SRBPSwin: Single-Image Super-Resolution for Remote Sensing Images Using a Global Residual Multi-Attention Hybrid Back-Projection Network Based on the Swin Transformer
Abstract
:1. Introduction
2. Related Work
2.1. Back Projection Based on CNNs
2.2. Vision Transformer-Based Models
2.3. Deep Learning-Based SISR for Remote Sensing Images
3. Methodology
3.1. Network Architecture
3.2. Multi-Attention Hybrid Swin Transformer Block (MAHSTB)
3.3. Dense Back-projection Unit (DBPU)
3.4. Loss Function
4. Experimentation
4.1. Datasets
4.2. Experimental Settings
4.3. Evaluation Index
4.4. Ablation Studies
4.5. Comparison with Other CNN-Based Methods
5. Discussion
- (1)
- Comparison with other methods: The experimental results in Section 4.5 demonstrate that the proposed SRBPSwin method achieves superior SR performance compared with the SRCNN, VDSR, SRRESNET, LGCNET, EDSR, and DBPN models. At a scale factor of 2, our method restored sharp edges and reconstructed rich details. At a scale factor of 4, the reconstructed images maintained their shapes in more naturally, without introducing redundant textures. It confirms that the back-projection mechanism in SRBPSwin effectively provides feedback for reconstruction errors, thereby enhancing the reconstruction performance of the proposed network.
- (2)
- The impacts of the multi-attention hybrid mechanism: Based on the quantitative results of ablation study 1 in Section 4.4, the introduction of CAB improved PSNR by 0.279 dB, compared with STB. After combining CSAB, the PSNR increased by 0.866 dB and 1.165 dB under CAB and STB, respectively, indicating that the multi-attention hybrid mechanism significantly enhanced the network’s SR performance. Additionally, it verifies that the fusion of CSAB improved the ability of both the capture channel and local features of STB. Qualitative results further demonstrate that utilizing CSAB reconstructed local fine textures accurately and achieved sharper edges.
- (3)
- The impacts of the perceptual loss strategy based on the Swin Transformer: Analysis of the quantitative results from ablation study 2 in Section 4.4 indicates that the loss led to a PSNR improvement of 0.361 dB, compared to the loss. This demonstrates that the perceptual loss strategy enhanced the reconstruction performance of the network at the feature map level. Qualitative results further show that images exhibit better detail recovery and appear more natural under the composite loss.
- (4)
- Limits of our method: Firstly, the STB in SRBPSwin incurs significant computational overhead when calculating self-attention, resulting in slower training speeds. Secondly, while the network does not introduce artifacts at large-scale factors, the reconstructed images tend to appear smooth.
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wang, Z.; Yi, J.; Guo, J.; Song, Y.; Lyu, J.; Xu, J.; Yan, W.; Zhao, J.; Cai, Q.; Min, H. A Review of Image Super-Resolution Approaches Based on Deep Learning and Applications in Remote Sensing. Remote Sens. 2022, 14, 5423. [Google Scholar] [CrossRef]
- Liu, C.; Zhang, S.; Hu, M.; Song, Q. Object Detection in Remote Sensing Images Based on Adaptive Multi-Scale Feature Fusion Method. Remote Sens. 2024, 16, 907. [Google Scholar] [CrossRef]
- Shi, J.; Liu, W.; Shan, H.; Li, E.; Li, X.; Zhang, L. Remote Sensing Scene Classification Based on Multibranch Fusion Network. IEEE Geosci. Remote Sens. Lett. 2023, 18, 1–8. [Google Scholar] [CrossRef]
- Chen, X.; Li, D.; Liu, M.; Jia, J. CNN and Transformer Fusion for Remote Sensing Image Semantic Segmentation. Remote Sens. 2023, 15, 4455. [Google Scholar] [CrossRef]
