Water Dynamics and Morphometric Parameters of Lake Sevan (Armenia) in the Summer–Autumn Period According to Satellite Data
Abstract
:1. Introduction
2. Data and Methods
2.1. Satellite Optical and SAR Images
2.2. Morphometric Parameters of the Lake
3. Results
3.1. Manifestation of Eddy Dynamics on Satellite Images
3.1.1. August 2017
3.1.2. July–October 2018
3.1.3. July–October 2019
3.1.4. October 2020
3.1.5. August–September 2022
3.2. Morphometric Parameters of Lake Sevan According to HYDROWEB Data and Measurements at Gauging Stations
4. Discussion
4.1. Nonstationary Eddy Dynamics of the Waters of Large Sevan
4.2. Eddy Dynamics of the Waters of Small Sevan and Their Role in Water Exchange through the Strait
4.3. Morphometric Parameters of Lake Sevan
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Babayan, A.; Hakobyan, S.; Jenderedjian, K.; Muradyan, S.; Voskanov, M. Lake Sevan: Experience and Lessons Learned Brief. International Waters Learning Exchange & Resource Network. 2005, pp. 347–362. Available online: https://iwlearn.net/resolveuid/6af5017fa3a56bc7b8428f71c100362e (accessed on 19 March 2024).
- Integrated Assessment of the Ecological State of Lake Sevan (GEO–Lake Sevan); Association “For Sustainable Human Development”/UNEPCom: Yerevan, Armenia, 2011; 42p, Available online: https://gridarendal-website-live.s3.amazonaws.com/production/documents/:s_document/92/original/sevan-report---fin.pdf?1483646517 (accessed on 19 March 2024). (In Russian)
- Wilkinson, I.P. Lake Sevan: Evolution, Biotic Variability and Ecological Degradation. In Large Asian Lakes in a Changing World; Mischke, S., Ed.; Springer Water; Springer: Cham, Switzerland, 2020; pp. 35–63. [Google Scholar] [CrossRef]
- Arutyunyan, D.V.; Muradyan, M.A. Lake Sevan as the most important source of water resources of the Republic Armenia. Reg. Probl. Econ. Transform. 2021, 6, 127–134. [Google Scholar]
- Oganesyan, R.O. Lake Sevan Yesterday, Today; Publishing House of NAS RA “Gitatyun”: Yerevan, Armenia, 1994. (In Russian) [Google Scholar]
- Rumyantsev, V.A.; Drabkova, V.G.; Izmailova, A.G. Lake Sevan. In Great Lakes of the World; Lema: St. Petersburg, Russia, 2012; pp. 271–280. (In Russian) [Google Scholar]
- Matishov, G.G.; Selyutin, V.V.; Mestopyan, K.E.; Bulysheva, N.I.; Sheverdyaev, I.V.; Aroutiounian, N.M.; Gabrielyan, B.K. Current state and problems of the study of Lake Sevan. Sci. South Russ. 2016, 12, 43–52. (In Russian) [Google Scholar]
- Medvedev, A.; Telnova, N.; Alekseenko, N.; Koshkarev, A.; Kuznetchenko, P.; Asmaryan, S.; Narykov, A. UAV-derived data application for environmental monitoring of the coastal area of Lake Sevan, Armenia with a changing water level. Remote Sens. 2020, 12, 3821. [Google Scholar] [CrossRef]
- Why Sevan “Blooms” and How to Deal with It—The Ministry of the Environment Explained, SPUTNIK, Armenia, 31 July 2022. Available online: https://ru.armeniasputnik.am/20220730/pochemu-tsvetet-sevan-i-kak-s-etim-borotsya--minokruzhayuschey-sredy-poyasnilo-45912598.html (accessed on 19 March 2024). (In Russian).
- Sarkisyan, L. Impact on the Sevan Ecosystem: The Dangers of Additional Water Intake, SPUTNIK, Armenia, 31 July 2023. Available online: https://ru.armeniasputnik.am/20230731/udar-po-ekosisteme-sevana-chem-opasen-dopolnitelnyy-zabor-vody-63628469.html (accessed on 19 March 2024). (In Russian).
