Change Detection Methods for Remote Sensing in the Last Decade: A Comprehensive Review
Abstract
:1. Introduction
- Compared to the previous survey works on change detection [10,11,12,49,50,51,52,60,61,62], our study provides a more comprehensive overview of the latest research on change detection in the past decade. Moreover, we systematically review the entirety of current algorithms to date and offer a relatively comprehensive depiction of the current state of the field.
- Several systematical taxonomies of current change detection algorithms are presented from three perspectives: algorithm granularity, supervision modes, and learning frameworks. Furthermore, some influential works published with state-of-the-art performance on several dominant benchmarks are provided for future research.
- Change detection learning schemes and their applications remain a rapidly developing research field, as illustrated in Figure 1, and many challenges need to be addressed. In this paper, we comprehensively review the existing challenges in this field and provide our perspective on future trends.
2. Preliminary Knowledge
2.1. Task Definition
- Image preprocessing: This involves removing noise, correcting geometric and radiometric distortions, and enhancing image quality to ensure the images are properly aligned and suitable for analysis.
- Image registration: This involves aligning the images spatially and temporally to ensure that corresponding pixels in each image are accurately compared.
- Change detection algorithm selection: To accurately detect changes in images, it is crucial to select the appropriate change detection algorithms based on the application and image characteristics. This can include traditional methods as well as more advanced techniques such as CNN methods or transformer methods.
- Postprocessing: This involves removing noise and false positives and generating a final change map that accurately represents the changes. It is worth noting that this step is not mandatory and can be skipped.
2.2. Change Detection Datasets
2.3. Evaluation Metrics
2.4. Transformer Basics
3. Methodology: A Survey
3.1. Taxonomy Based on Algorithm Granularity
- Pixel-based methods: Pixel-based methods are commonly used for image segmentation tasks [91,92,93,94] in computer vision. These methods assign a label to each individual pixel in an image based on its spectral characteristics, with the goal of partitioning the image into regions of different classes. Traditional pixel-based methods often suffer from false positives and false negatives. Fortunately, with the advent of deep learning and its increased receptive field, such as the pyramid pooling module [95], atrous convolution [96], and attention module [33], pixel classification methods based on deep learning can achieve significantly improved performance. It is worth noting that most end-to-end CNN models fall under the category of pixel-based methods.
- Region-based methods: Region-based methods [97,98], also known as object-based methods, leverage image segmentation techniques first to group pixels into meaningful regions, such as objects, superpixels, or bounding boxes, based on their spatial, spectral, and contextual characteristics. These grouped regions are then used as the units for detecting and recognizing the changed results with either traditional or deep learning methods.
- Hybrid methods: The use of hybrid methods [19,38,99] has been identified as a powerful approach for change detection tasks. These methods leverage the advantages of multiple individual techniques such as pixel-based methods, region-based methods, or a combination of both to achieve improved accuracy in change detection. By integrating different methodologies, hybrid approaches can address the limitations of each method and provide a more robust and comprehensive solution for detecting changes in remote sensing imagery. These methods typically involve the parallel or successive use of pixel-based and region-based techniques to detect changes from different perspectives.
3.2. Taxonomy Based on Supervision Modes
- Unsupervised learning. Unsupervised learning is a machine learning technique that discovers patterns and structures in data without guidance or labels, enabling the identification of hidden relationships and structures without prior knowledge. However, it can be difficult to interpret. It may suffer from the “curse of dimensionality”, where the number of features or dimensions of the data can lead to computational inefficiencies or inaccurate results.
- Semisupervised learning. Semisupervised learning aims at training the algorithm with a limited amount of labeled data and a large set of unlabeled data. It is advantageous when labeled data are scarce or expensive to obtain and can help improve model accuracy by leveraging unlabeled data. Still, its implementation can be difficult, and its performance depends on the quality of unlabeled data, which can introduce noise and lead to decreased performance.
- Supervised learning. Supervised learning is trained using labeled data to make accurate predictions on new, unseen data by learning patterns from input and corresponding output data. It is easy to implement with readily available labeled data and can be used to solve various problems, but it requires a large amount of labeled data that should be accurate and unbiased, and models may struggle with data different from the training data, leading to overfitting or underfitting.
3.3. Taxonomy Based on Learning Frameworks
Method | Source | Category | Fusion | Highlights |
---|---|---|---|---|
SAR Methods | ||||
Yu et al. [158] | GRSL 2022 | Traditional | Early | proposes a traditional approach that combines a symmetric similarity matrix, a Shannon entropy, and an image segmentation method based on MRF. |
Liu et al. [159] | GRSL 2022 | Traditional | Middle | proposes an unsupervised method to automatically select training samples and utilizes a well-trained RF classifier to achieve change detection result. |
Vinholi et al. [160] | TGRS 2022 | CNN | Early | presents two supervised change detection algorithms based on CNNs that use stacks of SAR images. |
DDNet [161] | GRSL 2022 | CNN | Middle | presents a dual-domain network to jointly exploit the spatial and frequency features for SAR change detection task. |
MSDC [149] | TGRS 2022 | A or T | Middle | proposes a unified framework that integrates unsupervised clustering with CNN to learn clustering-friendly feature representations |
MACNet [150] | IGARSS 2022 | A or T | Early | introduces a multiscale attention convolution network to exploit the spatial information of feature maps from different scales. |
ASGF [151] | GRSL 2023 | A or T | Early | proposes a new SAR image change detection algorithm that is based on an attention mechanism in the spatial domain and a gated linear unit in the frequency domain. |
Multispectral Methods | ||||
MDF CD [162] | GRSL 2022 | Traditional | Early | presents a novel multiscale decision fusion method for unsupervised change detection approach based on Dempster–Shafer theory and modified conditional random field. |
Fang et al. [163] | GRSL 2022 | Traditional | Early | proposes an unsupervised change detection method for high spatial resolution images based on the weighted change vector analysis and the improved Markov random field. |
ECFNet [164] | GRSL 2023 | CNN | Middle | presents a simple and efficient network architecture, extraction, comparison, and fusion network for change detection in remote-sensing images. |
Chen et al. [165] | TGRS 2022 | CNN | Late | incorporates semantic supervision into the self-supervised learning framework for remote sensing image change detection. |
UNet++ [148] | Remote Sensing 2019 | CNN | Early | utilizes the improved UNet++ structure to learn the change map from scratch with encoder–decoder framework. |
DMATNet [166] | TGRS 2022 | A or T | Middle | presents a dual-feature mixed attention-based
transformer network for remote sensing image change detection. |
Chen et al. [43] | TGRS 2022 | A or T | Middle | proposes a bitemporal image transformer to efficiently and effectively model contexts within the spatial-temporal domain. |
PA-Former [167] | GRSL 2022 | A or T | Middle | introduces an end-to-end PA-Former for building change detection that combines prior extraction and contextual fusion together. |
ACAHNet [168] | TGRS 2023 | A or T | Middle | proposes an asymmetric cross-attention hierarchical network by combining CNN and transformer in a series-parallel manner. |
ChangeMamba [59] | Arxiv 2024 | Mamba | Middle | proposes the first Mamba architecture for the change detection task, which introduces spatio-temporal relationship modeling mechanism to obtain accurate change information. |
Hyperspectral Methods | ||||
ACDA [169] | J-STARS 2021 | Traditional | Late | Proposes a hyperspectral anomaly change detection algorithm based on autoencoder to enhance nonlinear representation. |
SMSL [170] | TGRS 2022 | Traditional | Middle | Introduces a sketched multiview subspace learning model for hyperspectral image anomalous change detection task. |
MMSRC [171] | J-STARS 2022 | CNN | Early | Proposes a new multidirection and multiscale spectral–spatial residual network for hyperspectral multiclass change detection. |
SFBS-FFGNET [172] | TGRS 2022 | CNN | Early | Proposes a CNN framework involving slow–fast band selection and feature fusion grouping for hyperspectral image change detection. |
SST-Former [173] | TGRS 2022 | A or T | Middle | Proposes a joint spectral, spatial, and temporal transformer for hyperspectral image change detection. |
Dong et al. [174] | TGRS 2023 | A or T | Middle | Proposes an abundance matrix correlation analysis network based on hierarchical multihead self-cross hybrid attention for hyperspectral change detection. |
CSANet [175] | GRSL 2022 | A or T | Middle | Proposes a new cross-temporal interaction symmetric attention network. |
DPMraN [176] | TGRS 2022 | A or T | Middle | Proposes a deep multiscale pyramid network with spatial–spectral residual attention. |
Heterogeneous Methods | ||||
SDA-HCD [177] | TGRS 2022 | Traditional | Late | Introduces a spectral domain analysis for heterogeneous change detection. |
Sun et al. [178] | TGRS 2022 | Traditional | Middle | Proposes an unsupervised image regression method for change detection tasks based on the structure consistency. |
CAE [179] | TNNLS 2022 | CNN | Late | Proposes an unsupervised change detection method that contains a convolutional autoencoder and a commonality autoencoder. |