- Huang, L.; An, R.; Zhao, S.; Jiang, T. A Deep Learning-Based Robust Change Detection Approach for Very High Resolution Remotely Sensed Images with Multiple Features. Remote Sens. 2020, 12, 1441. [Google Scholar] [CrossRef]
- Zhang, D.; Shao, J.; Li, X.; Shen, H. Remote Sensing Image Super-Resolution via Mixed High-Order Attention Network. IEEE Trans. Geosci. Remote Sens. 2021, 59, 5183–5196. [Google Scholar] [CrossRef]
- Agustsson, E.; Timofte, R. NTIRE 2017 Challenge on Single Image Super-Resolution: Dataset and Study. In Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), Honolulu, HI, USA, 21–26 July 2017; pp. 1122–1131. [Google Scholar]
- Zhang, S.; Yuan, Q.; Li, J.; Sun, J.; Zhang, X. Scene-Adaptive Remote Sensing Image Super-Resolution Using a Multiscale Attention Network. IEEE Trans. Geosci. Remote Sens. 2020, 58, 4764–4779. [Google Scholar] [CrossRef]
- Musunuri, Y.; Kwon, O.; Kung, S. SRODNet: Object Detection Network Based on Super Resolution for Autonomous Vehicles. Remote Sens. 2022, 14, 6270. [Google Scholar] [CrossRef]
- Deng, W.; Zhu, Q.; Sun, X.; Lin, W.; Guan, Q. EML-GAN: Generative Adversarial Network-Based End-to-End Multi-Task Learning Architecture for Super-Resolution Reconstruction and Scene Classification of Low-Resolution Remote Sensing Imagery. In Proceedings of the 2021 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Brussels, Belgium, 11–16 July 2021; pp. 5397–5400. [Google Scholar]
- Li, Y.; Mavromatis, S.; Zhang, F.; Du, Z.; Wang, Z.; Zhao, X.; Liu, R. Single-Image Super-Resolution for Remote Sensing Images Using a Deep Generative Adversarial Network with Local and Global Attention Mechanisms. IEEE Trans. Geosci. Remote Sens. 2022, 60, 3000224. [Google Scholar] [CrossRef]
- Zhang, L.; Wu, X. An edge-guided image interpolation algorithm via directional filtering and data fusion. IEEE Trans. Image Process. 2006, 15, 2226–2238. [Google Scholar] [CrossRef] [PubMed]
- Hung, K.; Siu, W. Robust Soft-Decision Interpolation Using Weighted Least Squares. IEEE Trans. Image Process. 2012, 21, 1061–1069. [Google Scholar] [CrossRef] [PubMed]
- Zhang, K.; Gao, X.; Tao, D.; Li, X. Single Image Super-Resolution with Non-Local Means and Steering Kernel Regression. IEEE Trans. Image Process. 2012, 21, 4544–4556. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Wright, J.; Huang, T.; Ma, Y. Image Super-Resolution Via Sparse Representation. IEEE Trans. Image Process. 2010, 19, 2861–2873. [Google Scholar] [CrossRef]
- Peleg, T.; Elad, M. A Statistical Prediction Model Based on Sparse Representations for Single Image Super-Resolution. IEEE Trans. Image Process. 2014, 23, 2569–2582. [Google Scholar] [CrossRef] [PubMed]
- Dong, C.; Loy, C.; He, K.; Tang, X. Image Super-Resolution Using Deep Convolutional Networks. IEEE Trans. Pattern Anal. Mach. Intell. 2016, 38, 295–307. [Google Scholar] [CrossRef]
- Ledig, C.; Theis, L.; Huszár, F.; Caballero, J.; Cunningham, A.; Acosta, A.; Aitken, A.; Tejani, A.; Totz, J.; Wang, Z.; et al. Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network. In Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 105–114. [Google Scholar]
- Lim, B.; Son, S.; Kim, H.; Nah, S.; Lee, K. Enhanced Deep Residual Networks for Single Image Super-Resolution. In Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 1132–1140. [Google Scholar]
- Wen, R.; Fu, K.; Sun, H.; Sun, X.; Wang, L. Image Superresolution Using Densely Connected Residual Networks. IEEE Trans. Signal Process. Lett. 2018, 25, 1565–1569. [Google Scholar] [CrossRef]