- Gozalyan, M.G. On the thermal regime of Lake Sevan in connection with the descent of its level. Proc. Sevan Hydrobiol. Stn. 1979, XVII, 5–23. (In Russian) [Google Scholar]
- Ecology of Lake Sevan during the period of water level rise. In The results of Russian-Armenian Biological Expedition for Hydroecological Survey of Lake Sevan (Armenia) (2005–2009); Nauka, Dagestan Scientific Center: Makhachkala, Russia, 2010; ISBN 978-5-94434-162-4. (In Russian)
- Hovsepyan, A.; Muradyan, V.; Tepanosyan, G.; Minasyan, L.; Asmaryan, S. Studying the dynamics of Lake Sevan water surface temperature using Landsat 8 satellite imagery. Ann. Valahia Univ. Targoviste. Geogr. Ser. 2018, 18, 68–73. [Google Scholar] [CrossRef]
- Hovsepyan, A.; Tepanosyan, G.; Muradyan, V.; Shushanik, A.; Medvedev, A.; Koshkarev, A. Lake Sevan shoreline change assessment using multi-temporal Landsat images. Geogr. Environ. Sustain. 2019, 12, 212–229. [Google Scholar] [CrossRef]
- Hovsepyan, A.A.; Gambaryan, L.R.; Mamyan, A.A. Some information about blue-green algal blooms in Lake Sevan. Lakes of Eurasia: Problems and Solutions. In Proceedings of the 1st International Conference 2017, Petrozavodsk, Russia, 11–15 September 2017; pp. 547–550. (In Russian). [Google Scholar]
- Hovsepyan, A.A.; Mamyan, A.S.; Khachikyan, T.G.; Tikhonova, I.V.; Sorokovikova, E.G.; Belykh, O.I.; Gevorgyan, G.A. Monitoring of phytoplankton status in Lake Sevan (Armenia) in 2018. Proc. Yerevan State Univ. 2019, 53, 206–211. [Google Scholar] [CrossRef]
- Gevorgyan, G.; Rinke, K.; Schultze, M.; Mamyan, A.; Kuzmin, A.; Belyakh, O.; Sorokovikova, E.; Hayrapetyan, A.; Hovsepyan, A.; Khachikyan, T.; et al. First report about toxic cyanobacterial bloom occurrence in Lake Sevan, Armenia. Int. Rev. Hydrobiol. 2020, 105, 131–142. [Google Scholar] [CrossRef]
- Sakharova, E.G.; Krylov, A.V.; Sabitova, R.Z.; Tsvetkov, A.I.; Gambaryan, L.R.; Mamyan, A.S.; Gabrielyan, B.K.; Hayrapetyan, A.O.; Khachikyan, T.G. Horizontal and vertical distribution of phytoplankton in alpine Lake Sevan (Armenia) during the summer water blooms of Cyanoprokaryota. Sib. Ecol. J. 2020, 1, 76–88. (In Russian) [Google Scholar]
- Avalyan, R.E.; Atoyants, A.L.; Hambaryan, L.R.; Aghajanyan, E.A.; Gabrielyan, B.K.; Aroutiounian, R.M. Assessment of the state of Lake Sevan water during the summer using model test-objects. Trans. Papanin Inst. Biol. Inland Waters RAS 2022, 98, 26–37. [Google Scholar] [CrossRef]
- NASA’s Earthobservatory, Image of the Day—2 May 2023. Available online: https://earthobservatory.nasa.gov/images/151363/algae-in-the-andes (accessed on 26 September 2023).
