009, 8, 207–217. [Google Scholar] [CrossRef]
- Bai, S.B.; Wang, J.; Thiebes, B.; Cheng, C.; Chang, Z.Y. Susceptibility assessments of the Wenchuan earthquake-triggered landslides in Longnan using logistic regression. Environ. Earth Sci. 2013, 71, 731–743. [Google Scholar] [CrossRef]
- Su, Y.; Chen, Y.; Lai, X.; Huang, S.; Lin, C.; Xie, X. Feature adaptation for landslide susceptibility assessment in “no sample” areas. Gondwana Res. 2024, 131, 1–17. [Google Scholar] [CrossRef]
- Hong, H. Landslide susceptibility assessment using locally weighted learning integrated with machine learning algorithms. Expert Syst. Appl. 2024, 237, 121678. [Google Scholar] [CrossRef]
- He, Y.; Zhao, Z.A.; Zhu, Q.; Liu, T.; Zhang, Q.; Yang, W.; Zhang, L.; Wang, Q. An integrated neural network method for landslide susceptibility assessment based on time-series InSAR deformation dynamic features. Int. J. Digit. 2023, 17, 2295408. [Google Scholar] [CrossRef]
- Meng, S.; Shi, Z.; Li, G.; Peng, M.; Liu, L.; Zheng, H.; Zhou, C. A novel deep learning framework for landslide susceptibility assessment using improved deep belief networks with the intelligent optimization algorithm. Comput. Geotech. 2024, 167, 106106. [Google Scholar] [CrossRef]
- Jiang, Y.; Wang, W.; Zou, L.; Cao, Y. Regional landslide susceptibility assessment based on improved semi-supervised clustering and deep learning. Acta Geotech. 2023, 19, 509–529. [Google Scholar] [CrossRef]
- Yingze, S.; Yingxu, S.; Xin, Z.; Jie, Z.; Degang, Y. Comparative analysis of the TabNet algorithm and traditional machine learning algorithms for landslide susceptibility assessment in the Wanzhou Region of China. Nat. Hazards 2024, 120, 7627–7652. [Google Scholar] [CrossRef]
- Sun, J.; Yan, T.; Hu, J.; Ma, C.; Gao, J.; Xu, H. Slope-scale landslide susceptibility assessment based on coupled models of frequency ratio and multiple regression analysis with limited historical hazards data. Nat. Hazards 2023, 120, 1–23. [Google Scholar] [CrossRef]
- Li, Y.; Ming, D.; Zhang, L.; Niu, Y.; Chen, Y. Seismic Landslide Susceptibility Assessment Using Newmark Displacement Based on a Dual-Channel Convolutional Neural Network. Remote Sens. 2024, 16, 566. [Google Scholar] [CrossRef]
- Wei, X.; Gardoni, P.; Zhang, L.; Tan, L.; Liu, D.; Du, C.; Li, H. Improving pixel-based regional landslide susceptibility mapping. Geosci. Front. 2024, 15, 101782. [Google Scholar] [CrossRef]
- Wu, J.; Zhang, Y.; Yang, L.; Zhang, Y.; Lei, J.; Zhi, M.; Ma, G. Identifying the essential influencing factors of landslide susceptibility models based on hybrid-optimized machine learning with different grid resolutions: A case of Sino-Pakistani Karakorum Highway. Environ. Sci. Pollut. Res. 2023, 30, 100675–100700. [Google Scholar] [CrossRef] [PubMed]
- He, T.; Zhou, H.; Xu, C.; Hu, J.; Xue, X.; Xu, L.; Lou, X.; Zeng, K.; Wang, Q. Deep Learning in Forest Tree Species Classification Using Sentinel-2 on Google Earth Engine: A Case Study of Qingyuan County. Sustainability 2023, 15, 2741. [Google Scholar] [CrossRef]
- Ye, M.; Ruiwen, N.; Chang, Z.; He, G.; Tianli, H.; Shijun, L.; Yu, S.; Tong, Z.; Ying, G. A Lightweight Model of VGG-16 for Remote Sensing Image Classification. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 6916–6922. [Google Scholar] [CrossRef]
- Upadhyay, A.K.; Bhandari, A.K. Semi-Supervised Modified-UNet for Lung Infection Image Segmentation. IEEE Trans. Radiat. Plasma Med Sci. 2023, 7, 638–649. [Google Scholar] [CrossRef]
