Evolution and Driving Forces of Ecological Service Value in Response to Land Use Change in Tarim Basin, Northwest China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site
2.2. Data Collection
2.3. Methods
2.3.1. Technical Process
- (1)
- Acquisition of LULC data: Multiperiod and deferential resolution remote sensing images from the years 1980, 1990, 2000, 2010, and 2020 were obtained. These images undergo atmospheric correction and topographic correction using the GEE platform. The maximum likelihood classification (MLC) method in ENVI 5.3 is employed to generate land use data for the Tarim Basin based on these images.
- (2)
- Evaluation of ESV distribution: The ESV distribution in the Tarim Basin is calculated for each of the five periods. This assessment is based on the unique characteristics of the Tarim Basin and utilizes the ESV benefit transfer methods. Additionally, an analysis of the spatiotemporal changes in nine ecosystem functions and the ecological sensitivity of ESV is conducted.
- (3)
- Analysis of driving factors: The driving factors influencing ESV are identified and analyzed using the Geo-Detector tool. This analysis helps to understand the interactions and relationships between different factors that contribute to changes in ESV over time.
- (4)
- Future ESV prediction: The FLUS simulation model is utilized to forecast ESVs for the year 2030. Three different scenarios are set up to account for different future conditions and potential changes in the Tarim Basin’s ESs.
2.3.2. LULC Analyzing
- (1)
- The absolute dynamic index: The Absolute Dynamic Index (ADI) is utilized to directly quantify the rate and extent of change for a specific land use type. It serves as an indicator of variations among different land classes within a particular study period in a given region [43]. The general formula for ADI is
- (2)
- Land use transfer matrix (Wij): It is utilized to depict the dynamic changes in each LULCC type during the monitoring period [44]. It can be calculated as
2.3.3. The ESV Assignment
- (1)
- Calculation of ESV
- (2)
- The ESV growth rate can be formulated as follows:
- (3)
- Sensitivity analysis (CS)
2.4. Geographic Detector Model
2.5. Multiscenario Simulation of ESV
3. Results
3.1. The Dynamics of Land Use Changes
3.2. Land Use Conversion
3.3. The ESV Changes
3.4. Impacts of Land Use Changes on Ecosystem Functions (EFs)
3.5. ES Sensitivity Analysis
3.6. Geographic Detection of Spatial Differentiation of ESV
3.7. Trends in Future ESV Changes
4. Discussion
4.1. The LULC Effect to the ESV
4.2. Driving Factors Analysis of ESV
4.3. Policy Recommendations for Different Land Use Scenarios
4.4. Research Limitations and Prospects
5. Conclusions
- (1)
- The waste treatment and water supply functions were the top two ecological functions with high service value; and the contribution rate was 44.53%, whereas food production and raw material were the lowest ecological functions, with little service value; therefore, the ESFs of the Tarim Basin belong to the regulating service function. The rank order of ecosystem functions based on their contribution rates to the total value of ES was as follows, listed from highest to lowest: WS > WT > BP> CR > SF >RC > GR > FP > RM.
- (2)
- The detection results of the spatial differentiation driving factors of ESV, sorted according to Q values, are as follows: NPP (E7) > NDVI (E6) > precipitation (E3) > aspect (E2) > temperature (E4) > slope (E1) > soil erosion (E5) > GDP (E8) > land use intensity (E11) > per capita GDP (E10) > population (E9) > human activity index (E12).
- (3)
- The ESVs simulated in the three scenarios of BLS, CPS, and EPS in 2030 were 51,133.9 million dollars, 53,624.99 million dollars, and 54,561.26 million dollars. The ESVs of the three scenarios decreased in order compared with 2020: BLS (4209.33 million dollars), CPS (1718.24 million dollars), and EPS (−781.97 million dollars).