- Nasrollahzadeh, H.; Makhlough, A.; Pourgholam, R.; Vahedi, F.; Qanqermeh, A.; Foong, S. The study of Nodularia spumigena bloom event in the Southern Caspian Sea. Appl. Ecol. Environ. Res. 2011, 9, 141–155. [Google Scholar] [CrossRef]
- Medvedeva, A.V.; Stanichny, S.V.; Kubryakov, A.A. Intensive development of cyanobacteria in the southern part of the Caspian Sea. Sovremennye Problemy Distantsionnogo Zondirovaniya Zemli iz Kosmosa 2023, 20, 253–268. [Google Scholar] [CrossRef]
- Lavrova, O.Y.; Mityagina, M.I.; Kostianoy, A.G. Satellite Methods in the Study of the Caspian Sea Variability; IKI RAN: Moscow, Russia, 2022. (In Russian) [Google Scholar]
- Kahru, M.; Elmgren, R.; Kaiser, J.; Wastmund, N.; Savchuk, O. Cyanobacterial blooms in the Baltic Sea: Correlations with environmental factors. Harmful Algae 2020, 92, 101739. [Google Scholar] [CrossRef] [PubMed]
- Aleskerova, A.A.; Kubryakov, A.A.; Stanichny, S.V.; Lishaev, P.N.; Mizyuk, A.I. Cyanobacteria bloom in the Azov Sea according to Landsat data. Izv. Atmos. Ocean. Phys. 2019, 55, 1416–1426. [Google Scholar] [CrossRef]
- Kubryakov, A.A.; Lishaev, P.N.; Aleskerova, A.A.; Stanichny, S.V.; Medvedeva, A.A. Spatial distribution and interannual variability of cyanobacteria blooms on the North-Western shelf of the Black Sea in 1985–2019 from satellite data. Harmful Algae 2021, 110, 102–128. [Google Scholar] [CrossRef]
- Asatryan, V.; Stepanyan, L.; Hovsepyan, A.; Krachikyan, T.; Mamyan, A.; Gambaryan, L. The dynamics of phytoplankton seasonal development and its horizontal distribution in Lake Sevan (Armenia). Environ. Monit. Assess. 2022, 194, 757. [Google Scholar] [CrossRef] [PubMed]
- Ginzburg, A.I.; Kostianoy, A.G.; Sheremet, N.A.; Kouraev, A.V. Horizontal water circulation and morphometric parameters of Lake Sevan in the modern period (satellite information). Sovrem. Probl. Distantsionnogo Zondirovaniya Zemli iz Kosmosa 2023, 20, 230–243. [Google Scholar] [CrossRef]
- Ginzburg, A.I.; Sheremet, N.A.; Kostianoy, A.G.; Lavrova, O.Y. On the horizontal water circulation in Lake Sevan (satellite information). Sovrem. Probl. Distantsionnogo Zondirovaniya Zemli iz Kosmosa 2023, 20, 258–275. [Google Scholar] [CrossRef]
- Davydov, V.K. Thermals of Lake Sevan. In Materials on the Investigation of Lake Sevan and Its Basin; Gidrometizdat: Leningrad, Russia, 1934; Pt. II. (In Russian) [Google Scholar]
- Ainbund, M.M. On the issue of the thermal regime of Lake Sevan. In Results of Comprehensive Research on the Sevan Problem; Armenian SSR: Yerevan, Armenia, 1961; pp. 323–335. (In Russian) [Google Scholar]
- Bukin, V.M. Special postcards for collecting information about surface currents in water bodies. Meteorol. Hydrol. 1974, 2, 82–85. (In Russian) [Google Scholar]
- Filatov, N.N. Hydrodynamics of Lakes; Nauka, St. Petersburg Branch: St. Petersburg. Russia, 1991. (In Russian) [Google Scholar]
- Poddubnyi, S.A.; Gabrielyan, B.K.; Tsvetkov, A.I. The present-day structure of the temperature and current fields in Lake Sevan. Water Resour. 2023, 50, 787–793. [Google Scholar] [CrossRef]
- Torgomyan, G.M. Currents of Lake Sevan. Izv. Acad. Sci. Armen. SSR 1975, XXIII, 45–50. (In Russian) [Google Scholar]
- Akopyan, M.A.; Torgomyan, G.M. Calculation of the velocity field of Lake Sevan by mathematical modeling. Izv. Acad. Sci. Armen. SSR Ser. Tech. Sci. 1980, XXXIII, 34–39. (In Russian) [Google Scholar]
