Underwater Temperature and Salinity Measurement by Rayleigh–Brillouin Spectroscopy Using Fizeau Interferometer and PMT Array
Abstract
:1. Introduction
2. Method and Experiment
2.1. Water Temperature and Salinity
2.2. Experimental Apparatus
2.2.1. Light Source
2.2.2. Telescope and Optical Path
2.2.3. Spectrum Acquisition Module
2.2.4. Data Calibration
3. Results
3.1. Original Data from the LiDAR System
3.2. Channel Geometric Difference Correction
3.3. Dark Current Correction Result
3.4. Spectrum Signal Integration Result
3.5. Temperature and Salinity Inversion Result
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Kumar, A.; Wang, H.; Xue, Y. How much of monthly subsurface temperature variability in the equatorial Pacific can be recovered by the specification of sea surface temperatures? J. Clim. 2014, 27, 1559–1577. [Google Scholar] [CrossRef]
- Kordas, R.L.; Harley, C.D.; O’Connor, M.I. Community ecology in a warming world: The influence of temperature on interspecific interactions in marine systems. J. Exp. Mar. Biol. Ecol. 2011, 400, 218–226. [Google Scholar] [CrossRef]
- Dahlhoff, E.P. Biochemical indicators of stress and metabolism: Applications for marine ecological studies. Annu. Rev. Physiol. 2004, 66, 183–207. [Google Scholar] [CrossRef]
- Röthig, T.; Trevathan-Tackett, S.M.; Voolstra, C.R. Human-induced salinity changes impact marine organisms and ecosystems. Glob. Chang. Biol. 2023, 29, 4731–4749. [Google Scholar] [CrossRef]
- Huang, X.; Pascal, R.W.; Chamberlain, K. A miniature, high precision conductivity and temperature sensor system for ocean monitoring. Sens. J. 2011, 11, 3246–3252. [Google Scholar] [CrossRef]
- Zhao, Y.; Wu, Q.L.; Zhang, Y.N. Simultaneous measurement of salinity, temperature and pressure in seawater using optical fiber SPR sensor. Measurement 2019, 148, 106792. [Google Scholar] [CrossRef]
- Amiri, I.S.; Paul, B.K.; Ahmed, K. Tri-core photonic crystal fiber based refractive index dual sensor for salinity and temperature detection. Microw. Opt. Technol. Lett. 2019, 61, 847–852. [Google Scholar] [CrossRef]
- Yueh, S.H.; Chaubell, J. Sea surface salinity and wind retrieval using combined passive and active L-band microwave observations. Geosci. Remote Sens. 2012, 50, 1022–1032. [Google Scholar] [CrossRef]
- Liu, Q.; Liu, D.; Zhu, X. Optimum wavelength of spaceborne oceanic lidar in penetration depth. J. Quant. Spectrosc. Radiat. Transf. 2020, 256, 107310. [Google Scholar] [CrossRef]
- Chen, S.; Xue, C.; Zhang, T. Analysis of the optimal wavelength for oceanographic lidar at the global scale based on the inherent optical properties of water. Remote Sens. 2019, 11, 2705. [Google Scholar] [CrossRef]
- Lavrentieva, N.N. Semiempiric approach for line broadening and shifting calculation. In Proceedings of the 14th Symposium on High-Resolution Molecular Spectroscopy, Krasnoyarsk, Russia, 6–11 July 2003; Volume 5311, pp. 208–218. [Google Scholar]
- Fry, E.S.; Emery, Y.; Quan, X. Accuracy limitations on Brillouin lidar measurements of temperature and sound speed in the ocean. Appl. Opt. 1997, 36, 6887–6894. [Google Scholar] [CrossRef]
- Parker, T.R.; Farhadiroushan, M.; Handerek, V.A. A fully distributed simultaneous strain and temperature sensor using spontaneous Brillouin backscatter. IEEE Photonics Technol. Lett. 1997, 9, 979–981. [Google Scholar] [CrossRef]
- Pan, X.; Shneider, M.N.; Miles, R.B. Coherent Rayleigh-Brillouin scattering in molecular gases. Phys. Rev. A 2004, 69, 2–5. [Google Scholar] [CrossRef]
- Emery, Y.; Fry, E.S. Laboratory development of a LIDAR for measurement of sound velocity in the ocean using Brillouin scattering. Ocean. Opt. XIII. Int. Soc. Opt. Photonics 1997, 2963, 210–215. [Google Scholar]
- Popescu, A.; Walther, T. On an ESFADOF edge-filter for a range resolved Brillouin-lidar: The high vapor density and high pump intensity regime. Appl. Phys. 2010, 98, 667–675. [Google Scholar] [CrossRef]
- Shi, J.; Ouyang, M.; Gong, W. A Brillouin lidar system using F–P etalon and ICCD for remote sensing of the ocean. Appl. Phys. B 2008, 90, 569–571. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, J.; Zheng, Y. Brillouin scattering spectral for liquid detection and applications in oceanography. Opto-Electron. Adv. 2023, 220016, 7–8. [Google Scholar]