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fu, B.L.; Li, Y.Q.; Wang, Y.; Zhang, B.; Yin, S.B.; Zhu, H.L.; Xing, Z.F. Evaluation of ecosystem service value of riparian zone using land use data from 1986 to 2012. Ecol. Indic. 2016, 69, 873–881. [Google Scholar] [CrossRef]
- Li, R.; Shi, Y.; Feng, C.-C.; Guo, L. The spatial relationship between ecosystem service scarcity value and urbanization from the perspective of heterogeneity in typical arid and semiarid regions of China. Ecol. Indic. 2021, 132, 108299. [Google Scholar] [CrossRef]
- Xie, L.; Wang, H.W.; Liu, S.H. The ecosystem service values simulation and driving force analysis based on land use/land cover: A case study in inland rivers in arid areas of the Aksu River Basin, China. Ecol. Indic. 2022, 138, 108828. [Google Scholar] [CrossRef]
- Xu, Q.; Yang, Y.; Yang, R.; Zha, L.-S.; Lin, Z.-Q.; Shang, S.-H. Spatial Trade-Offs and Synergies between Ecosystem Services in Guangdong Province, China. Land 2023, 13, 32. [Google Scholar] [CrossRef]
- Fu, H.W.; Yan, Y.D. Ecosystem service value assessment in downtown for implementing the “Mountain-River-Forest-Cropland-Lake-Grassland system project”. Ecol. Indic. 2023, 154, 110751. [Google Scholar] [CrossRef]
- Yin, Z.L.; Feng, Q.; Zhu, R.; Wang, L.G.; Chen, Z.X.; Fang, C.S.; Lu, R. Analysis and prediction of the impact of land use/cover change on ecosystem services value in Gansu province, China. Ecol. Indic. 2023, 154, 110868. [Google Scholar] [CrossRef]
- Wei, R.H.; Fan, Y.M.; Wu, H.Q.; Zheng, K.; Fan, J.; Liu, Z.; Xuan, J.W.; Zhou, J. The value of ecosystem services in arid and semi-arid regions: A multi-scenario analysis of land use simulation in the Kashgar region of Xinjiang. Ecol. Model. 2024, 488, 110579. [Google Scholar] [CrossRef]
- Ge, G.B.; Zhang, J.B.; Chen, X.N.; Liu, X.J.; Hao, Y.G.; Yang, X.H.; Kwon, S. Effects of land use and land cover change on ecosystem services in an arid desert-oasis ecotone along the Yellow River of China. Ecol. Eng. 2022, 176, 106512. [Google Scholar] [CrossRef]
- Zhang, L.F.; Fang, C.L.; Zhu, C.; Gao, Q. Ecosystem service trade-offs and identification of eco-optimal regions in urban agglomerations in arid regions of China. J. Clean. Prod. 2022, 373, 133823. [Google Scholar] [CrossRef]
- Qi, T.; Siru, A.; Lang, W.Y. Assessing local people’s perceptions of ecosystem services to support land management plans in arid desert regions, northwest China. Heliyon 2024, 10, e25302. [Google Scholar]
- Kindu, M.; Schneider, T.; Teketay, D.; Knoke, T. Changes of ecosystem service values in response to land use/land cover dynamics in Munessa–Shashemene landscape of the Ethiopian highlands. Sci. Total Environ. 2016, 547, 137–147. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Li, B.Y.; Ren, Z.Y. Ecosystem service function evaluation: A case study of the yinchuan basin in China. Ecol. Eng. 2017, 106, 333–339. [Google Scholar] [CrossRef]
- Li, F.; Liu, X.S.; Zhang, X.L.; Zhao, D.; Liu, H.X.; Zhou, C.B.; Wang, R.S. Urban ecological infrastructure: An integrated network for ecosystem services and sustainable urban systems. J. Clean. Prod. 2017, 163, S12–S18. [Google Scholar] [CrossRef]
- Xie, G.D.; Zhang, C.X.; Zhen, L.; Zhang, L.M. Dynamic changes in the value of China’s ecosystem services. Ecosyst. Serv. 2017, 26, 146–154. [Google Scholar] [CrossRef]