- Akopyan, M.A.; Demin, Y.L. Numerical modeling of the currents of Lake Sevan. Meteorol. Hydrol. 1982, 8, 68–74. (In Russian) [Google Scholar]
- Akopyan, M.A.; Gurina, A.M.; Demin, Y.L.; Filatov, N.N. Diagnostic model for calculating currents in stratified lakes. Izv. All-Union Geogr. Soc. 1984, 116, 28–32. (In Russian) [Google Scholar]
- Kireev, I.A. Hydrographical Survey of the Lake Sevan. In Materials on the Investigation of Lake Sevan and Its Basin; Transcaucasian Sevan Committee: Leningrad, Russia, 1933; part V. (In Russian) [Google Scholar]
- Emery, K.O.; Csanady, G.T. Surface circulation of lakes and nearly land-locked seas. Proc. Nat. Acad. Sci. USA 1973, 70, 93–97. [Google Scholar] [CrossRef]
- Kosarev, A.N. Hydrology of the Caspian and Aral Seas; Moscow University: Moscow, Russia, 1975. (In Russian) [Google Scholar]
- Izhitskiy, A.S.; Zavialov, P.O.; Roget, E.; Huang, H.-P.; Kurbaniyazov, A.K. On thermohaline structure and circulation of the Western Large Aral Sea from 2009 to 2011: Observations and modeling. J. Mar. Syst. 2014, 129, 234–247. [Google Scholar] [CrossRef]
- Sutyrina, E.N. The study of vortex structures in Lake Baikal using remote sensing data. Int. Res. J. 2016, 7, 157–159. (In Russian) [Google Scholar]
- McKinney, P.; Holt, B.; Matsumoto, K. Small eddies observed in Lake Superior using SAR and sea surface temperature data. J. Great Lakes Res. 2012, 38, 786–797. [Google Scholar] [CrossRef]
- Kostianoy, A.G.; Soloviev, D.M.; Kostianaia, E.A.; Sirota, A.M. Satellite remote sensing of Lake Skadar/Shkodra. In The Skadar/Shkodra Lake Environment; Pesic, V., Karaman, G., Kostianoy, A.G., Eds.; Springer International Publishing AG: Cham, Switzerland, 2018; pp. 89–120. [Google Scholar] [CrossRef]
- Hamze-Ziabari, S.M.; Foroughan, M.; Lemmin, U.; Barry, D.A. Monitoring mesoscale to submesoscale processes in large lakes with Sentinel-1 SAR imagery: The case of Lake Geneva. Remote Sens. 2022, 14, 4967. [Google Scholar] [CrossRef]
- Kostianoy, A.G.; Lebedev, S.A.; Solovyov, D.M. Satellite monitoring of the Caspian Sea, Kara-Bogaz-Gol Bay, Sarykamysh and Altyn Asyr Lakes, and Amu Darya River. In The Turkmen Lake Altyn Asyr and Water Resources in Turkmenistan; Zonn, I.S., Kostianoy, A.G., Eds.; The Handbook of Environmental Chemistry Series; Springer: Berlin/Heidelberg, Germany, 2013; Volume 28, pp. 197–231. [Google Scholar] [CrossRef]
- Ginzburg, A.I.; Kostianoy, A.G.; Sheremet, N.A. On the dynamics of waters in the Kara-Bogaz-Gol Bay (satellite information). Sovrem. Probl. Distantsionnogo Zondirovaniya Zemli iz Kosmosa 2022, 19, 265–279. [Google Scholar] [CrossRef]
- Ginzburg, A.I.; Kostianoy, A.G.; Sheremet, N.A.; Soloviev, D.M. Vortices in the Western Large Aral Sea (satellite information). Sovrem. Probl. Distantsionnogo Zondirovaniya Zemli iz Kosmosa 2021, 18, 236–246. [Google Scholar] [CrossRef]
- Ginzburg, A.I.; Kostianoy, A.G.; Sheremet, N.A.; Soloviov, D.M. On the question of vortex dynamics of waters in the western basin of the Aral Sea. Sovrem. Probl. Distantsionnogo Zondirovaniya Zemli iz Kosmosa 2022, 19, 106–114. [Google Scholar] [CrossRef]
- NASA’s Earthobservatory, Image of the Day—12 September 2016. Available online: https://earthobservatory.nasa.gov/images/92591/lake-van-turkey (accessed on 27 September 2023).