TVRBN [180] | TGRS 2022 | CNN | Middle | Proposes an unsupervised joint learning model based on a total variation regularization and bipartite CNNs. |
DA-MSCDNet [181] | IJAEOG 2022 | CNN | Middle | Introduces a domain adaptation and a multisource change detection network to process heterogeneous images. |
TSCNet [182] | Remote Sensing 2023 | A or T | Middle | Proposes a new topology-coupling algorithm for heterogeneous image change detection task. |
Three-Dimensional Change Detection Methods | ||||
Dai et al. [183] | Remote Sensing 2020 | Traditional | Middle | Presents an unsupervised, object-based method for integrated building extraction and change detection with point cloud data. |
Liu et al. [184] | ISPRS IJGI 2021 | Traditional | Early | Introduces an approach for 3D change detection using point-based comparison. |
ChangeGAN [185] | RAL 2021 | CNN | Middle | Proposes a generative adversarial network architecture for point cloud change detection. |
4. Benchmark Performance
5. Future Trends
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Buch, N.E.; Velastin, S.A.; Orwell, J. A Review of Computer Vision Techniques for the Analysis of Urban Traffic. IEEE Trans. Intell. Transp. Syst. 2011, 12, 920–939. [Google Scholar] [CrossRef]
- Liu, Y.; Pang, C.; Zhan, Z.; Zhang, X.; Yang, X. Building Change Detection for Remote Sensing Images Using a Dual-Task Constrained Deep Siamese Convolutional Network Model. IEEE Geosci. Remote Sens. Lett. 2021, 18, 811–815. [Google Scholar] [CrossRef]
- Bruzzone, L.; Fernández-Prieto, D. Automatic analysis of the difference image for unsupervised change detection. IEEE Trans. Geosci. Remote Sens. 2000, 38, 1171–1182. [Google Scholar] [CrossRef]
- Liu, M.; Chai, Z.; Deng, H.; Liu, R. A CNN-Transformer Network With Multiscale Context Aggregation for Fine-Grained Cropland Change Detection. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2022, 15, 4297–4306. [Google Scholar] [CrossRef]
- Shi, S.; Zhong, Y.; Zhao, J.; Lv, P.; Liu, Y.; Zhang, L. Land-Use/Land-Cover Change Detection Based on Class-Prior Object-Oriented Conditional Random Field Framework for High Spatial Resolution Remote Sensing Imagery. IEEE Trans. Geosci. Remote Sens. 2022, 60, 5600116. [Google Scholar] [CrossRef]
- Khan, S.H.; He, X.; Porikli, F.; Bennamoun, M. Forest Change Detection in Incomplete Satellite Images with Deep Neural Networks. IEEE Trans. Geosci. Remote Sens. 2017, 55, 5407–5423. [Google Scholar] [CrossRef]
- Gao, F.; Wang, X.; Gao, Y.; Dong, J.; Wang, S. Sea Ice Change Detection in SAR Images Based on Convolutional-Wavelet Neural Networks. IEEE Geosci. Remote Sens. Lett. 2019, 16, 1240–1244. [Google Scholar] [CrossRef]
- Brunner, D.; Bruzzone, L.; Lemoine, G. Change detection for earthquake damage assessment in built-up areas using very high resolution optical and SAR imagery. In Proceedings of the IEEE International Geoscience & Remote Sensing Symposium, IGARSS, Honolulu, HI, USA, 25–30 July 2010; IEEE: Piscataway, NJ, USA, 2010; pp. 3210–3213. [Google Scholar]
- Gong, M.; Zhao, J.; Liu, J.; Miao, Q.; Jiao, L. Change Detection in Synthetic Aperture Radar Images Based on Deep Neural Networks. IEEE Trans. Neural Netw. Learn. Syst. 2016, 27, 125–138. [Google Scholar] [CrossRef] [PubMed]
- Shafique, A.; Cao, G.; Khan, Z.; Asad, M.; Aslam, M. Deep Learning-Based Change Detection in Remote Sensing Images: A Review. Remote Sens. 2022, 14, 871. [Google Scholar] [CrossRef]
- Jiang, H.; Peng, M.; Zhong, Y.; Xie, H.; Hao, Z.; Lin, J.; Ma, X.; Hu, X. A Survey on Deep Learning-Based Change Detection from High Resolution Remote Sensing Images. Remote Sens. 2022, 14, 1552. [Google Scholar] [CrossRef]
- Zhu, Q.; Guo, X.; Li, Z.; Li, D. A review of multi-class change detection for satellite remote sensing imagery. Geo-Spat. Inf. Sci. 2022, 27, 1–15. [Google Scholar] [CrossRef]
- Huo, C.; Chen, K.; Ding, K.; Zhou, Z.; Pan, C. Learning Relationship for Very High Resolution Image Change Detection. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2016, 9, 3384–3394. [Google Scholar] [CrossRef]
- Bovolo, F.; Bruzzone, L.; Marconcini, M. A Novel Approach to Unsupervised Change Detection Based on a Semisupervised SVM and a Similarity Measure. IEEE Trans. Geosci. Remote Sens. 2008, 46, 2070–2082. [Google Scholar] [CrossRef]
- Seo, D.K.; Kim, Y.; Eo, Y.D.; Lee, M.H.; Park, W.Y. Fusion of SAR and Multispectral Images Using Random Forest Regression for Change Detection. ISPRS Int. J. Geo Inf. 2018, 7, 401. [Google Scholar] [CrossRef]
- Xie, Z.; Wang, M.; Han, Y.; Yang, D. Hierarchical Decision Tree for Change Detection Using High Resolution Remote Sensing Images. In Proceedings of the Geo-Informatics in Sustainable Ecosystem and Society, Handan, China, 25–26 September 2018; Xie, Y., Zhang, A., Liu, H., Feng, L., Eds.; Communications in Computer and Information Science. Springer: Berlin/Heidelberg, Germany, 2016; Volume 980, pp. 176–184. [Google Scholar]
- Cao, G.; Li, Y.; Liu, Y.; Shang, Y. Automatic change detection in high-resolution remote-sensing images by means of level set evolution and support vector machine classification. Int. J. Remote Sens. 2014, 35, 6255–6270. [Google Scholar] [CrossRef]
- Hao, M.; Shi, W.; Zhang, H.; Li, C. Unsupervised Change Detection with Expectation-Maximization-Based Level Set. IEEE Geosci. Remote Sens. Lett. 2014, 11, 210–214. [Google Scholar] [CrossRef]
- Li, H.; Li, M.; Zhang, P.; Song, W.; An, L.; Wu, Y. SAR Image Change Detection Based on Hybrid Conditional Random Field. IEEE Geosci. Remote Sens. Lett. 2015, 12, 910–914. [Google Scholar]
- Hao, M.; Zhou, M.; Jin, J.; Shi, W. An Advanced Superpixel-Based Markov Random Field Model for Unsupervised Change Detection. IEEE Geosci. Remote Sens. Lett. 2020, 17, 1401–1405. [Google Scholar] [CrossRef]
- Zhou, L.; Cao, G.; Li, Y.; Shang, Y. Change Detection Based on Conditional Random Field with Region Connection Constraints in High-Resolution Remote Sensing Images. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2016, 9, 3478–3488. [Google Scholar] [CrossRef]
- Touati, R.; Mignotte, M.; Dahmane, M. Multimodal Change Detection in Remote Sensing Images Using an Unsupervised Pixel Pairwise-Based Markov Random Field Model. IEEE Trans. Image Process. 2020, 29, 757–767. [Google Scholar] [CrossRef]
- Zhu, X.X.; Tuia, D.; Mou, L.; Xia, G.S.; Zhang, L.; Xu, F.; Fraundorfer, F. Deep Learning in Remote Sensing: A Comprehensive Review and List of Resources. IEEE Geosci. Remote Sens. Mag. 2017, 5, 8–36. [Google Scholar] [CrossRef]
- Zhang, L.; Zhang, L.; Du, B. Deep Learning for Remote Sensing Data: A Technical Tutorial on the State of the Art. IEEE Geosci. Remote Sens. Mag. 2016, 4, 22–40. [Google Scholar] [CrossRef]
- Zhan, Y.; Fu, K.; Yan, M.; Sun, X.; Wang, H.; Qiu, X. Change Detection Based on Deep Siamese Convolutional Network for Optical Aerial Images. IEEE Geosci. Remote Sens. Lett. 2017, 14, 1845–1849. [Google Scholar] [CrossRef]
- Huang, R.; Zhou, M.; Xing, Y.; Zou, Y.; Fan, W. Change detection with various combinations of fluid pyramid integration networks. Neurocomputing 2021, 437, 84–94. [Google Scholar] [CrossRef]
- Liu, J.; Gong, M.; Qin, A.K.; Zhang, P. A Deep Convolutional Coupling Network for Change Detection Based on Heterogeneous Optical and Radar Images. IEEE Trans. Neural Netw. Learn. Syst. 2018, 29, 545–559. [Google Scholar] [CrossRef] [PubMed]
- Hou, B.; Liu, Q.; Wang, H.; Wang, Y. From W-Net to CDGAN: Bitemporal Change Detection via Deep Learning Techniques. IEEE Trans. Geosci. Remote Sens. 2020, 58, 1790–1802. [Google Scholar] [CrossRef]
- Khurana, M.; Saxena, V. A Unified Approach to Change Detection Using an Adaptive Ensemble of Extreme Learning Machines. IEEE Geosci. Remote Sens. Lett. 2020, 17, 794–798. [Google Scholar] [CrossRef]
- Kerner, H.R.; Wagstaff, K.L.; Bue, B.D.; Gray, P.C.; III, J.F.B.; Amor, H.B. Toward Generalized Change Detection on Planetary Surfaces With Convolutional Autoencoders and Transfer Learning. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2019, 12, 3900–3918. [Google Scholar] [CrossRef]
- Zhao, W.; Mou, L.; Chen, J.; Bo, Y.; Emery, W.J. Incorporating Metric Learning and Adversarial Network for Seasonal Invariant Change Detection. IEEE Trans. Geosci. Remote Sens. 2020, 58, 2720–2731. [Google Scholar] [CrossRef]
- Lin, Y.; Li, S.; Fang, L.; Ghamisi, P. Multispectral Change Detection with Bilinear Convolutional Neural Networks. IEEE Geosci. Remote Sens. Lett. 2020, 17, 1757–1761. [Google Scholar] [CrossRef]
- Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, L.; Polosukhin, I. Attention is All you Need. In Proceedings of the Advances in Neural Information Processing Systems 2017, Long Beach, CA, USA, 4–9 December 2017; pp. 5998–6008. [Google Scholar]
- Wang, Z.; Jiang, F.; Liu, T.; Xie, F.; Li, P. Attention-Based Spatial and Spectral Network with PCA-Guided Self-Supervised Feature Extraction for Change Detection in Hyperspectral Images. Remote Sens. 2021, 13, 4927. [Google Scholar] [CrossRef]
- Gong, M.; Jiang, F.; Qin, A.K.; Liu, T.; Zhan, T.; Lu, D.; Zheng, H.; Zhang, M. A Spectral and Spatial Attention Network for Change Detection in Hyperspectral Images. IEEE Trans. Geosci. Remote Sens. 2022, 60, 5521614. [Google Scholar] [CrossRef]
- Qu, J.; Hou, S.; Dong, W.; Li, Y.; Xie, W. A Multilevel Encoder-Decoder Attention Network for Change Detection in Hyperspectral Images. IEEE Trans. Geosci. Remote Sens. 2022, 60, 5518113. [Google Scholar] [CrossRef]
- Meng, D.; Gao, F.; Dong, J.; Du, Q.; Li, H. Synthetic Aperture Radar Image Change Detection via Layer Attention-Based Noise-Tolerant Network. IEEE Geosci. Remote Sens. Lett. 2022, 19, 4026505. [Google Scholar] [CrossRef]
- Wang, L.; Li, H. HMCNet: Hybrid Efficient Remote Sensing Images Change Detection Network Based on Cross-Axis Attention MLP and CNN. IEEE Trans. Geosci. Remote Sens. 2022, 60, 1–14. [Google Scholar] [CrossRef]
- Dosovitskiy, A.; Beyer, L.; Kolesnikov, A.; Weissenborn, D.; Zhai, X.; Unterthiner, T.; Dehghani, M.; Minderer, M.; Heigold, G.; Gelly, S.; et al. An Image is Worth 16 × 16 Words: Transformers for Image Recognition at Scale. In Proceedings of the International Conference on Learning Representations, ICLR 2021, Virtual Event, Austria, 3–7 May 2021. [Google Scholar]
- Huang, R.; Wang, R.; Guo, Q.; Zhang, Y.; Fan, W. IDET: Iterative Difference-Enhanced Transformers for High-Quality Change Detection. arXiv 2022, arXiv:2207.09240. [Google Scholar]
- Li, Q.; Zhong, R.; Du, X.; Du, Y. TransUNetCD: A Hybrid Transformer Network for Change Detection in Optical Remote-Sensing Images. IEEE Trans. Geosci. Remote Sens. 2022, 60, 5622519. [Google Scholar] [CrossRef]