- Sui, J.; Ma, X.; Zhang, X.; Pun, M. GCRDN: Global Context-Driven Residual Dense Network for Remote Sensing Image Superresolution. IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 2023, 16, 4457–4468. [Google Scholar] [CrossRef]
- Irani, M.; Peleg, S. Improving resolution by image registration. CVGIP Graph. Models Image Process. 1991, 53, 231–239. [Google Scholar] [CrossRef]
- Haris, M.; Shakhnarovich, G.; Ukita, N. Deep Back-Projection Networks for Single Image Super-Resolution. IEEE Trans. Pattern Anal. Mach. Intell. 2021, 43, 4323–4337. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Wei, D.; Qin, C.; Wang, H.; Pfister, H.; Fu, Y. Context Reasoning Attention Network for Image Super-Resolution. In Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision (ICCV), Montreal, QC, Canada, 10–17 October 2021; pp. 4258–4267. [Google Scholar]
- Dosovitskiy, A.; Beyer, L.; Kolesnikov, A.; Weissenborn, D.; Zhai, X.; Unterthiner, T.; Dehghani, M.; Minderer, M.; Heigold, G.; Gelly, S.; et al. An image is worth 16 × 16 words: Transformers for image recognition at scale. In Proceedings of the 9th International Conference on Learning Representations (ICLR), Virtual, 3–7 May 2021; pp. 1–13. [Google Scholar]
- Carion, N.; Massa, F.; Synnaeve, G.; Usunier, N.; Kirillov, A.; Zagoruyko, S. End-to-end object detection with transformers. In Proceedings of the European Conference on Computer Vision, Glasgow, UK, 23–28 August 2020; pp. 213–229. [Google Scholar]
- Cao, H.; Wang, Y.; Chen, J.; Chen, J.; Jiang, D.; Zhang, X.; Tian, Q.; Wang, M. Swin-unet: Unet-like pure transformer for medical image segmentation. In Proceedings of the European Conference on Computer Vision, Glasgow, Tel Aviv, Israel, 23–27 October 2022; pp. 205–218. [Google Scholar]
- Wang, Z.; Cun, X.; Bao, J.; Zhou, W.; Liu, J.; Li, H. Uformer: A General U-Shaped Transformer for Image Restoration. In Proceedings of the 2022 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), New Orleans, LA, USA, 18–24 June 2022; pp. 17662–17672. [Google Scholar]
- Zamir, S.; Arora, A.; Khan, S.; Hayat, M.; Khan, F.; Yang, M. Restormer: Efficient Transformer for High-Resolution Image Restoration. In Proceedings of the 2022 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), New Orleans, LA, USA, 18–24 June 2022; pp. 5718–5729. [Google Scholar]
- Liu, Z.; Lin, Y.; Cao, Y.; Hu, H.; Wei, Y.; Zhang, Z.; Lin, S.; Guo, B. Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision, Montreal, QC, Canada, 10–17 October 2021; pp. 9992–10002. [Google Scholar]
- Liang, J.; Cao, J.; Sun, G.; Zhang, K.; Van Gool, L.; Timofte, R. SwinIR: Image Restoration Using Swin Transformer. In Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision Workshops (ICCVW), Montreal, BC, Canada, 10–17 October 2021; pp. 1833–1844. [Google Scholar]
- Chen, X.; Wang, X.; Zhou, J.; Qiao, Y.; Dong, C. Activating More Pixels in Image Super-Resolution Transformer. In Proceedings of the 2023 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Vancouver, BC, Canada, 17–24 June 2023; pp. 22367–22377. [Google Scholar]
- Liu, Z.; Siu, W.; Chan, Y. Joint Back Projection and Residual Networks for Efficient Image Super-Resolution. In Proceedings of the IEEE Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA ASC), Honolulu, HI, USA, 12–15 November 2018; pp. 1054–1060. [Google Scholar]
- Liu, Z.; Wang, L.; Li, C.; Siu, W.; Chan, Y. Image Super-Resolution via Attention Based Back Projection Networks. In Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision Workshops (ICCVW), Seoul, Korea (South), 27–28 October 2019; pp. 3517–3525. [Google Scholar]
- Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.; Kaiser, L.; Polosukhin, I. Attention is all you need. In Proceedings of the 31st International Conference on Neural Information Processing Systems, Long Beach, CA, USA, 4–9 December 2017. [Google Scholar]
- Chu, X.; Tian, Z.; Wang, Y.; Zhang, B.; Ren, H.; Wei, X.; Xia, H.; Shen, C. Twins: Revisiting the design of spatial attention in vision transformers. In Proceedings of the Advances in Neural Information Processing Systems, Sydney, Australia, 14 December 2021; pp. 9355–9366. [Google Scholar]
- Wu, H.; Xiao, B.; Codella, N.; Liu, M.; Dai, X.; Yuan, L.; Zhang, L. CvT: Introducing Convolutions to Vision Transformers. In Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision, Montreal, QC, Canada, 10–17 October 2021; pp. 22–31. [Google Scholar]
- Xiao, T.; Singh, M.; Mintun, E.; Darrell, T.; Dollár, P.; Girshick, R. Early convolutions help transformers see better. In Proceedings of the Advances in Neural Information Processing Systems, Sydney, Australia, 14 December 2021; pp. 30392–30400. [Google Scholar]
- Yuan, K.; Guo, S.; Liu, Z.; Zhou, A.; Yu, F.; Wu, W. Incorporating Convolution Designs into Visual Transformers. In Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision, Montreal, QC, Canada, 10–17 October 2021; pp. 559–568. [Google Scholar]
- Chen, H.; Wang, Y.; Guo, T.; Xu, C.; Deng, Y.; Liu, Z.; Ma, S.; Xu, C.; Gao, W. Pre-Trained Image Processing Transformer. In Proceedings of the 2021 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Nashville, TN, USA, 20–25 June 2021; pp. 12294–12305. [Google Scholar]
- Li, W.; Lu, X.; Qian, S.; Lu, J.; Zhang, X.; Jia, J. On Efficient Transformer-Based Image Pre-training for Low-Level Vision. arXiv 2021, arXiv:2112.10175. [Google Scholar]
- Lei, S.; Shi, Z.; Zou, Z. Super-Resolution for Remote Sensing Images via Local-Global Combined Network. IEEE Geosci. Remote Sens. Lett. 2017, 14, 1243–1247. [Google Scholar] [CrossRef]
- Liu, B.; Zhao, L.; Li, J.; Zhao, H.; Liu, W.; Li, Y.; Wang, Y.; Chen, H.; Cao, W. Saliency-Guided Remote Sensing Image Super- Resolution. Remote Sens. 2021, 13, 5144. [Google Scholar] [CrossRef]
- Huang, B.; Guo, Z.; Wu, L.; He, B.; Li, X.; Lin, Y. Pyramid Information Distillation Attention Network for Super-Resolution Reconstruction of Remote Sensing Images. Remote Sens. 2021, 13, 5143. [Google Scholar] [CrossRef]
- Zhao, J.; Ma, Y.; Chen, F.; Shang, E.; Yao, W.; Zhang, S.; Yang, J. SA-GAN: A Second Order Attention Generator Adversarial Network with Region Aware Strategy for Real Satellite Images Super Resolution Reconstruction. Remote Sens. 2023, 15, 1391. [Google Scholar] [CrossRef]
- Chen, X.; Wu, Y.; Lu, T. Remote Sensing Image Super-Resolution with Residual Split Attention Mechanism. IEEE J. STARS. 2023, 16, 1–13. [Google Scholar] [CrossRef]
- Wang, Y.; Shao, Z.; Lu, T. Remote Sensing Image Super-Resolution via Multiscale Enhancement Network. IEEE Geosci. Remote Sens. Lett. 2023, 20, 1–5. [Google Scholar] [CrossRef]
- Zhang, X.; Li, Z.; Zhang, T. Remote sensing image super-resolution via dual-resolution network based on connected attention mechanism. IEEE Trans. Geosci. Remote Sens. 2022, 60, 1–13. [Google Scholar] [CrossRef]
- Woo, S.; Park, J.; Lee, J.; Kweon, I. Cbam: Convolutional Block Attention Module. In Proceedings of the Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 3–19. [Google Scholar]
- Cheng, G.; Han, J.; Lu, X. Remote Sensing Image Scene Classification: Benchmark and State of the Art. Proc. IEEE. 2017, 105, 1865–1883. [Google Scholar] [CrossRef]