- Cretaux, J.-F.; Arsen, A.; Calmant, S.; Kouraev, A.; Vuglinski, V.; Berge-Nguyen, M.; Gennero, M.-C.; Nino, F.; Abarca Del Rio, R.; Cazenave, A.; et al. SOLS: A lake database to monitor in the near real time water level and storage variations from remote sensing data. Adv. Space Res. 2011, 47, 1497–1507. [Google Scholar] [CrossRef]
- Cretaux, J.-F.; Nielsen, K.; Frappart, F.; Papa, F.; Calmant, S.; Benveniste, J. Hydrological applications of satellite altimetry: Rivers, lakes, man-made reservoirs, inundated areas. In Satellite Altimetry over Oceans and Land Surfaces; CRC Press: Boca Raton, FL, USA, 2017; pp. 459–504. [Google Scholar] [CrossRef]
- Lavrova, O.Y.; Kostianoy, A.G.; Lebedev, S.A.; Mityagina, M.I.; Ginzburg, A.I.; Sheremet, N.A. Complex Satellite Monitoring of the Russian Seas; IKI RAN: Moscow, Russia, 2011. (In Russian) [Google Scholar]
- Lavrova, O.Y.; Mityagina, M.I.; Kostianoy, A.G. Satellite Methods of Detection and Monitoring of Marine Zones of Ecological Risks; IKI RAN: Moscow, Russia, 2016. (In Russian) [Google Scholar]
- Kostianoy, A.G.; Lavrova, O.Y.; Strochkov, A.Y. Satellite Instrumentation and Technique for Monitoring of Seawater Quality. In Instrumentation and Measurement Technologies for Water Cycle Management; Di Mauro, A., Scozzari, A., Soldovieri, F., Eds.; Springer Water; Springer: Cham, Switzerland, 2022. [Google Scholar] [CrossRef]
- Dokken, S.T.; Wahl, T. Observations of Spiral Eddies along the Norwegian Coast in ERS SAR Images. FFI Rapport 96/01463. 1996. [Google Scholar]
- Alpers, W.; Huhnerfuss, H. The damping of the ocean waves by surface films: A new look at an old problem. J. Geophys. Res. Ocean. 1989, 94, 625–626. [Google Scholar] [CrossRef]
- Ivanov, A.Y.; Ginzburg, A.I. Oceanic eddies in synthetic aperture radar images. J. Earth Syst. Sci. 2002, 111, 281–295. [Google Scholar] [CrossRef]
- Gurova, E.S.; Ivanov, A.Y. Appearance of sea surface signatures and current features in the South-Eastern Baltic Sea on the MODIS and SAR images. Earth Res. Space (Issledovanie Zemli iz kosmosa) 2011, 4, 41–54. (In Russian) [Google Scholar]
- Gade, M.; Byfield, V.; Ermakov, S.; Lavrova, O.; Mitnik, L. Slicks as indicators for marine processes. Oceanography 2013, 26, 138–149. [Google Scholar] [CrossRef]
- Ginzburg, A.I.; Bulycheva, E.V.; Kostianoy, A.G.; Solovyov, D.M. Vortex dynamics in the southeastern Baltic Sea from satellite radar data. Oceanology 2015, 55, 805–813. [Google Scholar] [CrossRef]
- Lavrova, O.Y.; Mityagina, M.I. Manifestation specifics of hydrodynamic processes in satellite images of intense phytoplankton bloom areas. Izv. Atmos. Ocean. Phys. 2016, 52, 974–987. [Google Scholar] [CrossRef]