- Song, X.; Hua, Z.; Li, J. PSTNet: Progressive Sampling Transformer Network for Remote Sensing Image Change Detection. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2022, 15, 8442–8455. [Google Scholar] [CrossRef]
- Chen, H.; Qi, Z.; Shi, Z. Remote Sensing Image Change Detection with Transformers. IEEE Trans. Geosci. Remote Sens. 2022, 60, 1–14. [Google Scholar] [CrossRef]
- Song, F.; Zhang, S.; Lei, T.; Song, Y.; Peng, Z. MSTDSNet-CD: Multiscale Swin Transformer and Deeply Supervised Network for Change Detection of the Fast-Growing Urban Regions. IEEE Geosci. Remote Sens. Lett. 2022, 19, 1–5. [Google Scholar] [CrossRef]
- Ding, J.; Li, X.; Zhao, L. CDFormer: A Hyperspectral Image Change Detection Method Based on Transformer Encoders. IEEE Geosci. Remote Sens. Lett. 2022, 19, 1–5. [Google Scholar] [CrossRef]
- Lu, K.; Huang, X. RCDT: Relational Remote Sensing Change Detection with Transformer. arXiv 2022, arXiv:2212.04869. [Google Scholar]
- Khan, S.H.; Naseer, M.; Hayat, M.; Zamir, S.W.; Khan, F.S.; Shah, M. Transformers in Vision: A Survey. ACM Comput. Surv. 2022, 54, 200:1–200:41. [Google Scholar] [CrossRef]
- Gangi, M.A.D.; Negri, M.; Turchi, M. Adapting Transformer to End-to-End Spoken Language Translation. In Proceedings of the Interspeech 2019, 20th Annual Conference of the International Speech Communication Association, Graz, Austria, 15–19 September 2019; Kubin, G., Kacic, Z., Eds.; ISCA: Haymarket, Australia, 2019; pp. 1133–1137. [Google Scholar]
- You, Y.; Cao, J.; Zhou, W. A Survey of Change Detection Methods Based on Remote Sensing Images for Multi-Source and Multi-Objective Scenarios. Remote Sens. 2020, 12, 2460. [Google Scholar] [CrossRef]
- Afaq, Y.; Manocha, A. Analysis on change detection techniques for remote sensing applications: A review. Ecol. Inform. 2021, 63, 101310. [Google Scholar] [CrossRef]
- Stilla, U.; Xu, Y. Change detection of urban objects using 3D point clouds: A review. ISPRS J. Photogramm. Remote Sens. 2023, 197, 228–255. [Google Scholar] [CrossRef]
- Li, J.; Zhu, S.; Gao, Y.; Zhang, G.; Xu, Y. Change Detection for High-Resolution Remote Sensing Images Based on a Multi-Scale Attention Siamese Network. Remote Sens. 2022, 14, 3464. [Google Scholar] [CrossRef]
- Zhou, Q.; Li, X.; He, L.; Yang, Y.; Cheng, G.; Tong, Y.; Ma, L.; Tao, D. TransVOD: End-to-end Video Object Detection with Spatial-Temporal Transformers. arXiv 2022, arXiv:2201.05047. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Ding, H.; Zhang, W.; Yuan, H.; Pang, J.; Cheng, G.; Chen, K.; Liu, Z.; Loy, C.C. Transformer-Based Visual Segmentation: A Survey. arXiv 2023, arXiv:2304.09854. [Google Scholar]
- Dhariwal, P.; Nichol, A.Q. Diffusion Models Beat GANs on Image Synthesis. In Proceedings of the NeurIPS 2021, online, 6–14 December 2021; pp. 8780–8794. [Google Scholar]
- Yang, L.; Zhang, Z.; Song, Y.; Hong, S.; Xu, R.; Zhao, Y.; Shao, Y.; Zhang, W.; Yang, M.; Cui, B. Diffusion Models: A Comprehensive Survey of Methods and Applications. arXiv 2022, arXiv:2209.00796. [Google Scholar] [CrossRef]
- Liu, Y.; Tian, Y.; Zhao, Y.; Yu, H.; Xie, L.; Wang, Y.; Ye, Q.; Liu, Y. VMamba: Visual State Space Model. arXiv 2024, arXiv:2401.10166. [Google Scholar]
- Zhu, L.; Liao, B.; Zhang, Q.; Wang, X.; Liu, W.; Wang, X. Vision Mamba: Efficient Visual Representation Learning with Bidirectional State Space Model. arXiv 2024, arXiv:2401.09417. [Google Scholar]
- Chen, H.; Song, J.; Han, C.; Xia, J.; Yokoya, N. ChangeMamba: Remote Sensing Change Detection with Spatio-Temporal State Space Model. arXiv 2024, arXiv:2404.03425. [Google Scholar] [CrossRef]
- Lillestrand, R.L. Techniques for Change Detection. IEEE Trans. Comput. 1972, 21, 654–659. [Google Scholar] [CrossRef]
- Lu, D.; Mausel, P.; Brondízio, E.; Moran, E. Change detection techniques. Int. J. Remote Sens. 2004, 25, 2365–2401. [Google Scholar] [CrossRef]
- Shi, W.; Zhang, M.; Zhang, R.; Chen, S.; Zhan, Z. Change Detection Based on Artificial Intelligence: State-of-the-Art and Challenges. Remote Sens. 2020, 12, 1688. [Google Scholar] [CrossRef]
- Ren, C.; Wang, X.; Gao, J.; Zhou, X.; Chen, H. Unsupervised Change Detection in Satellite Images with Generative Adversarial Network. IEEE Trans. Geosci. Remote Sens. 2021, 59, 10047–10061. [Google Scholar] [CrossRef]
- Li, Z.; Tang, C.; Liu, X.; Zhang, W.; Dou, J.; Wang, L.; Zomaya, A.Y. Lightweight Remote Sensing Change Detection with Progressive Feature Aggregation and Supervised Attention. IEEE Trans. Geosci. Remote Sens. 2023, 61, 5602812. [Google Scholar] [CrossRef]
- Yuan, J.; Wang, L.; Cheng, S. STransUNet: A Siamese TransUNet-Based Remote Sensing Image Change Detection Network. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2022, 15, 9241–9253. [Google Scholar] [CrossRef]
- Lv, Z.; Huang, H.; Gao, L.; Benediktsson, J.A.; Zhao, M.; Shi, C. Simple Multiscale UNet for Change Detection with Heterogeneous Remote Sensing Images. IEEE Geosci. Remote Sens. Lett. 2022, 19, 2504905. [Google Scholar] [CrossRef]
- Rahmon, G.; Bunyak, F.; Seetharaman, G.; Palaniappan, K. Evaluation of Different Decision Fusion Mechanisms for Robust Moving Object Detection. In Proceedings of the 49th IEEE Applied Imagery Pattern Recognition Workshop, AIPR 2020, Washington DC, DC, USA, 13–15 October 2020; IEEE: Piscataway, NJ, USA, 2020; pp. 1–7. [Google Scholar]
- Radke, R.J.; Andra, S.; Al-Kofahi, O.; Roysam, B. Image change detection algorithms: A systematic survey. IEEE Trans. Image Process. 2005, 14, 294–307. [Google Scholar] [CrossRef] [PubMed]
- Alvarez, J.L.H.; Ravanbakhsh, M.; Demir, B. S2-CGAN: Self-Supervised Adversarial Representation Learning for Binary Change Detection in Multispectral Images. In Proceedings of the IGARSS, Waikoloa, HI, USA, 26 September 2020–2 October 2020; IEEE: Piscataway, NJ, USA, 2020; pp. 2515–2518. [Google Scholar]
- Lv, Z.; Liu, T.; Benediktsson, J.A. Object-Oriented Key Point Vector Distance for Binary Land Cover Change Detection Using VHR Remote Sensing Images. IEEE Trans. Geosci. Remote Sens. 2020, 58, 6524–6533. [Google Scholar] [CrossRef]
- Shiqi, T.; Ailong, M.; Zhuo, Z.; Yanfei, Z. Hi-UCD: A large-scale dataset for urban semantic change detection in remote sensing imagery. arXiv 2020, arXiv:2011.03247. [Google Scholar]
- Ding, L.; Guo, H.; Liu, S.; Mou, L.; Zhang, J.; Bruzzone, L. Bi-Temporal Semantic Reasoning for the Semantic Change Detection in HR Remote Sensing Images. IEEE Trans. Geosci. Remote Sens. 2022, 60, 5620014. [Google Scholar] [CrossRef]
- Peng, D.; Bruzzone, L.; Zhang, Y.; Guan, H.; He, P. SCDNET: A novel convolutional network for semantic change detection in high resolution optical remote sensing imagery. Int. J. Appl. Earth Obs. Geoinf. 2021, 103, 102465. [Google Scholar] [CrossRef]
- Dong, H.; Jiao, L.; Ma, W.; Liu, F.; Liu, X.; Li, L.; Yang, S. Deep Shearlet Network for Change Detection in SAR Images. IEEE Trans. Geosci. Remote Sens. 2022, 60, 5241115. [Google Scholar] [CrossRef]
- Zhang, K.; Lv, X.; Chai, H.; Yao, J. Unsupervised SAR Image Change Detection for Few Changed Area Based on Histogram Fitting Error Minimization. IEEE Trans. Geosci. Remote Sens. 2022, 60, 5231819. [Google Scholar] [CrossRef]
- Chen, H.; Shi, Z. A Spatial-Temporal Attention-Based Method and a New Dataset for Remote Sensing Image Change Detection. Remote Sens. 2020, 12, 1662. [Google Scholar] [CrossRef]
- Lebedev, M.; Vizilter, Y.V.; Vygolov, O.; Knyaz, V.A.; Rubis, A.Y. Change detection in remote sensing images using conditional adversarial networks. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2018, XLII-2, 565–571. [Google Scholar] [CrossRef]
- Ji, S.; Wei, S.; Lu, M. Fully Convolutional Networks for Multisource Building Extraction From an Open Aerial and Satellite Imagery Data Set. IEEE Trans. Geosci. Remote Sens. 2019, 57, 574–586. [Google Scholar] [CrossRef]
- Yang, K.; Xia, G.; Liu, Z.; Du, B.; Yang, W.; Pelillo, M.; Zhang, L. Asymmetric Siamese Networks for Semantic Change Detection in Aerial Images. IEEE Trans. Geosci. Remote Sens. 2022, 60, 5609818. [Google Scholar] [CrossRef]
- Shi, Q.; Liu, M.; Li, S.; Liu, X.; Wang, F.; Zhang, L. A Deeply Supervised Attention Metric-Based Network and an Open Aerial Image Dataset for Remote Sensing Change Detection. IEEE Trans. Geosci. Remote Sens. 2022, 60, 5604816. [Google Scholar] [CrossRef]
- Wang, Q.; Yuan, Z.; Du, Q.; Li, X. GETNET: A General End-to-End 2-D CNN Framework for Hyperspectral Image Change Detection. IEEE Trans. Geosci. Remote Sens. 2019, 57, 3–13. [Google Scholar] [CrossRef]
- Wang, L.; Wang, L.; Wang, H.; Wang, X.; Bruzzone, L. SPCNet: A Subpixel Convolution-Based Change Detection Network for Hyperspectral Images with Different Spatial Resolutions. IEEE Trans. Geosci. Remote Sens. 2022, 60, 5533314. [Google Scholar] [CrossRef]
- Luo, F.; Zhou, T.; Liu, J.; Guo, T.; Gong, X.; Ren, J. Multiscale Diff-Changed Feature Fusion Network for Hyperspectral Image Change Detection. IEEE Trans. Geosci. Remote Sens. 2023, 61, 5502713. [Google Scholar] [CrossRef]
- Luppino, L.T.; Hansen, M.A.; Kampffmeyer, M.; Bianchi, F.M.; Moser, G.; Jenssen, R.; Anfinsen, S.N. Code-Aligned Autoencoders for Unsupervised Change Detection in Multimodal Remote Sensing Images. IEEE Trans. Neural Netw. Learn. Syst. 2022, 35, 60–72. [Google Scholar] [CrossRef] [PubMed]
- Coletta, V.; Marsocci, V.; Ravanelli, R. 3DCD: A new dataset for 2d and 3d change detection using deep learning techniques. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2022, XLIII-B3-2022, 1349–1354. [Google Scholar] [CrossRef]
- Wang, M.; Hong, D.; Han, Z.; Li, J.; Yao, J.; Gao, L.; Zhang, B.; Chanussot, J. Tensor Decompositions for Hyperspectral Data Processing in Remote Sensing: A comprehensive review. IEEE Geosci. Remote Sens. Mag. 2023, 11, 26–72. [Google Scholar] [CrossRef]
- Rosenfield, G.H.; Fitzpatrick-lins, K. A coefficient of agreement as a measure of thematic classification accuracy. Photogramm. Eng. Remote Sens. 1986, 52, 223–227. [Google Scholar]
- Marsocci, V.; Coletta, V.; Ravanelli, R.; Scardapane, S.; Crespi, M. Inferring 3D change detection from bitemporal optical images. ISPRS J. Photogramm. Remote Sens. 2023, 196, 325–339. [Google Scholar] [CrossRef]
- Galassi, A.; Lippi, M.; Torroni, P. Attention in Natural Language Processing. IEEE Trans. Neural Netw. Learn. Syst. 2021, 32, 4291–4308. [Google Scholar] [CrossRef] [PubMed]
- Guo, M.; Xu, T.; Liu, J.; Liu, Z.; Jiang, P.; Mu, T.; Zhang, S.; Martin, R.R.; Cheng, M.; Hu, S. Attention mechanisms in computer vision: A survey. Comput. Vis. Media 2022, 8, 331–368. [Google Scholar] [CrossRef]
- Long, J.; Shelhamer, E.; Darrell, T. Fully convolutional networks for semantic segmentation. In Proceedings of the CVPR, Boston, MA, USA, 7–12 June 2015; pp. 3431–3440. [Google Scholar]