- Zhang, K.; Zuo, W.; Zhang, L. Learning a Single Convolutional Super-Resolution Network for Multiple Degradations. In Proceedings of the 2018 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Salt Lake City, UT, USA, 18–23 June 2018; pp. 3262–3271. [Google Scholar]
- Li, J.; Fang, F.; Mei, K.; Zhang, G. Multi-scale Residual Network for Image Super-Resolution. In Proceedings of the Europe Conference Computing Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 517–532. [Google Scholar]
- Horé, A.; Ziou, D. Image Quality Metrics: PSNR vs. SSIM. In Proceedings of the IEEE International Conference Pattern Recognition (ICPR), Istanbul, Turkey, 23–26 August 2010; pp. 2366–2369. [Google Scholar]
- Wang, Z.; Bovik, A.; Sheikh, H.; Simoncelli, E. Image quality assessment: From error visibility to structural similarity. IEEE Trans. Image Process. 2004, 13, 600–612. [Google Scholar] [CrossRef] [PubMed]
- Kingma, D.; Ba, J. Adam: A method for stochastic optimization. arXiv 2014, arXiv:1412.6980. [Google Scholar]
- Kim, J.; Lee, J.; Lee, K. Accurate Image Super-Resolution Using Very Deep Convolutional Networks. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 1646–1654. [Google Scholar]
Component | SRBPSwin | ||
---|---|---|---|
Base | √ | √ | √ |
CAB | - | √ | - |
CSAB | - | - | √ |
PSNR | 32.113 | 32.412 | 33.278 |
SSIM | 0.906 | 0.912 | 0.924 |
Loss Function | SRBPSwin | |
---|---|---|
L1 | √ | √ |
LSwin | - | √ |
PSNR | 32.917 | 33.278 |
SSIM | 0.921 | 0.924 |
NWPU-RESISC45 | SRCNN | VDSR | SRRESNET | LGCNET | EDSR | DBPN | Ours |
---|---|---|---|---|---|---|---|
PSNR/SSIM | PSNR/SSIM | PSNR/SSIM | PSNR/SSIM | PSNR/SSIM | PSNR/SSIM | PSNR/SSIM | |
airplane | 34.551/0.947 | 35.317/0.954 | 35.378/0.955 | 35.231/0.953 | 35.474/0.955 | 35.578/0.956 | 35.733/0.958 |
airport | 32.667/0.923 | 33.188/0.929 | 33.244/0.930 | 33.087/0.928 | 33.291/0.930 | 33.335/0.930 | 33.440/0.933 |
baseball_diamond | 33.375/0.920 | 33.823/0.927 | 33.898/0.928 | 33.763/0.926 | 33.929/0.928 | 33.971/0.928 | 34.101/0.932 |
basketball_court | 32.084/0.901 | 32.876/0.913 | 32.978/0.915 | 32.727/0.911 | 33.012/0.915 | 33.050/0.916 | 33.112/0.918 |
beach | 31.913/0.892 | 32.128/0.895 | 32.160/0.896 | 32.107/0.896 | 32.161/0.896 | 32.178/0.896 | 32.274/0.899 |
bridge | 34.045/0.946 | 34.526/0.951 | 34.622/0.951 | 34.462/0.950 | 34.646/0.951 | 34.721/0.952 | 34.796/0.954 |
chaparral | 28.308/0.863 | 28.536/0.870 | 28.579/0.871 | 28.513/0.870 | 28.594/0.871 | 28.618/0.872 | 28.711/0.875 |
church | 29.208/0.877 | 29.673/0.889 | 29.744/0.890 | 29.588/0.887 | 29.778/0.890 | 29.823/0.891 | 29.932/0.893 |
circular_farmland | 36.060/0.952 | 37.058/0.958 | 37.088/0.958 | 36.886/0.957 | 37.162/0.958 | 37.206/0.959 | 37.477/0.962 |
cloud | 40.355/0.965 | 40.665/0.967 | 40.533/0.967 | 40.584/0.967 | 40.699/0.967 | 40.724/0.967 | 41.107/0.970 |
commercial_area | 30.821/0.921 | 31.237/0.927 | 31.302/0.928 | 31.175/0.926 | 31.348/0.928 | 31.383/0.929 | 31.465/0.930 |
dense_residential | 26.665/0.871 | 27.158/0.884 | 27.288/0.886 | 27.138/0.883 | 27.278/0.886 | 27.349/0.887 | 27.376/0.888 |
desert | 37.156/0.949 | 37.652/0.952 | 37.583/0.953 | 37.535/0.952 | 37.692/0.953 | 37.675/0.953 | 38.073/0.956 |
forest | 32.015/0.886 | 32.115/0.889 | 32.168/0.889 | 32.117/0.889 | 32.177/0.889 | 32.192/0.889 | 32.299/0.893 |
freeway | 32.925/0.907 | 33.514/0.917 | 33.583/0.918 | 33.408/0.915 | 33.638/0.918 | 33.684/0.919 | 33.818/0.921 |
golf_course | 35.689/0.943 | 36.003/0.945 | 36.056/0.946 | 35.979/0.945 | 36.069/0.946 | 36.099/0.946 | 36.249/0.949 |