- Favretto, N.; Stringer, L.C.; Dougill, A.J.; Dallimer, M.; Perkins, J.S.; Reed, M.S.; Atlhopheng, J.R.; Mulale, K. Multi-Criteria Decision Analysis to identify dryland ecosystem service trade-offs under different rangeland land uses. Ecosyst. Serv. 2016, 17, 142–151. [Google Scholar] [CrossRef]
- Sawut, M.; Eziz, M.; Tiyip, T. The effects of land-use change on ecosystem service value of desert oasis: A case study in Ugan-Kuqa River Delta Oasis, China. Can. J. Soil Sci. 2013, 93, 99–108. [Google Scholar] [CrossRef]
- Greenhalgh, S.; Samarasinghe, O.; Curran-Cournane, F.; Wright, W.; Brown, P. Using ecosystem services to underpin cost–benefit analysis: Is it a way to protect finite soil resources? Ecosyst. Serv. 2017, 27, 1–14. [Google Scholar] [CrossRef]
- Wang, X.; Dong, X.; Liu, H.; Wei, H.; Fan, W.; Lu, N. Linking land use change, ecosystem services and human well-being: A case study of the Manas River Basin of Xinjiang, China. Ecosyst. Serv. 2017, 27, 113–123. [Google Scholar] [CrossRef]
- Comberti, C.; Thornton, T.F.; De Echeverria, V.W.; Patterson, T. Ecosystem services or services to ecosystems? Valuing cultivation and reciprocal relationships between humans and ecosystems. Glob. Environ. Chang. 2015, 34, 247–262. [Google Scholar] [CrossRef]
- Xi, H.; Cui, W.; Cai, L.; Chen, M.; Xu, C. Evaluation and Prediction of Ecosystem Service Value in the Zhoushan Islands Based on LUCC. Sustainability 2021, 13, 2302. [Google Scholar] [CrossRef]
- Li, Z.; Sun, Z.; Tian, Y.; Zhong, J.; Yang, W. Impact of Land Use/Cover Change on Yangtze River Delta Urban Agglomeration Ecosystem Services Value: Temporal-Spatial Patterns and Cold/Hot Spots Ecosystem Services Value Change Brought by Urbanization. Int. J. Environ. Res. Public Health 2019, 16, 123. [Google Scholar] [CrossRef] [PubMed]
- An, G.Q.; Han, Y.X.; Gao, N.; Lanshu, J.I.; Gao, H.B.; Tan, X.Q.; Xu, Y.T. Quantity and equilibrium of ecosystem service value and their spatial distribution patterns in Shandong Province. China Popul. Resour. Environ. 2021, 31, 9–18. [Google Scholar]
- Shi, Y.; Wang, R.; Huang, J.; Yang, W. An analysis of the spatial and temporal changes in Chinese terrestrial ecosystem service functions. Chin. Sci. Bull. 2012, 57, 2120–2131. [Google Scholar] [CrossRef]
- Su, S.; Xiao, R.; Jiang, Z.; Zhang, Y. Characterizing landscape pattern and ecosystem service value changes for urbanization impacts at an eco-regional scale. Appl. Geogr. 2012, 34, 295–305. [Google Scholar] [CrossRef]
- Makwinja, R.; Kaunda, E.; Mengistou, S.; Alamirew, T. Impact of land use/land cover dynamics on ecosystem service value—A case from Lake Malombe, Southern Malawi. Environ. Monit. Assess. 2021, 193, 492. [Google Scholar] [CrossRef] [PubMed]
- Xie, G.; Zhang, C.; Zhang, L.; Chen, W.; Li, S. Improvement of the Evaluation Method for Ecosystem Service Value Based on Per Unit Area. J. Nat. Resour. 2015, 30, 1243–1254. [Google Scholar]
- Xie, G.D.; Zhen, L.; Lu, C.X.; Xiao, Y.; Chen, C. Expert Knowledge Based Valuation Method of Ecosystem Services in China. J. Nat. Resour. 2008, 23, 0911–0919. [Google Scholar]
- Xie, G.D.; Zhang, C.X.; Zhang, C.S.; Xiao, Y.; Lu, C.X. The value of ecosystem services in China. Resour. Sci. 2015, 37, 1740–1746. [Google Scholar]
- Xie, G.-D.; Xiao, Y. Review of agro-ecosystem services and their values. Chin. J. Eco-Agric. 2013, 21, 645–651. [Google Scholar] [CrossRef]