- Li, X.; Li, X.; Zhang, L.; Cheng, G.; Shi, J.; Lin, Z.; Tan, S.; Tong, Y. Improving semantic segmentation via decoupled body and edge supervision. In Proceedings of the ECCV 2020, Glasgow, UK, 23–28 August 2020; Springer: Berlin/Heidelberg, Germany, 2020; pp. 435–452. [Google Scholar]
- Li, X.; He, H.; Li, X.; Li, D.; Cheng, G.; Shi, J.; Weng, L.; Tong, Y.; Lin, Z. PointFlow: Flowing Semantics Through Points for Aerial Image Segmentation. In Proceedings of the IEEE CVPR 2021, Nashville, TN, USA, 20–25 June 2021; pp. 4217–4226. [Google Scholar]
- He, H.; Li, X.; Yang, Y.; Cheng, G.; Tong, Y.; Weng, L.; Lin, Z.; Xiang, S. Boundarysqueeze: Image segmentation as boundary squeezing. arXiv 2021, arXiv:2105.11668. [Google Scholar]
- Zhao, H.; Shi, J.; Qi, X.; Wang, X.; Jia, J. Pyramid Scene Parsing Network. In Proceedings of the CVPR 2017, Minneapolis, MN, USA, 17–22 June 2007; IEEE Computer Society: Piscataway, NJ, USA, 2017; pp. 6230–6239. [Google Scholar]
- Chen, L.; Papandreou, G.; Schroff, F.; Adam, H. Rethinking Atrous Convolution for Semantic Image Segmentation. arXiv 2017, arXiv:1706.05587. [Google Scholar]
- Yang, W.; Yang, X.; Yan, T.; Song, H.; Xia, G. Region-Based Change Detection for Polarimetric SAR Images Using Wishart Mixture Models. IEEE Trans. Geosci. Remote Sens. 2016, 54, 6746–6756. [Google Scholar] [CrossRef]
- Chen, P.; Li, C.; Zhang, B.; Chen, Z.; Yang, X.; Lu, K.; Zhuang, L. A Region-Based Feature Fusion Network for VHR Image Change Detection. Remote Sens. 2022, 14, 5577. [Google Scholar] [CrossRef]
- De Carvalho, O.L.F., Jr.; de Carvalho Júnior, O.A.; de Albuquerque, A.O.; Santana, N.C.; Borges, D.L. Rethinking Panoptic Segmentation in Remote Sensing: A Hybrid Approach Using Semantic Segmentation and Non-Learning Methods. IEEE Geosci. Remote Sens. Lett. 2022, 19, 3512105. [Google Scholar] [CrossRef]
- Atasever, U.H.; Gunen, M.A. Change Detection Approach for SAR Imagery Based on Arc-Tangential Difference Image and k-Means++. IEEE Geosci. Remote Sens. Lett. 2022, 19, 3509605. [Google Scholar] [CrossRef]
- Yu, Q.; Zhang, M.; Yu, L.; Wang, R.; Xiao, J. SAR Image Change Detection Based on Joint Dictionary Learning With Iterative Adaptive Threshold Optimization. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2022, 15, 5234–5249. [Google Scholar] [CrossRef]
- Vinholi, J.G.; Silva, D.; Machado, R.B.; Pettersson, M.I. CNN-Based Change Detection Algorithm for Wavelength-Resolution SAR Images. IEEE Geosci. Remote Sens. Lett. 2022, 19, 4003005. [Google Scholar] [CrossRef]
- Achanta, R.; Shaji, A.; Smith, K.; Lucchi, A.; Fua, P.; Süsstrunk, S. SLIC Superpixels Compared to State-of-the-Art Superpixel Methods. IEEE Trans. Pattern Anal. Mach. Intell. 2012, 34, 2274–2282. [Google Scholar] [CrossRef] [PubMed]
- Amitrano, D.; Guida, R.; Iervolino, P. Semantic Unsupervised Change Detection of Natural Land Cover With Multitemporal Object-Based Analysis on SAR Images. IEEE Trans. Geosci. Remote Sens. 2021, 59, 5494–5514. [Google Scholar] [CrossRef]
- Lu, J.; Li, J.; Chen, G.; Zhao, L.; Xiong, B.; Kuang, G. Improving Pixel-Based Change Detection Accuracy Using an Object Based Approach in Multitemporal SAR Flood Images. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2015, 8, 3486–3496. [Google Scholar] [CrossRef]
- Javed, A.; Jung, S.; Lee, W.H.; Han, Y. Object-Based Building Change Detection by Fusing Pixel-Level Change Detection Results Generated from Morphological Building Index. Remote Sens. 2020, 12, 2952. [Google Scholar] [CrossRef]
- Zhang, X.; Tian, M.; Xing, Y.; Yue, Y.; Li, Y.; Yin, H.; Xia, R.; Jin, J.; Zhang, Y. ADHR-CDNet: Attentive Differential High-Resolution Change Detection Network for Remote Sensing Images. IEEE Trans. Geosci. Remote Sens. 2022, 60, 5634013. [Google Scholar] [CrossRef]
- Han, M.; Li, R.; Zhang, C. LWCDNet: A Lightweight Fully Convolution Network for Change Detection in Optical Remote Sensing Imagery. IEEE Geosci. Remote Sens. Lett. 2022, 19, 6507905. [Google Scholar] [CrossRef]
- Ge, C.; Ding, H.; Molina, I.; He, Y.; Peng, D. Object-Oriented Change Detection Method Based on Spectral-Spatial-Saliency Change Information and Fuzzy Integral Decision Fusion for HR Remote Sensing Images. Remote Sens. 2022, 14, 3297. [Google Scholar] [CrossRef]
- Jiang, X.; Xiang, S.; Wang, M.; Tang, P. Dual-Pathway Change Detection Network Based on the Adaptive Fusion Module. IEEE Geosci. Remote Sens. Lett. 2022, 19, 8018905. [Google Scholar] [CrossRef]
- Wang, L.; Wang, L.; Wang, Q.; Atkinson, P.M. SSA-SiamNet: Spatial-Wise Attention-Based Siamese Network for Hyperspectral Image Change Detection. IEEE Trans. Geosci. Remote Sens. 2022, 60, 5510018. [Google Scholar] [CrossRef]
- Ertürk, S. Fuzzy Fusion of Change Vector Analysis and Spectral Angle Mapper for Hyperspectral Change Detection. In Proceedings of the IGARSS 2018, Valencia, Spain, 22–27 July 2018; IEEE: Piscataway, NJ, USA, 2018; pp. 5045–5048. [Google Scholar]
- Li, H.; Gong, M.; Zhang, M.; Wu, Y. Spatially Self-Paced Convolutional Networks for Change Detection in Heterogeneous Images. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 4966–4979. [Google Scholar] [CrossRef]
- Wu, J.; Li, B.; Qin, Y.; Ni, W.; Zhang, H.; Fu, R.; Sun, Y. A multiscale graph convolutional network for change detection in homogeneous and heterogeneous remote sensing images. Int. J. Appl. Earth Obs. Geoinf. 2021, 105, 102615. [Google Scholar] [CrossRef]
- Wan, L.; Xiang, Y.; You, H. An Object-Based Hierarchical Compound Classification Method for Change Detection in Heterogeneous Optical and SAR Images. IEEE Trans. Geosci. Remote Sens. 2019, 57, 9941–9959. [Google Scholar] [CrossRef]
- Wang, J.; Dobigeon, N.; Chabert, M.; Wang, D.; Huang, J.; Huang, T. CD-GAN: A robust fusion-based generative adversarial network for unsupervised change detection between heterogeneous images. arXiv 2022, arXiv:2203.00948. [Google Scholar]
- Marmol, U.; Borowiec, N. Analysis and Verification of Building Changes Based on Point Clouds from Different Sources and Time Periods. Remote Sens. 2023, 15, 1414. [Google Scholar] [CrossRef]
- Chai, J.X.; Zhang, Y.S.; Yang, Z.; Wu, J. 3D change detection of point clouds based on density adaptive local euclidean distance. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2022, XLIII-B2-2022, 523–530. [Google Scholar] [CrossRef]
- Marinelli, D.; Paris, C.; Bruzzone, L. A Novel Approach to 3-D Change Detection in Multitemporal LiDAR Data Acquired in Forest Areas. IEEE Trans. Geosci. Remote Sens. 2018, 56, 3030–3046. [Google Scholar] [CrossRef]
- Bu, S.; Li, Q.; Han, P.; Leng, P.; Li, K. Mask-CDNet: A mask based pixel change detection network. Neurocomputing 2020, 378, 166–178. [Google Scholar] [CrossRef]
- Gong, M.; Zhan, T.; Zhang, P.; Miao, Q. Superpixel-Based Difference Representation Learning for Change Detection in Multispectral Remote Sensing Images. IEEE Trans. Geosci. Remote Sens. 2017, 55, 2658–2673. [Google Scholar] [CrossRef]
- Zhang, X.; Liu, G.; Zhang, C.; Atkinson, P.M.; Tan, X.; Jian, X.; Zhou, X.; Li, Y. Two-Phase Object-Based Deep Learning for Multi-Temporal SAR Image Change Detection. Remote Sens. 2020, 12, 548. [Google Scholar] [CrossRef]
- Zhang, W.; Jiao, L.; Liu, F.; Yang, S.; Song, W.; Liu, J. Sparse Feature Clustering Network for Unsupervised SAR Image Change Detection. IEEE Trans. Geosci. Remote Sens. 2022, 60, 5226713. [Google Scholar] [CrossRef]
- Saha, S.; Bovolo, F.; Bruzzone, L. Building Change Detection in VHR SAR Images via Unsupervised Deep Transcoding. IEEE Trans. Geosci. Remote Sens. 2021, 59, 1917–1929. [Google Scholar] [CrossRef]
- Wang, C.; Su, W.; Gu, H. SAR Image Change Detection Based on Semisupervised Learning and Two-Step Training. IEEE Geosci. Remote Sens. Lett. 2022, 19, 4008905. [Google Scholar] [CrossRef]
- Wang, J.; Wang, Y.; Chen, B.; Liu, H. LCS-EnsemNet: A Semisupervised Deep Neural Network for SAR Image Change Detection with Dual Feature Extraction and Label-Consistent Self-Ensemble. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 11903–11925. [Google Scholar] [CrossRef]
- Chen, G.; Zhao, Y.; Wang, Y.; Yap, K. SSN: Stockwell Scattering Network for SAR Image Change Detection. IEEE Geosci. Remote Sens. Lett. 2023, 20, 4001405. [Google Scholar] [CrossRef]
- Zhang, X.; Su, X.; Yuan, Q.; Wang, Q. Spatial-Temporal Gray-Level Co-Occurrence Aware CNN for SAR Image Change Detection. IEEE Geosci. Remote Sens. Lett. 2022, 19, 4018605. [Google Scholar] [CrossRef]
- Bergamasco, L.; Saha, S.; Bovolo, F.; Bruzzone, L. Unsupervised Change Detection Using Convolutional-Autoencoder Multiresolution Features. IEEE Trans. Geosci. Remote Sens. 2022, 60, 4408119. [Google Scholar] [CrossRef]
- Chen, Y.; Bruzzone, L. A Self-Supervised Approach to Pixel-Level Change Detection in Bi-Temporal RS Images. IEEE Trans. Geosci. Remote Sens. 2022, 60, 4413911. [Google Scholar] [CrossRef]
- Shi, J.; Wu, T.; Qin, A.K.; Lei, Y.; Jeon, G. Semisupervised Adaptive Ladder Network for Remote Sensing Image Change Detection. IEEE Trans. Geosci. Remote Sens. 2022, 60, 5408220. [Google Scholar] [CrossRef]
- Wang, J.X.; Li, T.; Chen, S.B.; Tang, J.; Luo, B.; Wilson, R.C. Reliable Contrastive Learning for Semi-Supervised Change Detection in Remote Sensing Images. IEEE Trans. Geosci. Remote. Sens. 2022, 60, 4416413. [Google Scholar] [CrossRef]
- Zhang, X.; Yue, Y.; Gao, W.; Yun, S.; Su, Q.; Yin, H.; Zhang, Y. DifUnet++: A Satellite Images Change Detection Network Based on Unet++ and Differential Pyramid. IEEE Geosci. Remote Sens. Lett. 2022, 19, 8006605. [Google Scholar] [CrossRef]
- Li, X.; Yan, L.; Zhang, Y.; Mo, N. SDMNet: A Deep-Supervised Dual Discriminative Metric Network for Change Detection in High-Resolution Remote Sensing Images. IEEE Geosci. Remote Sens. Lett. 2022, 19, 5513905. [Google Scholar] [CrossRef]
- Li, Q.; Gong, H.; Dai, H.; Li, C.; He, Z.; Wang, W.; Feng, Y.; Han, F.; Tuniyazi, A.; Li, H.; et al. Unsupervised Hyperspectral Image Change Detection via Deep Learning Self-Generated Credible Labels. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 9012–9024. [Google Scholar] [CrossRef]
- Hu, M.; Wu, C.; Du, B.; Zhang, L. Binary Change Guided Hyperspectral Multiclass Change Detection. IEEE Trans. Image Process. 2023, 32, 791–806. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Tong, X.; Bruzzone, L.; Du, P. A novel semisupervised framework for multiple change detection in hyperspectral images. In Proceedings of the 2017 IEEE International Geoscience and Remote Sensing Symposium, IGARSS 2017, Fort Worth, TX, USA, 23–28 July 2017; IEEE: Piscataway, NJ, USA, 2017; pp. 173–176. [Google Scholar]