ground_track_field | 30.928/0.912 | 31.334/0.919 | 31.422/0.921 | 31.305/0.919 | 31.430/0.920 | 31.474/0.921 | 31.521/0.923 |
harbor | 26.480/0.914 | 26.946/0.922 | 27.124/0.925 | 26.983/0.923 | 27.148/0.925 | 27.240/0.927 | 27.175/0.927 |
industrial_area | 30.586/0.912 | 31.317/0.922 | 31.376/0.923 | 31.158/0.921 | 31.442/0.923 | 31.515/0.924 | 31.575/0.926 |
intersection | 29.510/0.896 | 30.168/0.909 | 30.357/0.911 | 30.101/0.908 | 30.415/0.911 | 30.490/0.912 | 30.532/0.915 |
island | 40.677/0.976 | 41.160/0.978 | 41.184/0.978 | 41.070/0.978 | 41.230/0.978 | 41.252/0.978 | 41.614/0.980 |
lake | 34.128/0.924 | 34.363/0.927 | 34.401/0.928 | 34.335/0.927 | 34.396/0.927 | 34.410/0.928 | 34.565/0.931 |
meadow | 37.087/0.919 | 37.247/0.922 | 37.299/0.923 | 37.240/0.922 | 37.306/0.922 | 37.320/0.923 | 37.556/0.927 |
medium_residential | 31.060/0.886 | 31.369/0.892 | 31.442/0.893 | 31.359/0.892 | 31.458/0.893 | 31.495/0.893 | 31.552/0.895 |
mobile_home_park | 28.642/0.877 | 29.284/0.890 | 29.422/0.892 | 29.232/0.889 | 29.437/0.892 | 29.510/0.893 | 29.578/0.895 |
mountain | 35.091/0.931 | 35.329/0.934 | 35.351/0.934 | 35.295/0.932 | 35.366/0.934 | 35.371/0.934 | 35.547/0.937 |
overpass | 30.434/0.893 | 31.485/0.909 | 31.616/0.911 | 31.286/0.906 | 31.704/0.912 | 31.757/0.913 | 31.696/0.914 |
palace | 31.937/0.913 | 32.404/0.920 | 32.472/0.921 | 32.363/0.919 | 32.485/0.921 | 32.537/0.921 | 32.701/0.924 |
parking_lot | 26.923/0.853 | 27.598/0.870 | 27.809/0.872 | 27.528/0.868 | 27.810/0.872 | 27.958/0.875 | 27.925/0.878 |
railway | 29.275/0.857 | 29.738/0.872 | 29.799/0.872 | 29.646/0.868 | 29.847/0.874 | 29.889/0.875 | 29.913/0.877 |
railway_station | 32.288/0.915 | 32.845/0.923 | 32.911/0.924 | 32.725/0.922 | 32.963/0.924 | 33.007/0.925 | 33.167/0.929 |
rectangular_farmland | 34.705/0.893 | 35.405/0.898 | 35.474/0.898 | 35.275/0.899 | 35.502/0.898 | 35.546/0.900 | 35.730/0.900 |
river | 34.817/0.931 | 35.198/0.936 | 35.229/0.937 | 35.115/0.935 | 35.220/0.936 | 35.249/0.936 | 35.408/0.939 |
roundabout | 30.711/0.891 | 31.176/0.900 | 31.251/0.902 | 31.108/0.899 | 31.295/0.902 | 31.327/0.902 | 31.491/0.905 |
runway | 37.137/0.959 | 38.456/0.965 | 38.287/0.965 | 38.113/0.964 | 38.576/0.966 | 38.732/0.967 | 38.874/0.969 |
sea_ice | 35.153/0.952 | 35.547/0.955 | 35.580/0.956 | 35.426/0.955 | 35.628/0.956 | 35.652/0.956 | 35.900/0.959 |
ship | 32.067/0.911 | 32.559/0.918 | 32.606/0.919 | 32.463/0.917 | 32.666/0.919 | 32.704/0.920 | 32.738/0.922 |
snowberg | 29.495/0.929 | 29.929/0.935 | 29.982/0.936 | 29.886/0.936 | 30.048/0.937 | 30.086/0.937 | 30.170/0.938 |
sparse_residential | 30.908/0.871 | 31.229/0.877 | 31.357/0.878 | 31.197/0.876 | 31.353/0.878 | 31.366/0.879 | 31.418/0.881 |
stadium | 32.357/0.933 | 33.009/0.942 | 33.044/0.942 | 32.864/0.940 | 33.112/0.943 | 33.148/0.943 | 33.274/0.945 |
storage_tank | 28.752/0.884 | 29.301/0.897 | 29.387/0.898 | 29.244/0.896 | 29.404/0.899 | 29.466/0.899 | 29.479/0.901 |
tennis_court | 29.521/0.873 | 29.994/0.886 | 30.093/0.887 | 29.958/0.884 | 30.105/0.887 | 30.159/0.888 | 30.193/0.891 |
terrace | 35.043/0.927 | 35.567/0.936 | 35.624/0.937 | 35.457/0.934 | 35.642/0.937 | 35.685/0.937 | 35.865/0.940 |
thermal_power_station | 32.606/0.928 | 33.171/0.936 | 33.218/0.936 | 33.077/0.934 | 33.274/0.937 | 33.307/0.937 | 33.424/0.940 |
wetland | 36.409/0.941 | 36.671/0.945 | 36.703/0.944 | 36.638/0.944 | 36.715/0.944 | 36.753/0.944 | 36.957/0.948 |
NWPU-RESISC45 | SRCNN | VDSR | SRRESNET | LGCNET | EDSR | DBPN | Ours |
---|---|---|---|---|---|---|---|