- Pan, J.H.; Zhang, W.; Li, J.F.; Wen, Y.; Wang, C.J. Spatial distribution characteristics of air pollutants in major cities in China during the period of wide range haze pollution. Chin. J. Ecol. 2014, 33, 3423–3431. [Google Scholar]
- Kumari, M.; Sarma, K.; Sharma, R. Using Moran’s I and GIS to study the spatial pattern of land surface temperature in relation to land use/cover around a thermal power plant in Singrauli district, Madhya Pradesh, India. Remote Sens. Appl. Soc. Environ. 2019, 15, 100239. [Google Scholar] [CrossRef]
- Zhang, B.; Wang, Y.; Li, J.; Zheng, L. Degradation or Restoration? The Temporal-Spatial Evolution of Ecosystem Services and Its Determinants in the Yellow River Basin, China. Land 2022, 11, 863. [Google Scholar] [CrossRef]
- Chi, J.; Xu, G.; Yang, Q.; Liu, Y.; Sun, J. Evolutionary characteristics of ecosystem services and ecological risks at highly developed economic region: A case study on Yangtze River Delta, China. Environ. Sci. Pollut. Res. 2022, 30, 1152–1166. [Google Scholar] [CrossRef] [PubMed]
- Shoyama, K.; Kamiyama, C.; Morimoto, J.; Ooba, M.; Okuro, T. A review of modeling approaches for ecosystem services assessment in the Asian region. Ecosyst. Serv. 2017, 26, 316–328. [Google Scholar] [CrossRef]
- Posner, S.; Getz, C.; Ricketts, T. Evaluating the impact of ecosystem service assessments on decision-makers. Environ. Sci. Policy 2016, 64, 30–37. [Google Scholar] [CrossRef]
- Hu, Z.N.; Yang, X.; Yang, J.J.; Yuan, J.; Zhang, Z.Y. Linking landscape pattern, ecosystem service value, and human well-being in Xishuangbanna, southwest China: Insights from a coupling coordination model. Glob. Ecol. Conserv. 2021, 27, e01583. [Google Scholar] [CrossRef]
- Maimaiti, B.; Chen, S.; Kasimu, A.; Simayi, Z.; Aierken, N. Urban spatial expansion and its impacts on ecosystem service value of typical oasis cities around Tarim Basin, northwest China. Int. J. Appl. Earth Obs. Geoinf. 2021, 104, 102554. [Google Scholar] [CrossRef]
- Mamat, A.; Wang, J.; Ma, Y. Impacts of land-use change on ecosystem service value of mountain–oasis–desert ecosystem: A case study of Kaidu–Kongque river basin, Northwest China. Sustainability 2020, 13, 140. [Google Scholar] [CrossRef]
- Yang, Y.T.; Wang, P.; Huang, Y.; Zhang, Y.C.; Guo, C.E. Assessment of Ecosystem Services Value in Hotan Oasis, Xingjiang. Agric. Sci. Technol. 2013, 14, 425. [Google Scholar]
- Zhao, Y.; Zhang, Y.F.; Bu, X.; Li, Y.F.; He, Z.F. Land use change and its impact on ecosystem service value in Xinjiang from 2000 to 2020. J. Tianjin Norm. Univ. (Nat. Sci. Ed.) 2023, 43, 54–60. [Google Scholar]
- Liu, W.Q.; Chen, G.Z. Evolution of ecosystem service value and ecological storage estimation in huainan coal mining area. Bull. Environ. Contam. Toxicol. 2021, 107, 1243–1249. [Google Scholar]
- Kulaixi, Z.; Chen, Y.N.; Wang, C.; Xia, Q. Spatial differentiation of ecosystem service value in an arid region: A case study of the Tarim River Basin, Xinjiang. Ecol. Indic. 2023, 151, 110249. [Google Scholar] [CrossRef]
- Quan, L.A.; Jin, S.G.; Chen, J.Y.; Li, T.W. Evolution and Driving Forces of Ecological Service Value in Anhui Based on Landsat Land Use and Land Cover Change. Remote Sens. 2024, 16, 269. [Google Scholar] [CrossRef]
- Kang, L.; Jia, Y.; Zhang, S.L. Spatiotemporal distribution and driving forces of ecological service value in the Chinese section of the “Silk Road Economic Belt”. Ecol. Indic. 2022, 141, 109074. [Google Scholar] [CrossRef]