- Maslej-Krešňáková, V.; Sarnovský, M.; Jacková, J. Use of Data Augmentation Techniques in Detection of Antisocial Behavior Using Deep Learning Methods. Future Internet 2022, 14, 260. [Google Scholar] [CrossRef]
- Shorten, C.; Khoshgoftaar, T.M. A survey on Image Data Augmentation for Deep Learning. J. Big Data 2019, 6, 60. [Google Scholar] [CrossRef]
- Hou, Q.; Zhang, L.; Cheng, M.-M.; Feng, J. Strip pooling: Rethinking spatial pooling for scene parsing. arXiv 2020, arXiv:2003.13328. [Google Scholar]
- Al-Najjar, H.A.H.; Pradhan, B.; Kalantar, B.; Sameen, M.I.; Santosh, M.; Alamri, A. Landslide Susceptibility Modeling: An Integrated Novel Method Based on Machine Learning Feature Transformation. Remote Sens. 2021, 13, 3281. [Google Scholar] [CrossRef]
- Dosovitskiy, A.; Beyer, L.; Kolesnikov, A.; Weissenborn, D.; Zhai, X.; Unterthiner, T.; Dehghani, M.; Minderer, M.; Heigold, G.; Gelly, S.; et al. An image is worth 16X16 words: Transformers for image recognition at scale. arXiv 2020, arXiv:2010.11929. [Google Scholar]
- Devlin, J.; Chang, M.-W.; Lee, K.; Toutanova, K. BERT: Pre-training of deep bidirectional transformers for language understanding. arXiv 2018, arXiv:1810.04805. [Google Scholar]
- Kuang, P.; Li, R.; Huang, Y.; Wu, J.; Luo, X.; Zhou, F. Landslide Displacement Prediction via Attentive Graph Neural Network. Remote Sens. 2022, 14, 1919. [Google Scholar] [CrossRef]
- Babu, M.V.S.; Ashokkumar, N.; Joshi, A.; Deshpande, P.S.; Keshta, I.; Maaliw, R.R. RETRACTED ARTICLE: Spatio–temporal attention based real-time environmental monitoring systems for landslide monitoring and prediction. Spat. Inf. Res. 2023, 32, 207. [Google Scholar] [CrossRef]
- Han, K.; Wang, Y.; Guo, J.; Tang, Y.; Wu, E. Vision GNN: An Image is Worth Graph of Nodes. arXiv 2022, arXiv:2206.00272. [Google Scholar]
- Kohno, M.; Higuchi, Y. Landslide Susceptibility Assessment in the Japanese Archipelago Based on a Landslide Distribution Map. ISPRS Int. J. Geo-Inf. 2023, 12, 37. [Google Scholar] [CrossRef]
- Miao, F.; Ruan, Q.; Wu, Y.; Qian, Z.; Kong, Z.; Qin, Z. Landslide Dynamic Susceptibility Mapping Base on Machine Learning and the PS-InSAR Coupling Model. Remote Sens. 2023, 15, 5427. [Google Scholar] [CrossRef]
- Zhang, Y.; Deng, L.; Han, Y.; Sun, Y.; Zang, Y.; Zhou, M. Landslide Hazard Assessment in Highway Areas of Guangxi Using Remote Sensing Data and a Pre-Trained XGBoost Model. Remote Sens. 2023, 15, 3350. [Google Scholar] [CrossRef]
- Zhao, Z.; Liu, Z.Y.; Xu, C. Slope Unit-Based Landslide Susceptibility Mapping Using Certainty Factor, Support Vector Machine, Random Forest, CF-SVM and CF-RF Models. Front. Earth Sci. 2021, 9, 589630. [Google Scholar] [CrossRef]
- Wang, X.; Li, S.; Liu, H.; Liu, L.; Liu, Y.; Zeng, S.; Tang, Q. Landslide susceptibility assessment in Wenchuan County after the 5.12 magnitude earthquake. Bull. Eng. Geol. Environ. 2021, 80, 5369–5390. [Google Scholar] [CrossRef]
- Bai, S.; Lu, P.; Thiebes, B. Comparing characteristics of rainfall- and earthquake-triggered landslides in the Upper Minjiang catchment, China. Eng. Geol. 2020, 268, 105518. [Google Scholar] [CrossRef]
- Zhao, Z.; Chen, T.; Dou, J.; Liu, G.; Plaza, A. Landslide Susceptibility Mapping Considering Landslide Local-Global Features Based on CNN and Transformer. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2024, 17, 7475–7489. [Google Scholar] [CrossRef]