- Wang, L.; Wang, L.; Wang, Q.; Bruzzone, L. RSCNet: A Residual Self-Calibrated Network for Hyperspectral Image Change Detection. IEEE Trans. Geosci. Remote Sens. 2022, 60, 5529917. [Google Scholar] [CrossRef]
- Shi, C.; Zhang, Z.; Zhang, W.; Zhang, C.; Xu, Q. Learning Multiscale Temporal-Spatial-Spectral Features via a Multipath Convolutional LSTM Neural Network for Change Detection with Hyperspectral Images. IEEE Trans. Geosci. Remote Sens. 2022, 60, 5529816. [Google Scholar] [CrossRef]
- Jia, M.; Zhang, C.; Lv, Z.; Zhao, Z.; Wang, L. Bipartite Adversarial Autoencoders with Structural Self-Similarity for Unsupervised Heterogeneous Remote Sensing Image Change Detection. IEEE Geosci. Remote Sens. Lett. 2022, 19, 6515705. [Google Scholar] [CrossRef]
- Luppino, L.T.; Kampffmeyer, M.; Bianchi, F.M.; Moser, G.; Serpico, S.B.; Jenssen, R.; Anfinsen, S.N. Deep Image Translation with an Affinity-Based Change Prior for Unsupervised Multimodal Change Detection. IEEE Trans. Geosci. Remote Sens. 2022, 60, 4700422. [Google Scholar] [CrossRef]
- Jiang, X.; Li, G.; Zhang, X.; He, Y. A Semisupervised Siamese Network for Efficient Change Detection in Heterogeneous Remote Sensing Images. IEEE Trans. Geosci. Remote Sens. 2022, 60, 4700718. [Google Scholar] [CrossRef]
- Jiang, X.; Li, G.; Liu, Y.; Zhang, X.S.; He, Y. Change Detection in Heterogeneous Optical and SAR Remote Sensing Images Via Deep Homogeneous Feature Fusion. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2020, 13, 1551–1566. [Google Scholar] [CrossRef]
- Xiao, W.; Xu, S.; Elberink, S.O.; Vosselman, G. Individual Tree Crown Modeling and Change Detection From Airborne Lidar Data. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2016, 9, 3467–3477. [Google Scholar] [CrossRef]
- Marinelli, D.; Coops, N.C.; Bolton, D.K.; Bruzzone, L. Forest Change Detection in Lidar Data Based on Polar Change Vector Analysis. IEEE Geosci. Remote Sens. Lett. 2022, 19, 6500105. [Google Scholar] [CrossRef]
- Yadav, R.; Nascetti, A.; Ban, Y. Building Change Detection using Multi-Temporal Airborne LiDAR Data. arXiv 2022, arXiv:2204.12535. [Google Scholar] [CrossRef]
- de Gélis, I.; Lefèvre, S.; Corpetti, T. Siamese KPConv: 3D multiple change detection from raw point clouds using deep learning. ISPRS J. Photogramm. Remote Sens. 2023, 197, 274–291. [Google Scholar] [CrossRef]
- Peng, D.; Zhang, Y.; Guan, H. End-to-End Change Detection for High Resolution Satellite Images Using Improved UNet++. Remote Sens. 2019, 11, 1382. [Google Scholar] [CrossRef]
- Dong, H.; Ma, W.; Jiao, L.; Liu, F.; Li, L. A Multiscale Self-Attention Deep Clustering for Change Detection in SAR Images. IEEE Trans. Geosci. Remote Sens. 2022, 60, 5207016. [Google Scholar] [CrossRef]
- Li, X.; Gao, F.; Dong, J.; Qi, L. Change Detection in Sar Images Based on A Multi-Scale Attention Convolution Network. In Proceedings of the IGARSS 2022, Kuala Lumpur, Malaysia, 17–22 July 2022; IEEE: Piscataway, NJ, USA, 2022; pp. 3219–3222. [Google Scholar]
- Zhao, C.; Ma, L.; Wang, L.; Ohtsuki, T.; Mathiopoulos, P.T.; Wang, Y. SAR Image Change Detection in Spatial-Frequency Domain Based on Attention Mechanism and Gated Linear Unit. IEEE Geosci. Remote Sens. Lett. 2023, 20, 4002205. [Google Scholar] [CrossRef]
- Yan, T.; Wan, Z.; Zhang, P.; Cheng, G.; Lu, H. TransY-Net: Learning Fully Transformer Networks for Change Detection of Remote Sensing Images. IEEE Trans. Geosci. Remote Sens. 2023, 61, 4410012. [Google Scholar] [CrossRef]
- Yan, L.; Jiang, J. A Hybrid Siamese Network with Spatiotemporal Enhancement and Two-Level Feature Fusion for Remote Sensing Image Change Detection. IEEE Trans. Geosci. Remote Sens. 2023, 61, 4403217. [Google Scholar] [CrossRef]
- Chen, K.; Chen, B.; Liu, C.; Li, W.; Zou, Z.; Shi, Z. RSMamba: Remote Sensing Image Classification with State Space Model. arXiv 2024, arXiv:2403.19654. [Google Scholar] [CrossRef]
- Wang, G.; Zhang, X.; Peng, Z.; Zhang, T.; Jia, X.; Jiao, L. S2Mamba: A Spatial-spectral State Space Model for Hyperspectral Image Classification. arXiv 2024, arXiv:2404.18213. [Google Scholar]
- Zhao, S.; Chen, H.; Zhang, X.; Xiao, P.; Bai, L.; Ouyang, W. Rs-mamba for large remote sensing image dense prediction. arXiv 2024, arXiv:2404.02668. [Google Scholar]
- Liu, C.; Chen, K.; Chen, B.; Zhang, H.; Zou, Z.; Shi, Z. RSCaMa: Remote Sensing Image Change Captioning with State Space Model. arXiv 2024, arXiv:2404.18895. [Google Scholar] [CrossRef]
- Yu, X.; Yue, X. Similarity Matrix Entropy for Multitemporal Polarimetric SAR Change Detection. IEEE Geosci. Remote Sens. Lett. 2022, 19, 4003805. [Google Scholar] [CrossRef]
- Liu, Z.; Chen, Z.; Li, L. An Automatic High Confidence Sets Selection Strategy for SAR Images Change Detection. IEEE Geosci. Remote Sens. Lett. 2022, 19, 4003505. [Google Scholar] [CrossRef]
- Vinholi, J.G.; Palm, B.G.; Silva, D.; Machado, R.B.; Pettersson, M.I. Change Detection Based on Convolutional Neural Networks Using Stacks of Wavelength-Resolution Synthetic Aperture Radar Images. IEEE Trans. Geosci. Remote Sens. 2022, 60, 5236414. [Google Scholar] [CrossRef]
- Qu, X.; Gao, F.; Dong, J.; Du, Q.; Li, H. Change Detection in Synthetic Aperture Radar Images Using a Dual-Domain Network. IEEE Geosci. Remote Sens. Lett. 2022, 19, 4013405. [Google Scholar] [CrossRef]
- Shao, P.; Yi, Y.; Liu, Z.; Dong, T.; Ren, D. Novel Multiscale Decision Fusion Approach to Unsupervised Change Detection for High-Resolution Images. IEEE Geosci. Remote Sens. Lett. 2022, 19, 2503105. [Google Scholar] [CrossRef]
- Fang, H.; Du, P.; Wang, X.; Lin, C.; Tang, P. Unsupervised Change Detection Based on Weighted Change Vector Analysis and Improved Markov Random Field for High Spatial Resolution Imagery. IEEE Geosci. Remote Sens. Lett. 2022, 19, 1. [Google Scholar] [CrossRef]
- Zhu, S.; Song, Y.; Zhang, Y.; Zhang, Y. ECFNet: A Siamese Network with Fewer FPs and Fewer FNs for Change Detection of Remote-Sensing Images. IEEE Geosci. Remote Sens. Lett. 2023, 20, 6001005. [Google Scholar] [CrossRef]
- Chen, H.; Li, W.; Chen, S.; Shi, Z. Semantic-Aware Dense Representation Learning for Remote Sensing Image Change Detection. IEEE Trans. Geosci. Remote Sens. 2022, 60, 5630018. [Google Scholar] [CrossRef]
- Song, X.; Hua, Z.; Li, J. Remote Sensing Image Change Detection Transformer Network Based on Dual-Feature Mixed Attention. IEEE Trans. Geosci. Remote Sens. 2022, 60, 5920416. [Google Scholar] [CrossRef]
- Liu, M.; Shi, Q.; Chai, Z.; Li, J. PA-Former: Learning Prior-Aware Transformer for Remote Sensing Building Change Detection. IEEE Geosci. Remote Sens. Lett. 2022, 19, 6515305. [Google Scholar] [CrossRef]
- Zhang, X.; Cheng, S.; Wang, L.; Li, H. Asymmetric Cross-Attention Hierarchical Network Based on CNN and Transformer for Bitemporal Remote Sensing Images Change Detection. IEEE Trans. Geosci. Remote Sens. 2023, 61, 2000415. [Google Scholar] [CrossRef]
- Hu, M.; Wu, C.; Zhang, L.; Du, B. Hyperspectral Anomaly Change Detection Based on Autoencoder. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 3750–3762. [Google Scholar] [CrossRef]
- Chang, S.; Kopp, M.; Ghamisi, P. Sketched Multiview Subspace Learning for Hyperspectral Anomalous Change Detection. IEEE Trans. Geosci. Remote Sens. 2022, 60, 5543412. [Google Scholar] [CrossRef]
- Ge, H.; Tang, Y.; Bi, Z.; Zhan, T.; Xu, Y.; Song, A. MMSRC: A Multidirection Multiscale Spectral-Spatial Residual Network for Hyperspectral Multiclass Change Detection. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2022, 15, 9254–9265. [Google Scholar] [CrossRef]
- Ou, X.; Liu, L.; Tu, B.; Zhang, G.; Xu, Z. A CNN Framework with Slow-Fast Band Selection and Feature Fusion Grouping for Hyperspectral Image Change Detection. IEEE Trans. Geosci. Remote Sens. 2022, 60, 5524716. [Google Scholar] [CrossRef]
- Wang, Y.; Hong, D.; Sha, J.; Gao, L.; Liu, L.; Zhang, Y.; Rong, X. Spectral-Spatial-Temporal Transformers for Hyperspectral Image Change Detection. IEEE Trans. Geosci. Remote Sens. 2022, 60, 5536814. [Google Scholar] [CrossRef]
- Dong, W.; Zhao, J.; Qu, J.; Xiao, S.; Li, N.; Hou, S.; Li, Y. Abundance Matrix Correlation Analysis Network Based on Hierarchical Multihead Self-Cross-Hybrid Attention for Hyperspectral Change Detection. IEEE Trans. Geosci. Remote Sens. 2023, 61, 5501513. [Google Scholar] [CrossRef]
- Song, R.; Ni, W.; Cheng, W.; Wang, X. CSANet: Cross-Temporal Interaction Symmetric Attention Network for Hyperspectral Image Change Detection. IEEE Geosci. Remote Sens. Lett. 2022, 19, 6010105. [Google Scholar] [CrossRef]
- Yang, Y.; Qu, J.; Xiao, S.; Dong, W.; Li, Y.; Du, Q. A Deep Multiscale Pyramid Network Enhanced with Spatial-Spectral Residual Attention for Hyperspectral Image Change Detection. IEEE Trans. Geosci. Remote Sens. 2022, 60, 5525513. [Google Scholar] [CrossRef]
- Sun, Y.; Lei, L.; Guan, D.; Kuang, G.; Liu, L. Graph Signal Processing for Heterogeneous Change Detection. IEEE Trans. Geosci. Remote Sens. 2022, 60, 4415823. [Google Scholar] [CrossRef]
- Sun, Y.; Lei, L.; Guan, D.; Li, M.; Kuang, G. Sparse-Constrained Adaptive Structure Consistency-Based Unsupervised Image Regression for Heterogeneous Remote-Sensing Change Detection. IEEE Trans. Geosci. Remote Sens. 2022, 60, 4405814. [Google Scholar] [CrossRef]
- Wu, Y.; Li, J.; Yuan, Y.; Qin, A.K.; Miao, Q.; Gong, M. Commonality Autoencoder: Learning Common Features for Change Detection From Heterogeneous Images. IEEE Trans. Neural Netw. Learn. Syst. 2022, 33, 4257–4270. [Google Scholar] [CrossRef] [PubMed]
- Hu, L.; Liu, J.; Xiao, L. A Total Variation Regularized Bipartite Network for Unsupervised Change Detection. IEEE Trans. Geosci. Remote Sens. 2022, 60, 1–18. [Google Scholar] [CrossRef]
- Zhang, C.; Feng, Y.; Hu, L.; Tapete, D.; Pan, L.; Liang, Z.; Cigna, F.; Yue, P. A domain adaptation neural network for change detection with heterogeneous optical and SAR remote sensing images. Int. J. Appl. Earth Obs. Geoinf. 2022, 109, 102769. [Google Scholar] [CrossRef]
- Wang, X.; Cheng, W.; Feng, Y.; Song, R. TSCNet: Topological Structure Coupling Network for Change Detection of Heterogeneous Remote Sensing Images. Remote Sens. 2023, 15, 621. [Google Scholar] [CrossRef]
- Dai, C.; Zhang, Z.; Lin, D. An Object-Based Bidirectional Method for Integrated Building Extraction and Change Detection between Multimodal Point Clouds. Remote Sens. 2020, 12, 1680. [Google Scholar] [CrossRef]
- Liu, D.; Li, D.; Wang, M.; Wang, Z. 3D Change Detection Using Adaptive Thresholds Based on Local Point Cloud Density. ISPRS Int. J. Geo Inf. 2021, 10, 127. [Google Scholar] [CrossRef]