- Kostianoy, A.G.; Ginzburg, A.I.; Lavrova, O.Y.; Mityagina, M.I. Satellite remote sensing of submesoscale eddies in the Russian Seas. In The Ocean in Motion; Velarde, M., Tarakanov, R., Marchenko, A., Eds.; Springer Oceanography; Springer: Cham, Switzerland, 2018; pp. 397–413. [Google Scholar] [CrossRef]
- Vanhellemont, Q. Sensitivity analysis of the dark spectrum fitting atmospheric correction for metre- and decametre-scale satellite imagery using autonomous hyperspectral radiometry. Opt. Express 2020, 28, 29948–29965. [Google Scholar] [CrossRef]
- Nazaretyan, H. The Ups and Downs of Lake Sevan. EVN Report. 26 July 2021. Available online: https://evnreport.com/magazine-issues/the-ups-and-downs-of-lake-sevan/ (accessed on 19 March 2024).
- How the Level of Lake Sevan Has Changed over the Past Two Years. SPUTNIK, Armenia. 8 November 2022. Available online: https://ru.armeniasputnik.am/20221108/kak-menyalsya-uroven-ozera-sevan-za-poslednie-dva-goda-51011551.html (accessed on 19 March 2024). (In Russian).
- Teponasayn, G.; Muradyan, V.; Hovsepyan, A.; Minasyan, L.; Asmaryan, S. A Landsat 8 OLI satellite data-based assessment of spatio-temporal variations of Lake Sevan phytoplankton biomass. Ann. Valahia Univ. Targoviste Geogr. Ser. 2017, 17, 83–89. [Google Scholar] [CrossRef]
- Fedorov, K.N.; Ginsburg, A.I. “Mushroom-like” currents (vortex dipoles) in the ocean and in a laboratory tank. Ann. Geophys. 1986, 4, 507–516. [Google Scholar]
- Ginzburg, A.I. Horizontal exchange processes in the near-surface layer of the Black Sea. Earth Obs. Remote Sens. 1994, 12, 190–202. [Google Scholar]
- Zatsepin, A.G.; Kremenetskiy, V.V.; Ostrovskii, A.G.; Baranov, V.I.; Kondrashov, A.A.; Korzh, A.O.; Soloviev, D.M. Submesoscale eddies at the Caucasus Black Sea shelf and the mechanisms of their generation. Oceanology 2011, 51, 554–567. [Google Scholar] [CrossRef]
- Kubryakov, A.; Plotnikov, E.; Stanichny, S. Reconstructing large- and mesoscale dynamics in the Black Sea region from satellite imagery and altimetry data—A comparison of two methods. Remote Sens. 2018, 10, 239. [Google Scholar] [CrossRef]
- Kubryakov, A.; Aleskerova, A.; Plotnikov, E.; Mizyuk, A.; Medvedeva, A.; Stanichny, S. Accumulation and cross-shelf transport of coastal water by submesoscale cyclones in the Black Sea. Remote Sens. 2023, 15, 4386. [Google Scholar] [CrossRef]
- Filatov, N.N.; Menshutkin, V.V. Problems of estimation of influence climate and antropogenic factors on to gydrothermodynamics and ecosystems of large stratified inland water bodies. Sci. Notes RGGMU 2017, 48, 120–147. (In Russian) [Google Scholar]
- Karimova, S.S. Statistical analysis of submesoscale eddies in the Baltic, Black and Caspian seas using satellite SAR images. Earth Res. Space (Issledovanie Zemli iz kosmosa) 2012, 3, 31–47. (In Russian) [Google Scholar]