- Mamat, A.; Halik, Ü.; Rouzi, A. Variations of ecosystem service value in response to land-use change in the Kashgar Region, Northwest China. Sustainability 2018, 10, 200. [Google Scholar] [CrossRef]
- Mamitimin, Y.; Simayi, Z.; Mamat, A.; Maimaiti, B.; Ma, Y. FLUS Based Modeling of the Urban LULC in Arid and Semi-Arid Region of Northwest China: A Case Study of Urumqi City. Sustainability 2023, 15, 4912. [Google Scholar] [CrossRef]
- Meng, Y.Y.; Gao, Y.; Li, X.M.; He, J.; Li, Y.; Jia, J.; Liu, B. Evolution and Prediction of Wetland Landscape Pattern and Ecosystem Service Value in Henan Section of the Yellow River Basin. Areal Res. Dev. 2023, 42, 151–156. [Google Scholar]
- Zhao, Y.L.; Yan, B.; Kethleen, C. Study on the Temporal and Spatial Evolution Characteristics of Ecosystem Service Value in Ganzhou City Based on RS/GIS. Urban. Archit. 2023, 23, 116–118. [Google Scholar]
- Thakkar, A.K.; Desai, V.R.; Patel, A.; Potdar, M.B. Post-classification corrections in improving the classification of Land Use/Land Cover of arid region using RS and GIS: The case of Arjuni watershed, Gujarat, India. Egypt. J. Remote Sens. Space Sci. 2017, 20, 79–89. [Google Scholar] [CrossRef]
- Liu, C.; Li, W.; Zhu, G.; Zhou, H.; Yan, H.; Xue, P. Land Use/Land Cover Changes and Their Driving Factors in the Northeastern Tibetan Plateau Based on Geographical Detectors and Google Earth Engine: A Case Study in Gannan Prefecture. Remote Sens. 2020, 12, 3139. [Google Scholar] [CrossRef]
- Chen, L.T.; Cai, H.S.; Zhang, T.; Zhang, X.L.; Zeng, H. Land use multi-scenario simulation analysis of Rao River Basin Based on Markov-FLUS model. Acta Ecol. Sin. 2022, 42, 3947–3958. [Google Scholar]
- Zhang, X.; Lu, L.; Yu, H.; Zhang, X.; Li, D. Multi-scenario simulation of the impacts of land-use change on ecosystem service value on the Qinghai-Tibet Plateau. Chin. J. Ecol. 2021, 40, 887–898. [Google Scholar]
- Pan, N.; Guan, Q.; Wang, Q.; Sun, Y.; Li, H.; Ma, Y. Spatial Differentiation and Driving Mechanisms in Ecosystem Service Value of Arid Region: A case study in the middle and lower reaches of Shule River Basin, NW China. J. Clean. Prod. 2021, 319, 128718. [Google Scholar] [CrossRef]
- Xu, H.; Chen, J.; Wang, J.W.; Zhou, T.H.; Jiang, J.C.; Huang, D.M. Coupling Coordination Research between Land Use Intensity and Gross Ecosystem Product: A Case Study of Jiande City, Zhejiang Province. J. Zhejiang For. Sci. Technol. 2023, 43, 63–73. [Google Scholar]
- Chaikaew, P.; Hodges, A.W.; Grunwald, S. Estimating the value of ecosystem services in a mixed-use watershed: A choice experiment approach. Ecosyst. Serv. 2017, 23, 228–237. [Google Scholar] [CrossRef]
- Feng, Z.; Cui, Y.Z.; Zhang, H.B.; Gao, Y. Assessment of human consumption of ecosystem services in China from 2000 to 2014 based on an ecosystem service footprint model. Ecol. Indic. 2018, 94, 468–481. [Google Scholar] [CrossRef]
- Howe, C.; Suich, H.; Vira, B.; Mace, G.M. Creating win-wins from trade-offs? Ecosystem services for human well-being: A meta-analysis of ecosystem service trade-offs and synergies in the real world. Glob. Environ. Chang. 2014, 28, 263–275. [Google Scholar] [CrossRef]