- Wang, Y.; Xu, Y.; Chen, P.; Liang, K. Remote Sensing of Seawater Temperature and Salinity Profiles by the Brillouin Lidar Based on a Fizeau Interferometer and Multichannel Photomultiplier Tube. Sensors 2022, 23, 446. [Google Scholar] [CrossRef]
- Xu, J.; Witschas, B.; Kabelka, P.G.; Liang, K. High-spectral-resolution lidar for measuring tropospheric temperature profiles by means of Rayleigh–Brillouin scattering. Opt. Lett. 2021, 46, 3320–3323. [Google Scholar] [CrossRef]
- Ning, X.; Liu, Z.; Zhang, X. Influence of temperature-salinity-depth structure of the up-per-ocean on the frequency shift of Brillouin LiDAR. Opt. Express 2021, 29, 36442–36452. [Google Scholar]
- Yong, M.; Hao, L.; Gu, Z. Analysis of Rayleigh-Brillouin spectral profiles and Brillouin shifts in nitrogen gas and air. Opt. Express 2014, 22, 2092–2104. [Google Scholar]
- Young, A.T. Rayleigh scattering. Appl. Opt. 1981, 20, 533–535. [Google Scholar] [CrossRef]
- Young, A.T.; Kattawar, G.W. Rayleigh-scattering line profiles. Appl. Opt. 1983, 22, 3668–3670. [Google Scholar] [CrossRef]
- Liang, K.; Ma, Y.; Huang, J. precise measurement of Brillouin scattering spectral in the ocean using F–P etalon and ICCD. Appl. Phys. B 2011, 105, 421–425. [Google Scholar] [CrossRef]
- Yu, Y.; Ma, Y.; Li, H. Simulation on simultaneously obtaining ocean temperature and salinity using dual-wavelength Brillouin Lidar. Laser Phys. Lett. 2014, 11, 6–7. [Google Scholar] [CrossRef]
- Duntley, S.Q. Light in the sea. J. Opt. Soc. Am. 1963, 53, 214–233. [Google Scholar] [CrossRef]
- Sullivan, S.A. Experimental study of the absorption in distilled water, artificial sea water, and heavy water in the visible region of the spectral. J. Opt. Soc. Am. 1963, 53, 962–968. [Google Scholar] [CrossRef]
- Ma, Y.; Fan, F.; Liang, K. An analytical model for Rayleigh–Brillouin scattering spectra in gases. J. Opt. 2012, 14, 095703. [Google Scholar] [CrossRef]
- Neves, F.; Chepel, V.; Akimov, D.Y. Calibration of photomultiplier arrays. Astropart. Phys. 2010, 33, 13–18. [Google Scholar] [CrossRef]
- Kalousis, L.N.; De André, J.P.A.M.; Baussan, E. A fast numerical method for photomultiplier tube calibration. J. Instrum. 2020, 15, P03023. [Google Scholar] [CrossRef]
- Shangguan, M.; Yang, Z.; Lin, Z. Full-day profiling of a beam attenuation coefficient using a single-photon underwater lidar with a large dynamic measurement range. Opt. Lett. 2010, 49, 626–629. [Google Scholar] [CrossRef]
- Shangguan, M.; Yang, Z.; Lin, Z. Compact long-range single-photon underwater lidar with high spatial-temporal resolution. IEEE Geosci. Remote Sens. Lett. 2023, 20, 1501905. [Google Scholar] [CrossRef]
Parameter Name | Value |
---|---|
PRF (Hz) | 100 |
Pulse time (ns) | 7.5 |
Wavelength (nm) | 532 |
Laser power@532 nm (mJ) | 20 ± 1 |
System efficiency (%) | 80 |
Telescope focus (mm) | 100 |
Quantum efficiency (%) | 17.6 |
PMT array | SPCM-02-L16-110 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, Y.; Wang, Y.; Liang, K.; Xu, Y.; Guo, Y.; Makame, K. Underwater Temperature and Salinity Measurement by Rayleigh–Brillouin Spectroscopy Using Fizeau Interferometer and PMT Array. Remote Sens. 2024, 16, 2214. https://doi.org/10.3390/rs16122214
Zhao Y, Wang Y, Liang K, Xu Y, Guo Y, Makame K. Underwater Temperature and Salinity Measurement by Rayleigh–Brillouin Spectroscopy Using Fizeau Interferometer and PMT Array. Remote Sensing. 2024; 16(12):2214. https://doi.org/10.3390/rs16122214
Chicago/Turabian StyleZhao, Yanpeng, Yuanqing Wang, Kun Liang, Yangrui Xu, Yuanxin Guo, and Kassim Makame. 2024. "Underwater Temperature and Salinity Measurement by Rayleigh–Brillouin Spectroscopy Using Fizeau Interferometer and PMT Array" Remote Sensing 16, no. 12: 2214. https://doi.org/10.3390/rs16122214
APA StyleZhao, Y., Wang, Y., Liang, K., Xu, Y., Guo, Y., & Makame, K. (2024). Underwater Temperature and Salinity Measurement by Rayleigh–Brillouin Spectroscopy Using Fizeau Interferometer and PMT Array. Remote Sensing, 16(12), 2214. https://doi.org/10.3390/rs16122214