PSNR/SSIM | PSNR/SSIM | PSNR/SSIM | PSNR/SSIM | PSNR/SSIM | PSNR/SSIM | PSNR/SSIM | |
airplane | 28.245/0.817 | 28.913/0.835 | 29.253/0.845 | 28.824/0.833 | 29.409/0.848 | 29.451/0.849 | 29.491/0.849 |
airport | 27.109/0.740 | 27.479/0.756 | 27.738/0.765 | 27.414/0.753 | 27.780/0.768 | 27.838/0.769 | 27.919/0.770 |
baseball_diamond | 28.656/0.767 | 28.896/0.777 | 29.107/0.784 | 28.890/0.776 | 29.158/0.787 | 29.176/0.787 | 29.120/0.787 |
basketball_court | 26.973/0.712 | 27.379/0.732 | 27.656/0.743 | 27.329/0.729 | 27.755/0.748 | 27.812/0.749 | 27.832/0.749 |
beach | 27.588/0.741 | 27.807/0.748 | 27.917/0.752 | 27.775/0.748 | 27.938/0.753 | 27.943/0.752 | 27.975/0.754 |
bridge | 29.206/0.840 | 29.480/0.849 | 29.741/0.855 | 29.453/0.848 | 29.767/0.856 | 29.803/0.857 | 29.808/0.856 |
chaparral | 23.808/0.635 | 24.001/0.645 | 24.188/0.655 | 24.023/0.646 | 24.226/0.658 | 24.247/0.660 | 24.315/0.661 |
church | 24.187/0.668 | 24.403/0.680 | 24.617/0.692 | 24.407/0.680 | 24.683/0.697 | 24.717/0.699 | 24.732/0.698 |
circular_farmland | 30.720/0.837 | 31.318/0.850 | 31.639/0.857 | 31.252/0.849 | 31.700/0.858 | 31.761/0.859 | 31.773/0.860 |
cloud | 33.935/0.867 | 34.161/0.870 | 34.250/0.873 | 34.058/0.869 | 34.251/0.873 | 34.265/0.872 | 34.384/0.875 |
commercial_area | 25.113/0.727 | 25.276/0.735 | 25.552/0.747 | 25.346/0.738 | 25.596/0.750 | 25.589/0.750 | 25.663/0.752 |
dense_residential | 21.817/0.622 | 21.920/0.631 | 22.226/0.649 | 22.010/0.636 | 22.268/0.655 | 22.295/0.659 | 22.324/0.657 |
desert | 30.579/0.786 | 31.041/0.797 | 31.079/0.802 | 30.913/0.795 | 31.136/0.803 | 31.145/0.801 | 31.341/0.807 |
forest | 27.153/0.613 | 27.133/0.616 | 27.264/0.623 | 27.197/0.618 | 27.287/0.625 | 27.242/0.623 | 27.302/0.625 |
freeway | 27.392/0.694 | 27.821/0.713 | 28.077/0.722 | 27.745/0.709 | 28.125/0.726 | 28.203/0.728 | 28.134/0.725 |
golf_course | 30.122/0.814 | 30.484/0.822 | 30.728/0.827 | 30.520/0.823 | 30.782/0.829 | 30.789/0.829 | 30.826/0.830 |
ground_track_field | 25.859/0.725 | 26.100/0.738 | 26.363/0.748 | 26.134/0.738 | 26.413/0.751 | 26.441/0.752 | 26.437/0.751 |
harbor | 21.046/0.724 | 21.139/0.735 | 21.500/0.756 | 21.266/0.741 | 21.579/0.759 | 21.644/0.766 | 21.597/0.761 |
industrial_area | 24.717/0.695 | 25.149/0.717 | 25.459/0.731 | 25.046/0.712 | 25.537/0.736 | 25.571/0.738 | 25.621/0.738 |
intersection | 23.831/0.672 | 24.053/0.688 | 24.320/0.702 | 24.103/0.689 | 24.363/0.705 | 24.442/0.709 | 24.427/0.708 |
island | 34.134/0.902 | 34.667/0.909 | 34.855/0.912 | 34.572/0.908 | 34.848/0.912 | 34.850/0.912 | 34.961/0.913 |
lake | 28.635/0.731 | 28.722/0.735 | 28.850/0.740 | 28.747/0.736 | 28.875/0.742 | 28.852/0.741 | 28.904/0.742 |
meadow | 32.405/0.774 | 32.517/0.778 | 32.617/0.780 | 32.517/0.778 | 32.623/0.781 | 32.647/0.781 | 32.640/0.781 |
medium_residential | 25.956/0.668 | 26.150/0.676 | 26.321/0.685 | 26.165/0.678 | 26.405/0.688 | 26.416/0.689 | 26.427/0.688 |
mobile_home_park | 23.623/0.654 | 23.844/0.665 | 24.193/0.681 | 23.954/0.670 | 24.251/0.686 | 24.305/0.689 | 24.320/0.686 |
mountain | 29.597/0.754 | 29.708/0.759 | 29.823/0.763 | 29.723/0.759 | 29.831/0.764 | 29.803/0.762 | 29.887/0.767 |
overpass | 25.497/0.677 | 26.001/0.703 | 26.330/0.718 | 25.876/0.696 | 26.455/0.724 | 26.628/0.728 | 26.434/0.722 |
palace | 26.540/0.724 | 26.846/0.735 | 27.098/0.746 | 26.854/0.736 | 27.159/0.750 | 27.171/0.750 | 27.223/0.751 |
parking_lot | 22.135/0.609 | 22.203/0.619 | 22.464/0.635 | 22.324/0.624 | 22.532/0.641 | 22.543/0.645 | 22.632/0.658 |
railway | 25.116/0.632 | 25.294/0.646 | 25.470/0.656 | 25.284/0.643 | 25.527/0.660 | 25.575/0.663 | 25.555/0.661 |