- Nagy, B.; Kovács, L.; Benedek, C. ChangeGAN: A Deep Network for Change Detection in Coarsely Registered Point Clouds. IEEE Robot. Autom. Lett. 2021, 6, 8277–8284. [Google Scholar] [CrossRef]
- Zhang, C.; Wang, L.; Cheng, S.; Li, Y. SwinSUNet: Pure Transformer Network for Remote Sensing Image Change Detection. IEEE Trans. Geosci. Remote Sens. 2022, 60, 5224713. [Google Scholar] [CrossRef]
- Liu, R.; Wang, R.; Huang, J.; Li, J.; Jiao, L. Change Detection in SAR Images Using Multiobjective Optimization and Ensemble Strategy. IEEE Geosci. Remote Sens. Lett. 2021, 18, 1585–1589. [Google Scholar] [CrossRef]
- Fang, W.; Xi, C. Land-Cover Change Detection for SAR Images Based on Biobjective Fuzzy Local Information Clustering Method with Decomposition. IEEE Geosci. Remote Sens. Lett. 2022, 19, 4506105. [Google Scholar] [CrossRef]
- Gong, M.; Zhou, Z.; Ma, J. Change Detection in Synthetic Aperture Radar Images based on Image Fusion and Fuzzy Clustering. IEEE Trans. Image Process. 2012, 21, 2141–2151. [Google Scholar] [CrossRef] [PubMed]
- Gao, F.; Dong, J.; Li, B.; Xu, Q. Automatic Change Detection in Synthetic Aperture Radar Images Based on PCANet. IEEE Geosci. Remote Sens. Lett. 2016, 13, 1792–1796. [Google Scholar] [CrossRef]
- Gao, Y.; Gao, F.; Dong, J.; Wang, S. Change Detection From Synthetic Aperture Radar Images Based on Channel Weighting-Based Deep Cascade Network. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2019, 12, 4517–4529. [Google Scholar] [CrossRef]
- Wang, R.; Ding, F.; Chen, J.; Liu, B.; Zhang, J.; Jiao, L. SAR Image Change Detection Method via a Pyramid Pooling Convolutional Neural Network. In Proceedings of the IGARSS 2020, Waikoloa, HI, USA, 26 September–2 October 2020; IEEE: Piscataway, NJ, USA, 2020; pp. 312–315. [Google Scholar]
- Jiang, Y.; Hu, L.; Zhang, Y.; Yang, X. WRICNet: A Weighted Rich-scale Inception Coder Network for Multi-Resolution Remote Sensing Image Change Detection. arXiv 2021, arXiv:2108.07955. [Google Scholar] [CrossRef]
- Lin, M.; Yang, G.; Zhang, H. Transition Is a Process: Pair-to-Video Change Detection Networks for Very High Resolution Remote Sensing Images. IEEE Trans. Image Process. 2023, 32, 57–71. [Google Scholar] [CrossRef] [PubMed]
- Zhao, M.; Zhao, Z.; Gong, S.; Liu, Y.; Yang, J.; Xiong, X.; Li, S. Spatially and Semantically Enhanced Siamese Network for Semantic Change Detection in High-Resolution Remote Sensing Images. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2022, 15, 2563–2573. [Google Scholar] [CrossRef]
- Caye Daudt, R.; Le Saux, B.; Boulch, A. Fully Convolutional Siamese Networks for Change Detection. In Proceedings of the 2018 25th IEEE International Conference on Image Processing (ICIP), Athens, Greece, 7–10 October 2018; pp. 4063–4067. [Google Scholar]
- Fang, S.; Li, K.; Shao, J.; Li, Z. SNUNet-CD: A Densely Connected Siamese Network for Change Detection of VHR Images. IEEE Geosci. Remote Sens. Lett. 2022, 19, 8007805. [Google Scholar] [CrossRef]
- Han, C.; Wu, C.; Guo, H.; Hu, M.; Li, J.; Chen, H. Change Guiding Network: Incorporating Change Prior to Guide Change Detection in Remote Sensing Imagery. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2023, 16, 8395–8407. [Google Scholar] [CrossRef]
- Bandara, W.G.C.; Patel, V.M. A Transformer-Based Siamese Network for Change Detection. In Proceedings of the IGARSS 2022—2022 IEEE International Geoscience and Remote Sensing Symposium, Kuala Lumpur, Malaysia, 17–22 July 2022; pp. 207–210. [Google Scholar]
- Zhang, H.; Lin, M.; Yang, G.; Zhang, L. ESCNet: An End-to-End Superpixel-Enhanced Change Detection Network for Very-High-Resolution Remote Sensing Images. IEEE Trans. Neural Netw. Learn. Syst. 2023, 34, 28–42. [Google Scholar] [CrossRef] [PubMed]
- Daudt, R.C.; Saux, B.L.; Boulch, A.; Gousseau, Y. Multitask learning for large-scale semantic change detection. Comput. Vis. Image Underst. 2019, 187, 102783. [Google Scholar] [CrossRef]
- Cui, F.; Jiang, J. MTSCD-Net: A network based on multi-task learning for semantic change detection of bitemporal remote sensing images. Int. J. Appl. Earth Obs. Geoinf. 2023, 118, 103294. [Google Scholar] [CrossRef]
- Ding, L.; Zhang, J.; Zhang, K.; Guo, H.; Liu, B.; Bruzzone, L. Joint Spatio-Temporal Modeling for the Semantic Change Detection in Remote Sensing Images. IEEE Trans. Geosci. Remote Sens. 2024, 62, 5610814. [Google Scholar] [CrossRef]
- Celik, T. Unsupervised Change Detection in Satellite Images Using Principal Component Analysis and k-Means Clustering. IEEE Geosci. Remote Sens. Lett. 2009, 6, 772–776. [Google Scholar] [CrossRef]
- Zhang, H.; Gong, M.; Zhang, P.; Su, L.; Shi, J. Feature-Level Change Detection Using Deep Representation and Feature Change Analysis for Multispectral Imagery. IEEE Geosci. Remote Sens. Lett. 2016, 13, 1666–1670. [Google Scholar] [CrossRef]
- Chen, H.; Wu, C.; Du, B.; Zhang, L.; Wang, L. Change Detection in Multisource VHR Images via Deep Siamese Convolutional Multiple-Layers Recurrent Neural Network. IEEE Trans. Geosci. Remote Sens. 2020, 58, 2848–2864. [Google Scholar] [CrossRef]
- Yang, M.; Jiao, L.; Liu, F.; Hou, B.; Yang, S.; Jian, M. DPFL-Nets: Deep Pyramid Feature Learning Networks for Multiscale Change Detection. IEEE Trans. Neural Netw. Learn. Syst. 2022, 33, 6402–6416. [Google Scholar] [CrossRef]
- Luppino, L.T.; Bianchi, F.M.; Moser, G.; Anfinsen, S.N. Unsupervised Image Regression for Heterogeneous Change Detection. IEEE Trans. Geosci. Remote Sens. 2019, 57, 9960–9975. [Google Scholar] [CrossRef]
- Niu, X.; Gong, M.; Zhan, T.; Yang, Y. A Conditional Adversarial Network for Change Detection in Heterogeneous Images. IEEE Geosci. Remote Sens. Lett. 2019, 16, 45–49. [Google Scholar] [CrossRef]
- Mou, L.; Zhu, X. IM2HEIGHT: Height Estimation from Single Monocular Imagery via Fully Residual Convolutional-Deconvolutional Network. arXiv 2018, arXiv:1802.10249. [Google Scholar]
- Zhou, Q.; Feng, Z.; Gu, Q.; Pang, J.; Cheng, G.; Lu, X.; Shi, J.; Ma, L. Context-aware mixup for domain adaptive semantic segmentation. IEEE Trans. Circuits Syst. Video Technol. 2022, 33, 804–817. [Google Scholar] [CrossRef]
- Catalano, N.; Matteucci, M. Few Shot Semantic Segmentation: A review of methodologies and open challenges. arXiv 2023, arXiv:2304.05832. [Google Scholar]
- Han, Y.; Zhang, J.; Xue, Z.; Xu, C.; Shen, X.; Wang, Y.; Wang, C.; Liu, Y.; Li, X. Reference Twice: A Simple and Unified Baseline for Few-Shot Instance Segmentation. arXiv 2023, arXiv:2301.01156. [Google Scholar]
- Zhou, K.; Liu, Z.; Qiao, Y.; Xiang, T.; Loy, C.C. Domain generalization: A survey. IEEE Trans. Pattern Anal. Mach. Intell. 2022, 45, 4396–4415. [Google Scholar] [CrossRef] [PubMed]
- Carion, N.; Massa, F.; Synnaeve, G.; Usunier, N.; Kirillov, A.; Zagoruyko, S. End-to-end object detection with transformers. In Proceedings of the Computer Vision—ECCV 2020: 16th European Conference, Glasgow, UK, 23–28 August 2020; Part I 16. Springer: Berlin/Heidelberg, Germany, 2020; pp. 213–229. [Google Scholar]
- Xu, S.; Li, X.; Wang, J.; Cheng, G.; Tong, Y.; Tao, D. Fashionformer: A simple, effective and unified baseline for human fashion segmentation and recognition. In Proceedings of the Computer Vision—ECCV 2022: 17th European Conference, Tel Aviv, Israel, 23–27 October 2022; Part XXXVII. Springer: Berlin/Heidelberg, Germany, 2022; pp. 545–563. [Google Scholar]
- Li, X.; Xu, S.; Yang, Y.; Yuan, H.; Cheng, G.; Tong, Y.; Lin, Z.; Tao, D. PanopticPartFormer++: A Unified and Decoupled View for Panoptic Part Segmentation. arXiv 2023, arXiv:2301.00954. [Google Scholar]
- Li, X.; Yuan, H.; Zhang, W.; Cheng, G.; Pang, J.; Loy, C.C. Tube-Link: A Flexible Cross Tube Baseline for Universal Video Segmentation. arXiv 2023, arXiv:2303.12782. [Google Scholar]
- Lv, W.; Xu, S.; Zhao, Y.; Wang, G.; Wei, J.; Cui, C.; Du, Y.; Dang, Q.; Liu, Y. DETRs Beat YOLOs on Real-time Object Detection. arXiv 2023, arXiv:2304.08069. [Google Scholar]
- Li, X.; Zhang, W.; Pang, J.; Chen, K.; Cheng, G.; Tong, Y.; Loy, C.C. Video k-net: A simple, strong, and unified baseline for video segmentation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, LA, USA, 21–24 June 2022; pp. 18847–18857. [Google Scholar]
- Li, D.; Hu, J.; Wang, C.; Li, X.; She, Q.; Zhu, L.; Zhang, T.; Chen, Q. Involution: Inverting the Inherence of Convolution for Visual Recognition. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Nashville, TN, USA, 20–25 June 2021; pp. 12321–12330. [Google Scholar]
- Wang, Y.; Yang, Y.; Li, Z.; Bai, J.; Zhang, M.; Li, X.; Yu, J.; Zhang, C.; Huang, G.; Tong, Y. Convolution-enhanced Evolving Attention Networks. IEEE Trans. Pattern Anal. Mach. Intell. 2023, 45, 8176–8192. [Google Scholar] [CrossRef]
- Douillard, A.; Chen, Y.; Dapogny, A.; Cord, M. PLOP: Learning Without Forgetting for Continual Semantic Segmentation. In Proceedings of the CVPR 2021, Nashville, TN, USA, 20–25 June 2021; pp. 4040–4050. [Google Scholar]
- Feng, Y.; Sun, X.; Diao, W.; Li, J.; Gao, X.; Fu, K. Continual Learning with Structured Inheritance for Semantic Segmentation in Aerial Imagery. IEEE Trans. Geosci. Remote Sens. 2022, 60, 1–17. [Google Scholar] [CrossRef]
- Li, X.; You, A.; Zhu, Z.; Zhao, H.; Yang, M.; Yang, K.; Tan, S.; Tong, Y. Semantic flow for fast and accurate scene parsing. In Proceedings of the Computer Vision—ECCV 2020: 16th European Conference, Glasgow, UK, 23–28 August 2020; Part I 16. Springer: Berlin/Heidelberg, Germany, 2020; pp. 775–793. [Google Scholar]
- Zhang, J.; Li, X.; Li, J.; Liu, L.; Xue, Z.; Zhang, B.; Jiang, Z.; Huang, T.; Wang, Y.; Wang, C. Rethinking Mobile Block for Efficient Neural Models. arXiv 2023, arXiv:2301.01146. [Google Scholar]
- Li, X.; Li, X.; You, A.; Zhang, L.; Cheng, G.; Yang, K.; Tong, Y.; Lin, Z. Towards Efficient Scene Understanding via Squeeze Reasoning. IEEE Trans. Image Process. 2021, 30, 7050–7063. [Google Scholar] [CrossRef] [PubMed]
- Wan, Q.; Huang, Z.; Lu, J.; Yu, G.; Zhang, L. Seaformer: Squeeze-enhanced axial transformer for mobile semantic segmentation. In Proceedings of the ICLR 2023, Kigali, Rwanda, 1–5 May 2023. [Google Scholar]
- Liu, Y.; Chu, L.; Chen, G.; Wu, Z.; Chen, Z.; Lai, B.; Hao, Y. PaddleSeg: A High-Efficient Development Toolkit for Image Segmentation. arXiv 2021, arXiv:2101.06175. [Google Scholar]
- Chen, J.; Wang, S.; Chen, L.; Cai, H.; Qian, Y. Incremental Detection of Remote Sensing Objects with Feature Pyramid and Knowledge Distillation. IEEE Trans. Geosci. Remote Sens. 2022, 60, 5600413. [Google Scholar] [CrossRef]
- Zhang, Y.; Yan, Z.; Sun, X.; Diao, W.; Fu, K.; Wang, L. Learning Efficient and Accurate Detectors with Dynamic Knowledge Distillation in Remote Sensing Imagery. IEEE Trans. Geosci. Remote Sens. 2022, 60, 5613819. [Google Scholar] [CrossRef]