Name | Type | Spatial Resolution | Use | Source |
---|---|---|---|---|
Gaofen-1 satellite image | Raster | Panchromatic 2 m | Landslide visual interpretation | Gaofen Sichuan center for data and application |
Sichuan geological hazard survey data | Point | - | Reference for landslide interpretation | Sichuan Provincial Department of Natural Resources |
Fundamental geographic information | Line, polygon | 1:50,000 | Extracting factors of roadway, river, etc. | National Geomatics Center of China |
Digital elevation model (DEM) | Raster | 30 m | Extracting factors of slope, aspect, etc. | Geospatial Data Cloud |
Geological data | Line, polygon | 1:200,000 | Extracting tectonic line factor | Sichuan Geological Survey Research Institute |
Rainfall data from weather stations | Point | - | Extracting average annual rainfall factor | China Meteorological Administration |
Models | Same parameters | Backbone |
---|---|---|
UPerNet | Epochs:100 Dropout: 0.5 Learning rate: 0.001 Batch_size: 16 Activation function: ReLU Optimizer: Adam Loss function: Binary CrossEntropy | 7 × 7, 64, Conv 3 × 3, max pool ResNet50 _Block [2,2,2,2] |
ViT | 4 × 4 Patch 64 Embedding Transformer_Layer [2,2,6,2] | |
ViG | 7 × 7, 64, Conv 3 × 3, max pool GNN_Layer [2,2,6,2] |
Models | PA | OA | Recall | F1-Score |
---|---|---|---|---|
UPerNet | 0.78 | 0.98 | 0.77 | 0.77 |
ViT | 0.66 | 0.97 | 0.72 | 0.69 |
ViG | 0.72 | 0.97 | 0.74 | 0.73 |
Models | Data Volumes | PA | OA | Recall | F1-Score |
---|---|---|---|---|---|
UPerNet | original | 0.52 | 0.96 | 0.69 | 0.59 |
3× data enhancement | 0.78 | 0.98 | 0.77 | 0.77 | |
ViT | original | 0.49 | 0.96 | 0.70 | 0.58 |
3× data enhancement | 0.66 | 0.97 | 0.72 | 0.69 | |
ViG | original | 0.54 | 0.96 | 0.69 | 0.61 |
3× data enhancement | 0.72 | 0.97 | 0.74 | 0.73 |
Models | Zoning Levels | Percentage of Landslide Area Li (%) | Percentage of Susceptibility Zones Si (%) | Ri = Li/Si |
---|---|---|---|---|
UPerNet | Ⅰ | 15.1 | 94.8 | 0.16 |
Ⅱ | 2.6 | 0.9 | 2.89 | |
Ⅲ | 5.8 | 0.8 | 7.25 | |
Ⅳ | 14.1 | 1.1 | 12.82 | |
Ⅴ | 62.4 | 2.4 | 26 | |
ViT | Ⅰ | 7.8 | 90.3 | 0.09 |
Ⅱ | 7.4 | 3.6 | 2.06 | |
Ⅲ | 10.9 | 2 | 5.45 | |
Ⅳ | 29.7 | 2.3 | 12.91 | |
Ⅴ | 44.2 | 1.8 | 24.56 | |
ViG | Ⅰ | 8.1 | 92.4 | 0.08 |
Ⅱ | 6.2 | 2.3 | 2.69 | |
Ⅲ | 10.8 | 1.6 | 6.75 | |
Ⅳ | 19.2 | 1.5 | 12.8 | |
Ⅴ | 55.7 | 2.2 | 25.32 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, X.; Wang, D.; Zhang, M.; Song, X.; Xu, L.; Sun, T.; Li, W.; Cheng, S.; Dong, J. A Strategy for Neighboring Pixel Collaboration in Landslide Susceptibility Prediction. Remote Sens. 2024, 16, 2206. https://doi.org/10.3390/rs16122206
Wang X, Wang D, Zhang M, Song X, Xu L, Sun T, Li W, Cheng S, Dong J. A Strategy for Neighboring Pixel Collaboration in Landslide Susceptibility Prediction. Remote Sensing. 2024; 16(12):2206. https://doi.org/10.3390/rs16122206
Chicago/Turabian StyleWang, Xiao, Di Wang, Mengmeng Zhang, Xiaochuan Song, Luting Xu, Tiegang Sun, Weile Li, Sizhi Cheng, and Jianhui Dong. 2024. "A Strategy for Neighboring Pixel Collaboration in Landslide Susceptibility Prediction" Remote Sensing 16, no. 12: 2206. https://doi.org/10.3390/rs16122206
APA StyleWang, X., Wang, D., Zhang, M., Song, X., Xu, L., Sun, T., Li, W., Cheng, S., & Dong, J. (2024). A Strategy for Neighboring Pixel Collaboration in Landslide Susceptibility Prediction. Remote Sensing, 16(12), 2206. https://doi.org/10.3390/rs16122206