railway_station | 26.388/0.703 | 26.758/0.720 | 27.030/0.732 | 26.722/0.718 | 27.089/0.737 | 27.141/0.739 | 27.154/0.737 |
rectangular_farmland | 29.607/0.753 | 30.095/0.771 | 30.367/0.781 | 29.970/0.768 | 30.403/0.783 | 30.448/0.784 | 30.512/0.785 |
river | 29.628/0.765 | 29.834/0.774 | 29.995/0.780 | 29.813/0.773 | 30.035/0.782 | 30.008/0.781 | 30.079/0.783 |
roundabout | 25.524/0.682 | 25.847/0.697 | 26.064/0.708 | 25.822/0.696 | 26.112/0.711 | 26.158/0.712 | 26.173/0.711 |
runway | 30.652/0.840 | 31.547/0.859 | 31.872/0.867 | 31.321/0.855 | 31.890/0.868 | 32.117/0.871 | 32.218/0.872 |
sea_ice | 28.266/0.788 | 28.458/0.794 | 28.713/0.802 | 28.473/0.796 | 28.718/0.803 | 28.735/0.804 | 28.855/0.808 |
ship | 27.288/0.762 | 27.597/0.775 | 27.809/0.782 | 27.575/0.773 | 27.822/0.784 | 27.894/0.786 | 27.856/0.785 |
snowberg | 23.271/0.732 | 23.491/0.741 | 23.697/0.754 | 23.526/0.746 | 23.756/0.756 | 23.754/0.757 | 23.864/0.760 |
sparse_residential | 26.569/0.645 | 26.740/0.655 | 26.895/0.661 | 26.744/0.654 | 26.957/0.665 | 26.914/0.664 | 26.955/0.664 |
stadium | 26.309/0.750 | 26.667/0.766 | 26.962/0.778 | 26.641/0.764 | 27.029/0.782 | 27.037/0.783 | 27.079/0.783 |
storage_tank | 24.469/0.686 | 24.693/0.702 | 24.961/0.715 | 24.750/0.702 | 25.027/0.720 | 25.078/0.722 | 25.056/0.721 |
tennis_court | 25.167/0.667 | 25.323/0.676 | 25.568/0.688 | 25.401/0.679 | 25.603/0.691 | 25.641/0.693 | 25.634/0.691 |
terrace | 29.323/0.746 | 29.678/0.762 | 29.861/0.770 | 29.605/0.758 | 29.928/0.774 | 29.883/0.773 | 29.927/0.773 |
thermal_power_station | 26.422/0.714 | 26.706/0.728 | 26.935/0.737 | 26.692/0.727 | 27.002/0.742 | 26.990/0.741 | 27.063/0.743 |
wetland | 30.892/0.791 | 31.062/0.797 | 31.176/0.800 | 31.046/0.796 | 31.237/0.802 | 31.186/0.801 | 31.287/0.804 |
Method | Scale | NWPU-RESISC45 |
---|---|---|
PSNR/SSIM | ||
SRCNN | ×2 | 32.501/0.913 |
VDSR | ×2 | 33.006/0.920 |
SRRESNET | ×2 | 33.067/0.921 |
LGCNET | ×2 | 32.928/0.919 |
EDSR | ×2 | 33.109/0.921 |
DBPN | ×2 | 33.155/0.922 |
Ours | ×2 | 33.278/0.924 |
SRCNN | ×4 | 27.144/0.730 |
VDSR | ×4 | 27.431/0.742 |
SRRESNET | ×4 | 27.658/0.751 |
LGCNET | ×4 | 27.418/0.741 |
EDSR | ×4 | 27.708/0.754 |
DBPN | ×4 | 27.737/0.755 |
Ours | ×4 | 27.773/0.755 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qin, Y.; Wang, J.; Cao, S.; Zhu, M.; Sun, J.; Hao, Z.; Jiang, X. SRBPSwin: Single-Image Super-Resolution for Remote Sensing Images Using a Global Residual Multi-Attention Hybrid Back-Projection Network Based on the Swin Transformer. Remote Sens. 2024, 16, 2252. https://doi.org/10.3390/rs16122252
Qin Y, Wang J, Cao S, Zhu M, Sun J, Hao Z, Jiang X. SRBPSwin: Single-Image Super-Resolution for Remote Sensing Images Using a Global Residual Multi-Attention Hybrid Back-Projection Network Based on the Swin Transformer. Remote Sensing. 2024; 16(12):2252. https://doi.org/10.3390/rs16122252
Chicago/Turabian StyleQin, Yi, Jiarong Wang, Shenyi Cao, Ming Zhu, Jiaqi Sun, Zhicheng Hao, and Xin Jiang. 2024. "SRBPSwin: Single-Image Super-Resolution for Remote Sensing Images Using a Global Residual Multi-Attention Hybrid Back-Projection Network Based on the Swin Transformer" Remote Sensing 16, no. 12: 2252. https://doi.org/10.3390/rs16122252
APA StyleQin, Y., Wang, J., Cao, S., Zhu, M., Sun, J., Hao, Z., & Jiang, X. (2024). SRBPSwin: Single-Image Super-Resolution for Remote Sensing Images Using a Global Residual Multi-Attention Hybrid Back-Projection Network Based on the Swin Transformer. Remote Sensing, 16(12), 2252. https://doi.org/10.3390/rs16122252