- Zatsepin, A.; Kubryakov, A.; Aleskerova, A.; Elkin, D.; Kukleva, O. Physical mechanisms of submesoscale eddies generation: Evidences from laboratory modeling and satellite data in the Black Sea. Ocean Dyn. 2019, 69, 253–266. [Google Scholar] [CrossRef]
- Aleskerova, A.; Kubryakov, A.; Stanichny, S.; Medvedeva, A.; Plotnikov, E.; Mizyuk, A.; Verzhevskaia, L. Characteristic of topographic submesoscale eddies off the Crimea coast from high-resolution satellite optical measurements. Ocean Dyn. 2021, 71, 655–677. [Google Scholar] [CrossRef]
- Saylor, J.H.; Huang, J.C.K.; Reid, R.O. Vortex modes in Southern Lake Michigan. J. Phys. Oceanogr. 1980, 10, 1814–1823. [Google Scholar] [CrossRef]
- Boyce, F.M.; Donelan, M.A.; Hamblin, P.F.; Murthy, C.R.; Simons, T.J. Thermal structure and circulation in the great lakes. Atmos.-Ocean 1989, 27, 607–642. [Google Scholar] [CrossRef]
- Timofeev, M.P. Meteorological Regime of Lake Sevan; Hydrometeorological Publishing House: Leningrad, Russia, 1960. (In Russian) [Google Scholar]
- Ginzburg, A.I.; Kostianoy, A.G.; Nezlin, N.P.; Soloviev, D.M.; Stanichny, S.V. Anticyclonic eddies in the northwestern Black Sea. J. Mar. Syst. 2002, 32, 91–106. [Google Scholar] [CrossRef]
- Alpers, W.; Brandt, P.; Lazar, A.; Dagorne, D.; Sow, B.; Faye, S.; Hansen, M.W.; Rubino, A.; Poulain, P.-M.; Brehmer, P. A Small-scale oceanic eddy off the coast of West Africa studied by multi-sensor satellite and surface drifter data. Remote Sens. Environ. 2013, 129, 132–143. [Google Scholar] [CrossRef]
- Ainbund, M.M. On the peculiarities of the thermal regime in the strait between Small and Big Sevan. Izv. Acad. Sci. Armen. SSR 1964, 27, 19–33. (In Russian) [Google Scholar]
- Krayushkin, E.V.; Lavrova, O.Y.; Nazirova, K.R.; Elizarov, D.A. Three-dimensional structure and dynamics of coastal eddy dipoles in the Southeastern Baltic Sea: Results of remote sensing and oceanographic experiments in summer 2021. Cosm. Res. 2023, 61 (Suppl. S1), S130–S140. [Google Scholar] [CrossRef]
- Johannessen, J.; Kudryavtsev, V.; Akimov, D.; Eldevik, T.; Winther, N.; Chapron, B. On radar imaging of current features: 2. Mesoscale eddy and current front detection. J. Geophys. Res. Ocean. 2005, 110, C07017. [Google Scholar] [CrossRef]
Year | Water Level, m | Δalt–In Situ, m | |
---|---|---|---|
In Situ | Altimeter | ||
1995 | 1896.81 | 1897.90 (18.06) | 1.09 |
1996 | 1896.75 | 1898.84 (16.02) | 2.09 |
1997 | 1896.69 | 1897.95 (15.01) | 1.26 |
1998 | 1896.74 | 1897.87 (01.01) | 1.13 |
1999 | 1896.62 | 1897.71 (12.01) | 1.09 |
2000 | 1896.51 | 1897.83 (06.01) | 1.32 |
2001 | 1896.46 | 1897.56 (15.01) | 1.10 |
2002 | 1896.32 | 1897.79 (10.01) | 1.47 |