- Cao, Y.N.; Kong, L.Q.; Zhang, L.F.; Ouyang, Z.Y. The balance between economic development and ecosystem service value in the process of land urbanization: A case study of China’s land urbanization from 2000 to 2015. Land Use Policy 2021, 108, 105536. [Google Scholar] [CrossRef]
Main Factors | Driving Factors | Units | Signs |
---|---|---|---|
Natural factors | Slope | degree (°) | E1 |
Aspect | degree (°) | E2 | |
Precipitation | (mm) | E3 | |
Temperature | (°C) | E4 | |
Soil erosion | Multi-class | E5 | |
NDVI | / | E6 | |
NPP | / | E7 | |
Socioeconomic factors | GDP | 10,000 yuan/km2 | E8 |
Population | people/km2 | E9 | |
Per capita GDP | Yuan/people | E10 | |
Land use intensity (LUI) | / | E11 | |
Human activity index (HAI) | / | E12 |
ESV | Cultivated Land | Woodland | Grassland | Water Body | Construction Land | Unused Land | Wetland |
---|---|---|---|---|---|---|---|
Gas regulation (GR) | 71.18 | 285.31 | 0.00 | 0.00 | 3.97 | 256.26 | |
Climate regulation (CR) | 126.71 | 268.79 | 65.49 | 0.00 | 8.59 | 2434.47 | |
Water supply (WS) | 85.43 | 270.12 | 2904.28 | 0.00 | 4.62 | 2206.68 | |
Soil formation (SF) | 207.85 | 265.50 | 1.43 | 0.00 | 11.24 | 243.44 | |
Waste treatment (WT) | 233.49 | 113.60 | 2591.07 | 0.00 | 17.18 | 2588.22 | |
Biodiversity protection (BP) | 101.07 | 297.85 | 354.50 | 0.00 | 26.41 | 355.91 | |
Food production (FP) | 142.37 | 21.79 | 14.24 | 0.00 | 1.32 | 42.71 | |
Raw material (RM) | 14.24 | 196.81 | 1.43 | 0.00 | 2.65 | 9.97 | |
Recreation and culture (RC) | 1.43 | 137.37 | 617.87 | 12.15 | 15.85 | 790.13 | |
Total | 983.75 | 1857.15 | 6550.29 | 12.15 | 91.82 | 8927.79 |
Scenarios | Scenario Description |
---|---|
BLS | Without taking into account the restrictive effects or planning policies on LUCCs, simulates the future scenarios based on land use and land cover conversion patterns in the Tarim Basin from 2010 to 2020. |
CPS | Probability of conversion of arable land to construction land reduced by 80–90%. Except for unused land, the other land types experienced a 40% reduction. |
EPS | Taking into account the ecological, agricultural, urban, and other land use patterns, the probability of forest and grassland transitioning to built-up areas reduces by 50%, the likelihood of cropland shifting to built-up areas decreases by 30%, and the likelihood of cropland and grassland shifting to forested land increases by 30%. |
Land Use Types | 1980 | 1990 | 2000 | 2010 | 2020 | 1980– 1990 (%) | 1990– 2000 (%) | 2000– 2010 (%) | 2010– 2020 (%) | 1980– 2020 (%) |
---|---|---|---|---|---|---|---|---|---|---|
Cultivated land | 2609.58 | 2689.39 | 3084.34 | 3483.73 | 4096.86 | 3.06 | 14.69 | 12.95 | 14.97 | 56.99 |
Woodland | 2307.49 | 2349.42 | 2479.79 | 2409.82 | 2369.69 | 1.82 | 5.55 | −2.82 | −1.69 | 2.70 |
Grassland | 21,510.51 | 21,848.70 | 21,135.56 | 20,937.49 | 20,699.94 | 1.57 | −3.26 | −0.94 | −1.15 | −3.77 |
Water Body | 14,944.57 | 14,926.63 | 14,405.71 | 14,306.49 | 13,431.58 | −0.12 | −3.49 | −0.69 | −6.51 | −10.12 |
Construction land | 2.10 | 2.47 | 2.26 | 2.63 | 3.65 | 17.74 | −8.39 | 16.22 | 27.92 | 73.91 |
Unused land | 6165.74 | 6113.78 | 6156.95 | 6148.38 | 6134.47 | −0.84 | 0.71 | −0.14 | −0.23 | −0.51 |
Wetland | 7011.16 | 6970.77 | 7685.86 | 7390.19 | 6566.74 | −0.58 | 10.26 | −3.85 | −12.54 | −6.34 |
Total | 54,551.15 | 54,901.16 | 54,950.48 | 54,678.73 | 53,302.94 | 0.64 | 0.09 | −0.49 | −2.58 | −2.29 |
1980 | 1990 | 2000 | 2010 | 2020 | Average % | Rank | Tend | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