- Wu, W.; Zhao, Y.; Shou, M.Z.; Zhou, H.; Shen, C. DiffuMask: Synthesizing Images with Pixel-level Annotations for Semantic Segmentation Using Diffusion Models. arXiv 2023, arXiv:2303.11681. [Google Scholar]
- Bandara, W.G.C.; Nair, N.G.; Patel, V.M. DDPM-CD: Remote Sensing Change Detection using Denoising Diffusion Probabilistic Models. arXiv 2022, arXiv:2206.11892. [Google Scholar]
- Wen, Y.; Zhang, Z.; Cao, Q.; Niu, G. TransC-GD-CD: Transformer-Based Conditional Generative Diffusion Change Detection Model. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2024, 17, 7144–7158. [Google Scholar] [CrossRef]
- Cai, L.; Zhang, Z.; Zhu, Y.; Zhang, L.; Li, M.; Xue, X. Bigdetection: A large-scale benchmark for improved object detector pre-training. In Proceedings of the CVPR, New Orleans, LA, USA, 21–24 June 2022; pp. 4777–4787. [Google Scholar]
- Zhao, Q.; Lyu, S.; Chen, L.; Liu, B.; Xu, T.B.; Cheng, G.; Feng, W. Learn by Oneself: Exploiting Weight-Sharing Potential in Knowledge Distillation Guided Ensemble Network. IEEE Trans. Circuits Syst. Video Technol. 2023, 33, 6661–6678. [Google Scholar] [CrossRef]
- Kirillov, A.; Mintun, E.; Ravi, N.; Mao, H.; Rolland, C.; Gustafson, L.; Xiao, T.; Whitehead, S.; Berg, A.C.; Lo, W.Y.; et al. Segment Anything. arXiv 2023, arXiv:2304.02643. [Google Scholar]
- Wang, X.; Wang, W.; Cao, Y.; Shen, C.; Huang, T. Images Speak in Images: A Generalist Painter for In-Context Visual Learning. In Proceedings of the 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Vancouver, BC, Canada, 17–24 June 2023. [Google Scholar]
- Wang, X.; Zhang, X.; Cao, Y.; Wang, W.; Shen, C.; Huang, T. SegGPT: Segmenting Everything In Context. arXiv 2023, arXiv:2304.03284. [Google Scholar]
Advantages | Disadvantages | |
---|---|---|
SAR data |
(1) Can penetrate through vegetation and clouds; (2) Can detect subtle changes in object scattering; (3) Can provide information on surface deformation; (4) Can work well in all weather conditions. | (1) Can be susceptible to geometric distortion; (2) Can be subject to electromagnetic interference; (3) Can be complex and difficult to interpret; (4) SAR sensors are expensive to develop and maintain. |
Multispectral data | (1) Can distinguish materials based on spectral information; (2) Multispectral sensors are relatively inexpensive; (3) Multispectral images are widely available. | (1) Multispectral sensors have limited spectral resolution; (2) Images are susceptible to atmospheric interference; (3) Images are affected by land cover and seasonal changes. |
Hyperspectral data | (1) Can distinguish materials with similar spectral signatures; (2) Can provide rich information about the chemical and physical properties of materials. | (1) Hyperspectral sensors are relatively expensive; (2) Hyperspectral sensors may have limited spatial resolution; (3) Images are susceptible to atmospheric interference. |
Heterogeneous data | (1) Heterogeneous images can provide complementary information and improve the overall accuracy and quality of the output by combining data from different sensors. | (1) The integration of heterogeneous images can be complex and challenging; poor quality or mismatched data can lead to artifacts, noise, or errors in the fusion process. |
Three-dimensional change detection data | (1) Can capture fine details and subtle changes; (2) Can penetrate through dense vegetation and provide accurate elevation information. | (1) Collection and processing are costly and time-consuming; (2) The accuracy and quality of the output depend on the quality of the calibration and the presence of noise. |
Dataset | Resolution | Quantity | Location | Types | Date | Category |
---|---|---|---|---|---|---|
SAR Dataset | ||||||
Yellow River [74] | 1 | Yellow River Estuary, China | Radarsat-2 | June 2008 June 2009 | 2 | |
Bern [75] | 1 | Bern, Switzerland | European Remote Sensing Satellite-2 | April 1999 May 1999 | 2 | |
Multispectral Dataset | ||||||
LEVIR-CD+ [76] | 0.5 m/pixel | 985 | American cities | Google Earth | 2002 to 2018 | 2 |
CDD [77] | 0.03–1 m/pixel | 7 4 | – | Google Earth | – | 2 |
WHU-CD [78] | 21,243 × 15,354 11,265 × 15,354 0.3 m/pixel | 1 1 | Christchurch, New Zealand | – | – | 2 |
SECOND [79] | 0.5–3 m/pixel | 4662 | Hangzhou, Chengdu, Shanghai, China | – | – | 6 |
SYSU-CD [80] | 256 × 256 0.5 m/pixel | 20,000 | Hong Kong | – | 2007 to 2014 | 5 |
Hyperspectral Dataset | ||||||
River [81] | 1 | Jiangsu, China | EO-1 sensor | 3 May 2013 21 December 2013 | 2 | |
Hermiston [82] | 1 | Hermiston City, USA | Hyperion sensor | 1 May 2004 8 May 2007 | 2 | |
Farmland [83] | 1 | Yancheng, China | EO-1 sensor | 3 May 2006 23 April 2007 | 2 | |
Heterogeneous Dataset | ||||||
California [84] | 2 | California, USA | Landsat-8 Sentinel-1A | 5 January 2017 18 February 2017 | 2 | |
3D Change Detection Dataset | ||||||
3DCD [85] | 0.5 m/pixel 1 m/pixel | 472 2D 472 3D | Valladolid, Spain | – | 2010 2017 | 2 |
Method | Source | Category | Fusion | Highlights |
---|---|---|---|---|
SAR Methods | ||||
ARCT+ [100] | GRSL 2022 | Pixel-based | Middle | The arc-tangential subtraction operator is applied to obtain a difference image, which is then subjected to K-means++ clustering to identify the changed regions. |
JR-KSVD [101] | J-STARS 2022 | Pixel-based | Late | Proposes a joint-related dictionary learning algorithm based on K-SVD and an iterative adaptive threshold optimization. |
Incoherent CDA [102] | GRSL 2022 | Pixel-based | Early | Utilizes a segmentation CNN to localize potential changes and a classification CNN to further inspect potential changes as true changes or false alarms. |
WMMs [97] | TGRS 2016 | Region-based | Middle | Segments the PolSAR images into compact local regions, and then wishart mixture models (WMMs) are used to model each local region. |
OBIA [104] | TGRS 2022 | Region-based | Middle | Takes advantages of consolidated SAR techniques and modern geographical object-based image analysis (GEOBIA). |
UAFS-HCD [105] | J-STARS 2015 | Hybrid | Late | Obtains the preliminary change mask with pixel-based change detection method and obtains the final change mask using the object-based change detection method. |
DSF [106] | Remote Sensing 2020 | Hybrid | Middle | Detects the change detection results by extending pixel-based object detection method into an OBCD through the Dempster–Shafer theory. |
Multispectral Methods | ||||
ADHR- CDNet [107] | TGRS 2022 | Pixel-based | Early | Proposes an HRNet with differential pyramid module, and a multiscale spatial feature attention module is presented to fuse different information. |
LWCDNet [108] | GRSL 2022 | Pixel-based | Early | Proposes a lightweight fully convolution network with convolutional block attention module and Lov-wce loss. |
COCRF [5] | TGRS 2022 | Region-based | Early | Proposes a class-prior object-oriented conditional random field framework to handle binary and multiclass change detection tasks. |
SSS-CD [109] | Remote Sensing 2022 | Region-based | Early | Integrates spectral–spatial–saliency change information and fuzzy integral decision fusion for the change detection task. |
DP-CD-Net [110] | GRSL 2022 | Hybrid | Early | Proposes a dual-pathway feature difference network, an adaptive fusion module, and an auxiliary supervision strategy. |
Hyperspectral Methods | ||||
GETNET [81] | TGRS 2019 | Pixel-based | Early | Proposes a general end-to-end 2D CNN for hyperspectral image change detection. |
SSA-SiamNet [111] | TGRS 2022 | Pixel-based | Middle | Proposes an end-to-end Siamese CNN with a spectral–spatial-wise attention mechanism. |
CDFormer [45] | GRSL 2022 | Pixel-based | Middle | Introduces a transformer encoder to the hyperspectral image change detection framework. |
FuzCVA [112] | IGARSS 2018 | Hybrid | Middle | Proposes a fuzzy inference combination strategy that combines the angle and magnitude distances. |
MSDFFN [83] | TGRS 2023 | Hybrid | Middle | Proposes bidirectional diff-changed feature representation module and a multiscale attention fusion module to fuse the changed features. |
Heterogeneous Methods | ||||
SCCN [27] | TNNLS 2018 | Pixel-based | Middle | Proposes a symmetric convolutional
coupling network for unsupervised change detection tasks. |
SSPCN [113] | J-STARS 2021 | Pixel-based | Middle | Introduces a classification method to obtain the pseudo labels and then a spatially self-paced convolutional network to update the pseudo-label labels to obtain better results. |
MSGCN [114] | IJAEOG 2022 | Region-based | Middle | Introduces a new change detection method based on the graph convolutional network and multiscale object techniques. |
CMS-HCC [115] | TGRS 2019 | Region-based | Middle | Proposes a region-based change detection method with a cooperative multitemporal segmentation process and a hierarchical compound classification process. |
HMCNet [38] | TGRS 2022 | Hybrid | Middle | Proposes an MLP-CNN hybrid model with multilayer perceptron and convolutional neural network to achieve change detection result. |
CD-GAN [116] | Arxiv 2022 | Hybrid | Middle | Introduces a robust fusion-based adversarial framework that fuses the results from predefined and previously trained networks. |
Three-Dimensional Change Detection Methods | ||||
HDG-nDSM [117] | Remote Sensing 2023 | Pixel-based | Middle | Proposes a height difference-generated nDSM, including morphological filters and criteria considering area size and shape parameters. |
DALE-CD [118] | ISPRS Archives 2022 | Pixel-based | Early | Proposes a 3D change detection method based on density-adaptive local Euclidean distance. |
CHM-CD [119] | TGRS 2018 | Region-based | Middle | First detects the large changes and then focuses on the individual tree canopy to detect the single-tree changes by means of an object-based CD. |
Method | Source | Category | Fusion | Highlights |
---|---|---|---|---|
SAR Methods | ||||
SFCNet [123] | TGRS 2022 | Unsupervised | Early | Proposes a sparse feature clustering network for unsupervised change detection in SAR images. |
HFEM [75] | TGRS 2022 | Unsupervised | Early | Introduces an unsupervised change detection method that contains three procedures: difference image generation, thresholding, and spatial analysis. |
CycleGAN-CD [124] | TGRS 2021 | Unsupervised | Middle | Introduces a SAR change detection method based on a cycle-consistent generative adversarial network. |
Two-step [125] | GRSL 2022 | Semisupervised | Middle | Presents a two-step semisupervised model based on representation learning and pseudo labels. |