2003 | 1896.76 | 1898.17 (19.01) | 1.41 |
2004 | 1897.24 | 1898.66 (15.01) | 1.42 |
2005 | 1897.65 | 1899.10 (19.01) | 1.45 |
2006 | 1898.07 | 1899.45 (11.01) | 1.45 |
2007 | 1898.25 | 1899.84 (18.03) | 1.59 |
2008 | 1898.79 | 1900.46 (16.04) | 1.67 |
2009 | 1898.86 | 1900.34 (10.02) | 1.48 |
2010 | 1899.23 | 1900.76 (17.02) | 1.53 |
2011 | 1899.905 * | 1900.65 (19.01) | 0.745 |
Year/Date | Water Level, m | Δalt–In Situ, m | |
---|---|---|---|
In Situ | Altimeter | ||
2012 | 1900.13 | 1900.97 (18.02) | 0.84 |
2013 | 1900.10 | 1900.62 (03.01) | 0.52 |
2014 | 1900.16 | 1900.77 (07.01) | 0.61 |
2015 | 1900.13 | 1900.69 (25.01) | 0.56 |
2016 | 1900.19 | 1900.78 (13.01) | 0.59 |
2017 | 1900.46 | 1901.03 (01.01) | 0.57 |
2018 | 1900.42 | 1901.08 (14.01) | 0.66 |
2019 | 1900.39 | 1900.98 (28.01) | 0.59 |
2020 | 1900.43 | 1900.99 (14.01) | 0.56 |
2021 | 1900.52 | 1901.14 (03.01) | 0.62 |
20 July 2021 | 1900.75 | 1901.2 (18.07) | 0.45 |
2022 | 1900.43 | 1900.97 (13.01) | 0.54 |
20 July 2022 | 1900.66 | 1901.18 (21.07) | 0.52 |
Year | Water Level, m | Water Area, km2 | Water Volume, km3 | ||||||
---|---|---|---|---|---|---|---|---|---|
In Situ | H-W | ΔH-W–in situ, m | In Situ | H-W | ΔH-W–in situ, m2 | In Situ | H-W | ΔH-W–in situ, m3 | |
1999 | 1896.63 | 1897.87 (25.02) | +1.24 | 1239.71 | 1237.24 (25.02) | −2.47 | 33.30 | 33.16 (25.02) | −0.14 |
2001 | 1896.46 | 1897.83 (22.02) | +1.37 | 1237.89 | 1236.99 (22.02) | −0.9 | 33.09 | 33.11 (22.02) | +0.02 |
2007 | 1898.25 | 1899.84 (18.03) | +1.59 | 1255.96 | 1249.52 (18.03) | −6.44 | 35.33 | 35.61 (18.03) | +0.28 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ginzburg, A.I.; Kostianoy, A.G.; Sheremet, N.A.; Lavrova, O.Y. Water Dynamics and Morphometric Parameters of Lake Sevan (Armenia) in the Summer–Autumn Period According to Satellite Data. Remote Sens. 2024, 16, 2285. https://doi.org/10.3390/rs16132285
Ginzburg AI, Kostianoy AG, Sheremet NA, Lavrova OY. Water Dynamics and Morphometric Parameters of Lake Sevan (Armenia) in the Summer–Autumn Period According to Satellite Data. Remote Sensing. 2024; 16(13):2285. https://doi.org/10.3390/rs16132285
Chicago/Turabian StyleGinzburg, Anna I., Andrey G. Kostianoy, Nickolay A. Sheremet, and Olga Yu. Lavrova. 2024. "Water Dynamics and Morphometric Parameters of Lake Sevan (Armenia) in the Summer–Autumn Period According to Satellite Data" Remote Sensing 16, no. 13: 2285. https://doi.org/10.3390/rs16132285
APA StyleGinzburg, A. I., Kostianoy, A. G., Sheremet, N. A., & Lavrova, O. Y. (2024). Water Dynamics and Morphometric Parameters of Lake Sevan (Armenia) in the Summer–Autumn Period According to Satellite Data. Remote Sensing, 16(13), 2285. https://doi.org/10.3390/rs16132285