ESVf | % | ESVf | % | ESVf | % | ESVf | % | ESVf | % | ||||
GR | 3776.08 | 6.9 | 3828.36 | 6.97 | 3807.69 | 6.93 | 3791.53 | 6.93 | 3780.37 | 6.83 | 6.91 | 7 | ↓ |
CR | 6183.62 | 11.3 | 6229.12 | 11.35 | 6397.35 | 11.64 | 6329.77 | 11.58 | 6371.67 | 11.51 | 11.48 | 4 | ↑ |
WS | 12,033.07 | 26.9 | 12,069.59 | 21.98 | 11,977.93 | 21.80 | 11,859.13 | 21.69 | 12,064.44 | 21.80 | 22.83 | 1 | ↓ |
SF | 5959.30 | 10.9 | 6039.60 | 11.00 | 6029.47 | 10.97 | 6056.70 | 11.08 | 6104.48 | 11.03 | 11.00 | 5 | ↑ |
WT | 12,291.40 | 22.5 | 12,322.63 | 22.44 | 12,353.01 | 22.48 | 12,294.55 | 22.48 | 12,581.23 | 22.73 | 22.53 | 2 | ↑ |
BP | 6946.67 | 12.7 | 6998.26 | 12.75 | 6958.21 | 12.66 | 6936.66 | 12.69 | 6950.12 | 12.56 | 12.67 | 3 | ↓ |
FP | 1352.02 | 2.5 | 1375.54 | 2.51 | 1410.86 | 2.57 | 1458.79 | 2.67 | 1533.56 | 2.77 | 2.60 | 8 | ↑ |
RM | 1135.02 | 2.1 | 1149.51 | 2.09 | 1148.97 | 2.09 | 1140.62 | 2.09 | 1132.67 | 2.05 | 2.08 | 9 | ↓ |
RC | 4874.73 | 8.9 | 4889.30 | 8.91 | 4867.75 | 8.86 | 4811.75 | 8.80 | 4824.68 | 8.72 | 8.84 | 6 | ↓ |
Total | 54,551.90 | 100.00 | 54,901.91 | 100.00 | 54,951.25 | 100.00 | 54,679.50 | 100.00 | 55,343.23 | 100.00 | 100.00 | ↓ |
Variation in Value Coefficient | 1980 | 1990 | 2000 | 2010 | 2020 | |||||
---|---|---|---|---|---|---|---|---|---|---|
% | CS | % | CS | % | CS | % | CS | % | CS | |
Cultivated land value coefficient ±50% | 1.51 | 0.030 | 1.75 | 0.035 | 1.8 | 0.04 | 2.22 | 0.04 | 2.62 | 0.052 |
Woodland value coefficient ±50% | 0.62 | 0.012 | 0.71 | 0.014 | 0.78 | 0.017 | 0.88 | 0.018 | 0.94 | 0.018 |
Grassland value coefficient ±50% | 27.90 | 0.544 | 26.74 | 0.530 | 26.27 | 0.520 | 25.10 | 0.50 | 24.86 | 0.497 |
Water body value coefficient ±50% | 12.04 | 0.241 | 11.96 | 0.239 | 11.38 | 0.228 | 11.38 | 0.23 | 11.40 | 0.228 |
Construction land value coefficient ±50% | 0.00 | 0.000 | 0.00 | 0.000 | 0.00 | 0.000 | 0.00 | 0.00 | 0.00 | 0.000 |
Unused land value coefficient ±50% | 2.02 | 0.040 | 2.05 | 0.041 | 1.97 | 0.039 | 2.00 | 0.04 | 2.01 | 0.040 |
Wetland value coefficient ±50% | 8.71 | 0.174 | 10.52 | 0.222 | 9.77 | 0.195 | 8.45 | 0.17 | 8.19 | 0.164 |
2020 | 2030 (BLS) | 2030 (CPS) | 2030 (EPS) | |
---|---|---|---|---|
Total | 55,343.23 | 51,133.90 | 53,624.99 | 54,561.26 |
difference | 0 | 4209.33 | 1718.24 | 781.97 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mamat, A.; Aimaiti, M.; Saydi, M.; Wang, J. Evolution and Driving Forces of Ecological Service Value in Response to Land Use Change in Tarim Basin, Northwest China. Remote Sens. 2024, 16, 2311. https://doi.org/10.3390/rs16132311
Mamat A, Aimaiti M, Saydi M, Wang J. Evolution and Driving Forces of Ecological Service Value in Response to Land Use Change in Tarim Basin, Northwest China. Remote Sensing. 2024; 16(13):2311. https://doi.org/10.3390/rs16132311
Chicago/Turabian StyleMamat, Aynur, Muhetaer Aimaiti, Muattar Saydi, and Jianping Wang. 2024. "Evolution and Driving Forces of Ecological Service Value in Response to Land Use Change in Tarim Basin, Northwest China" Remote Sensing 16, no. 13: 2311. https://doi.org/10.3390/rs16132311
APA StyleMamat, A., Aimaiti, M., Saydi, M., & Wang, J. (2024). Evolution and Driving Forces of Ecological Service Value in Response to Land Use Change in Tarim Basin, Northwest China. Remote Sensing, 16(13), 2311. https://doi.org/10.3390/rs16132311