LCS-EnsemNet [126] | J-STARS 2021 | Semisupervised | Early | Develops a semisupervised method with two separate branches by incorporating a label-consistent self-ensemble network. |
SSN [127] | GRSL 2023 | Supervised | Early | Proposes a Stockwell scattering network that combines a wavelet scattering network and Fourier scattering network. |
STGCNet [128] | GRSL 2022 | Supervised | Early | Introduces a deep spatial–temporal gray-level co-occurrence-aware convolutional neural network. |
Multispectral Methods | ||||
CAE [129] | TGRS 2022 | Unsupervised | Late | Proposes an unsupervised change detection method that exploits multiresolution deep feature maps derived by a convolutional autoencoder. |
PixSSLs [130] | TGRS 2022 | Unsupervised | Late | Introduces a pixel-wise contrastive approach with pseudo-Siamese network. |
GAN-CD [63] | TGRS 2021 | Unsupervised | Late | Introduces a GAN-based procedure for unsupervised change detection in satellite images. |
SSALN [131] | TGRS 2022 | Semisupervised | Late | Proposes a semisupervised adaptive ladder network for change detection in remote sensing images. |
RCL [132] | TGRS 2022 | Semisupervised | Late | Proposes a reliable contrastive learning method for semisupervised remote sensing image change detection. |
DifUnet++ [133] | GRSL 2022 | Supervised | Early | Proposes an effective satellite image change detection network based on Unet++ and a differential pyramid. |
SDMNet [134] | GRSL 2022 | Supervised | Late | Proposes a deep-supervised dual discriminative metric network that is trained end-to-end for change detection in high-resolution images. |
Hyperspectral Methods | ||||
MD-HSI-CD [135] | J-STARS 2021 | Unsupervised | Early | Proposes an unsupervised end-to-end framework that employs two model-driven methods for hyperspectral image change detection task. |
BCG-Net [136] | TIP 2022 | Unsupervised | Middle | Introduces an unsupervised hyperspectral multiclass change detection network based on binary change detection approaches. |
MCD [137] | IGARSS 2017 | Semisupervised | Early | Proposes a new semisupervised framework that combines an unsupervised change representation technique and supervised classifiers. |
RSCNet [138] | TGRS 2022 | Supervised | Early | Proposes an end-to-end residual self-calibrated network to increase the accuracy of hyperspectral change detection task. |
MP-ConvLSTM [139] | TGRS 2022 | Supervised | Late | Proposes a multipath convolutional long short-term memory and multipath convolutional LSTM for hyperspectral image change detection task. |
Heterogeneous Methods | ||||
BASNet [140] | GRSL 2022 | Unsupervised | Late | Introduces a new bipartite adversarial autoencoder with structural self-similarity for heterogeneous images. |
ACE-Net [141] | TGRS 2022 | Unsupervised | Late | Introduces two new network architectures trained with loss functions weighted by priors that reduce the impact of change pixels on the learning objective. |
N [142] | TGRS 2022 | Semisupervised | Middle | Presents a new semisupervised Siamese network based on transfer learning. |
M-UNet [66] | GRSL 2022 | Supervised | Early | Introduces a heterogeneous image change detection task based on classical UNet. |
DHFF [143] | J-STARS 2020 | Supervised | Middle | Presents a new deep homogeneous feature fusion for heterogeneous image change detection based on image style transfer. |
Three-Dimensional Change Detection Methods | ||||
CamShift [144] | J-STARS 2016 | Unsupervised | Late | Proposes a Pollock model with CamShift algorithm to segment connected components into individual trees. |
CVA-CD [145] | GRSL 2022 | Unsupervised | Late | Proposes an unsupervised change detection algorithm of lidar data based on polar change vector analysis. |
Dual Stream [146] | Arxiv 2022 | Supervised | Middle | Presents a UNet model for segmenting the buildings from the background. |
Siamese KPConv [147] | ISPRS JPRS 2023 | Supervised | Middle | Proposes a deep Siamese KPConv network that deals with raw 3D point cloud data to perform change detection and categorization. |
SAR Methods | |||||
---|---|---|---|---|---|
Method | Source | FP | FN | OA | KC |
Yellow River Dataset | |||||
RFLICM [189] | TIP 2012 | 862 | 1300 | 98.33 | 74.97 |
GaborPCANet [190] | GRSL 2016 | 1043 | 1009 | 96.87 | 81.21 |
CWNNs [7] | GRSL 2019 | 837 | 1690 | 96.60 | 88.23 |
DCNet [191] | J-STARS 2019 | 790 | 2137 | 96.06 | 86.16 |
MSAPNet [192] | IGARSS 2020 | 817 | 2157 | 96.00 | 85.94 |
SFCNet [123] | TGRS 2022 | 720 | 704 | 98.40 | 85.62 |
SSN [127] | GRSL 2023 | 1292 | 793 | 97.19 | 90.66 |
DDNet [161] | GRSL 2022 | 641 | 1027 | 98.36 | 93.77 |
Bern Dataset | |||||
GaborPCANet [190] | GRSL 2016 | 36 | 434 | 99.48 | 75.23 |
CWNNs [7] | GRSL 2019 | 81 | 226 | 99.66 | 85.56 |
ESMOFCM [187] | GRSL 2021 | 95 | 196 | 99.68 | 86.70 |
BIFLICM/D [188] | GRSL 2022 | 103 | 718 | 99.08 | 91.24 |
ShearNet [74] | TGRS 2022 | 163 | 126 | 99.68 | 87.41 |
Multispectral Methods | ||||||
---|---|---|---|---|---|---|
Method | Source | Precision | Recall | F1 | OA | IoU |
LEVIR-CD+ Dataset | ||||||
FC-EF [196] | ICIP 2018 | 69.12 | 71.77 | 70.42 | 97.54 | 54.34 |
SNUNet [197] | GRSL 2022 | 71.07 | 78.73 | 74.70 | 97.83 | 59.62 |
CGNet [198] | J-STARS 2023 | 81.46 | 86.02 | 83.68 | 98.63 | 71.94 |
ChangeFormerV3 [199] | IGARSS 2022 | 81.34 | 79.97 | 80.65 | 98.44 | 67.58 |
BIT-101 [43] | TGRS 2022 | 83.91 | 81.20 | 82.53 | 98.60 | 70.26 |
TransUNetCD [41] | TGRS 2022 | 83.08 | 84.18 | 83.63 | 98.66 | 71.86 |
SwinSUNet [186] | TGRS 2022 | 85.34 | 85.85 | 85.60 | 98.92 | 74.82 |
MambaBCD-Tiny [59] | Arxiv 2024 | 88.82 | 87.26 | 88.04 | 99.03 | 78.63 |
MambaBCD-Small [59] | Arxiv 2024 | 89.17 | 86.49 | 87.81 | 99.02 | 78.27 |
MambaBCD-Base [59] | Arxiv 2024 | 89.24 | 87.57 | 88.39 | 99.06 | 79.20 |
CDD Dataset | ||||||
FC-EF [196] | ICIP 2018 | 83.45 | 98.47 | 90.34 | 97.58 | |
STANet [76] | Remote Sensing 2020 | 95.17 | 92.88 | 94.01 | – | |
ESCNet [200] | TNNLS 2021 | 90.04 | 97.26 | 93.51 | 98.45 | |
ChangeFormer [199] | IGARSS 2022 | 94.50 | 93.51 | 94.23 | – | |
BIT [43] | TGRS 2022 | 96.07 | 93.49 | 94.76 | – | |
SNUNet [197] | GRSL 2022 | 98.09 | 97.42 | 97.75 | – | |
DSAMNet [80] | TGRS 2022 | 94.54 | 92.77 | 93.69 | – | |
P2V-CD [194] | TIP 2023 | 98.57 | 98.26 | 98.42 | – | |
WHU-CD Dataset | ||||||
FC-EF [196] | ICIP 2018 | 83.50 | 86.33 | 84.89 | 98.87 | 73.74 |
SNUNet [197] | GRSL 2022 | 88.04 | 87.36 | 87.70 | 99.10 | 78.09 |
CGNet [198] | J-STARS 2023 | 94.47 | 90.79 | 92.59 | 99.48 | 86.21 |
ChangeFormerV3 [199] | IGARSS 2022 | 88.25 | 85.55 | 86.88 | 99.05 | 76.80 |
BIT-101 [43] | TGRS 2022 | 89.83 | 90.24 | 90.04 | 99.27 | 81.88 |
TransUNetCD [41] | TGRS 2022 | 85.48 | 90.50 | 87.79 | 99.09 | 78.44 |
SwinSUNet [186] | TGRS 2022 | 94.08 | 92.03 | 93.04 | 99.50 | 87.00 |
MambaBCD-Tiny [59] | Arxiv 2024 | 94.76 | 91.94 | 93.33 | 99.52 | 87.49 |
MambaBCD-Small [59] | Arxiv 2024 | 95.90 | 92.29 | 94.06 | 99.57 | 88.79 |
MambaBCD-Base [59] | Arxiv 2024 | 96.18 | 92.23 | 94.19 | 99.58 | 89.02 |
SECOND Dataset | ||||||
Method | Source | OA | mIoU | Sek | ||
HRSCD [201] | CVIU 2019 | 86.62 | 71.15 | 18.80 | 58.21 | |
ASN [79] | TGRS 2021 | – | 69.50 | 16.30 | – | |
SSCD [72] | TGRS 2022 | 87.19 | 72.60 | 21.86 | 61.22 | |
Bi-SRNet [72] | TGRS 2022 | 87.84 | 73.41 | 23.22 | 62.61 | |
SSESN [195] | J-STARS 2022 | 89.00 | 70.80 | – | – | |
MTSCD-Net [202] | IJAEOG 2023 | 87.04 | 71.68 | 20.57 | – | |
SCanNet [203] | TGRS 2024 | 87.76 | 73.42 | 23.94 | 63.66 | |
MambaSCD-Tiny [59] | Arxiv 2024 | 88.07 | 73.33 | 23.34 | 63.44 | |
MambaSCD-Small [59] | Arxiv 2024 | 88.38 | 73.61 | 24.04 | 64.10 | |
MambaSCD-Base [59] | Arxiv 2024 | 88.12 | 73.68 | 24.11 | 64.03 |
Hyperspectral Methods | ||||||
---|---|---|---|---|---|---|
Method | Source | Precision | Recall | F1 | OA | KC |
River Dataset | ||||||
PCAKM [204] | GRSL 2009 | 54.60 | 96.29 | 69.69 | 92.72 | 65.91 |
PCA-CVA [205] | GRSL 2016 | – | – | – | 95.16 | 74.77 |
GETNET [81] | TGRS 2018 | 85.64 | 78.98 | 82.18 | 97.18 | 80.53 |
SiamCRNN [206] | TGRS 2020 | 88.14 | 69.12 | 77.45 | 96.5 | 75.59 |
SSA-SiamNet [111] | TGRS 2021 | 91.89 | 74.10 | 82.04 | 97.18 | 80.53 |
ML-EDAN [36] | TGRS 2022 | 89.57 | 83.75 | 86.57 | 97.74 | 85.33 |
MSDFFN [83] | TGRS 2023 | 90.52 | 87.58 | 89.01 | 98.12 | 87.98 |
Hermiston Dataset | ||||||
PCAKM [204] | GRSL 2009 | 97.90 | 65.98 | 78.83 | 92.01 | 74.13 |
GETNET [81] | TGRS 2018 | 92.99 | 90.16 | 91.50 | 89.09 | 96.23 |
SiamCRNN [206] | TGRS 2020 | 92.66 | 49.28 | 62.67 | 87.35 | 56.15 |
SSA-SiamNet [111] | TGRS 2021 | 93.18 | 89.17 | 91.45 | 96.22 | 89.02 |
RSCNet [138] | TGRS 2022 | 93.98 | 91.32 | 92.63 | 96.73 | 90.53 |
ML-EDAN [36] | TGRS 2022 | 94.88 | 92.53 | 93.68 | 97.19 | 91.87 |
MSDFFN [83] | TGRS 2023 | 95.55 | 93.69 | 94.61 | 97.59 | 93.06 |
Farmland Dataset | ||||||
PCAKM [204] | GRSL 2009 | 89.78 | 93.96 | 91.82 | 95.14 | 88.37 |
GETNET [81] | TGRS 2018 | 95.64 | 97.40 | 96.51 | 97.96 | 95.07 |
SiamCRNN [206] | TGRS 2020 | 94.78 | 95.41 | 95.09 | 97.15 | 93.08 |
RSCNet [138] | TGRS 2022 | 97.33 | 96.96 | 97.15 | 98.35 | 95.98 |
ML-EDAN [138] | TGRS 2022 | 97.52 | 97.74 | 97.63 | 98.62 | 96.66 |
MSDFFN [83] | TGRS 2023 | 97.79 | 97.77 | 97.78 | 98.71 | 96.88 |
Heterogeneous Methods | |||||
---|---|---|---|---|---|
Method | Source | OA | KC | AUC | F1 |
California Dataset | |||||
SCCN [27] | TNNLS 2018 | 97.60 | 87.17 | 98.78 | – |
AM_HPT [208] | TGRS 2019 | 98.12 | 90.18 | 99.24 | – |
CAN [209] | GRSL 2019 | 90.40 | 36.50 | – | 42.40 |
ACE-Net [141] | TGRS 2021 | 91.50 | 41.50 | – | 45.90 |
CA_AE [84] | TNNLS 2022 | 97.88 | 88.66 | 99.18 | – |
DPFL-Net-4 [207] | TNNLS 2022 | 98.89 | 94.17 | 99.79 | – |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cheng, G.; Huang, Y.; Li, X.; Lyu, S.; Xu, Z.; Zhao, H.; Zhao, Q.; Xiang, S. Change Detection Methods for Remote Sensing in the Last Decade: A Comprehensive Review. Remote Sens. 2024, 16, 2355. https://doi.org/10.3390/rs16132355
Cheng G, Huang Y, Li X, Lyu S, Xu Z, Zhao H, Zhao Q, Xiang S. Change Detection Methods for Remote Sensing in the Last Decade: A Comprehensive Review. Remote Sensing. 2024; 16(13):2355. https://doi.org/10.3390/rs16132355
Chicago/Turabian StyleCheng, Guangliang, Yunmeng Huang, Xiangtai Li, Shuchang Lyu, Zhaoyang Xu, Hongbo Zhao, Qi Zhao, and Shiming Xiang. 2024. "Change Detection Methods for Remote Sensing in the Last Decade: A Comprehensive Review" Remote Sensing 16, no. 13: 2355. https://doi.org/10.3390/rs16132355
APA StyleCheng, G., Huang, Y., Li, X., Lyu, S., Xu, Z., Zhao, H., Zhao, Q., & Xiang, S. (2024). Change Detection Methods for Remote Sensing in the Last Decade: A Comprehensive Review. Remote Sensing, 16(13), 2355. https://doi.org/10.3390/rs16132355