African Lovegrass Segmentation with Artificial Intelligence Using UAS-Based Multispectral and Hyperspectral Imagery
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Design
2.2. Study Site
2.3. Data Acquisition
2.3.1. UAS Survey
2.3.2. Ground Truth
2.4. Data Pre-Processing
2.4.1. Orthomosaic Generation
2.4.2. Georeferencing
2.5. Pixel-Wise Labeling
2.6. Model Training for Multispectral-Based African Lovegrass Segmentation
2.6.1. Classical Machine Learning Models
2.6.2. Deep Learning Models
2.7. Model Training for Hyperspectral-Based African Lovegrass Segmentation
2.8. Comparison of Prediction Using Multispectral and Hyperspectral Imagery
2.9. Evaluation Metrics
3. Results
3.1. Multispectral-Based African Lovegrass Segmentation
3.1.1. Validation Dataset Performance
3.1.2. Test Dataset Performance
3.2. Comparison of Predictions Using Multispectral and Hyperspectral Imagery
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Firn, J. African Lovegrass in Australia: A Valuable Pasture Species or Embarrassing Invader? Trop. Grassl. 2009, 43, 86–97. [Google Scholar]
- Roberts, J.; Florentine, S.; van Etten, E.; Turville, C. Germination Biology, Distribution and Control of the Invasive Species Eragrostis Curvula [Schard. Nees] (African Lovegrass): A Global Synthesis of Current And Future Management Challenges. Weed Res. 2021, 61, 154–163. [Google Scholar] [CrossRef]
- Johnston, W.H.; Aveyard, J.M.; Legge, K. Selection and testing of Consol Lovegrass for Soil Conservation and Pastoral Use. J. Soil. Conserv. 1984, 40, 38–45. [Google Scholar]
- Walker, Z.C.; Morgan, J.W. Perennial Pasture Grass Invasion Changes Fire Behaviour and Recruitment Potential of A Native Forb in a Temperate Australian Grassland. Biol. Invasions 2022, 24, 1755–1765. [Google Scholar] [CrossRef]
- Keerthinathan, P.; Amarasingam, N.; Hamilton, G.; Gonzalez, F. Exploring Unmanned Aerial Systems Operations in Wildfire Management: Data Types, Processing Algorithms and Navigation. Int. J. Remote Sens. 2023, 44, 5628–5685. [Google Scholar] [CrossRef]
- Che’Ya, N.N.; Dunwoody, E.; Gupta, M. Assessment of Weed Classification Using Hyperspectral Reflectance and Optimal Multispectral UAV Imagery. Agronomy 2021, 11, 1435. [Google Scholar] [CrossRef]
- Amarasingam, N.; E Kelly, J.; Sandino, J.; Hamilton, M.; Gonzalez, F.; L Dehaan, R.; Zheng, L.; Cherry, H. Bitou Bush Detection and Mapping Using UAV-Based Multispectral and Hyperspectral Imagery and Artificial Intelligence. Remote Sens. Appl. Soc. Environ. 2024, 34, 101151. [Google Scholar] [CrossRef]
- Harris, S.; Trotter, P.; Gonzalez, F.; Sandino, J. Bitou bush surveillance UAV trial. In Proceedings of 14th Queensland Weed Symposium, Brisbane, Australia, 4–7 December 2017. [Google Scholar]
- Xia, F.; Quan, L.; Lou, Z.; Sun, D.; Li, H.; Lv, X. Identification and Comprehensive Evaluation of Resistant Weeds Using Unmanned Aerial Vehicle-Based Multispectral Imagery. Front. Plant Sci. 2022, 13, 938604. [Google Scholar] [CrossRef] [PubMed]
- Hamylton, S.M.; Morris, R.H.; Carvalho, R.C.; Roder, N.; Barlow, P.; Mills, K.; Wang, L. Evaluating Techniques for Mapping Island Vegetation from Unmanned Aerial Vehicle (UAV) Images: Pixel Classification, Visual Interpretation and Machine Learning Approaches. Int. J. Appl. Earth Obs. 2020, 89, 102085. [Google Scholar] [CrossRef]
- Huang, H.; Lan, Y.; Deng, J.; Yang, A.; Deng, X.; Zhang, L.; Wen, S. A Semantic Labeling Approach for Accurate Weed Mapping of High Resolution UAV Imagery. Sensors 2018, 18, 2113. [Google Scholar] [CrossRef]
- Alexandridis, T.K.; Tamouridou, A.A.; Pantazi, X.E.; Lagopodi, A.L.; Kashefi, J.; Ovakoglou, G.; Polychronos, V.; Moshou, D. Novelty Detection Classifiers in Weed Mapping: Silybum Marianum Detection on UAV Multispectral Images. Sensors 2017, 17, 2007. [Google Scholar] [CrossRef] [PubMed]
- Khoshboresh-Masouleh, M.; Akhoondzadeh, M. Improving Weed Segmentation in Sugar Beet Fields Using Potentials of Multispectral Unmanned Aerial Vehicle Images and Lightweight Deep Learning. J. Appl. Remote Sens. 2021, 15, 034510. [Google Scholar] [CrossRef]
- Osorio, K.; Puerto, A.; Pedraza, C.; Jamaica, D.; Rodríguez, L. A Deep Learning Approach for Weed Detection in Lettuce Crops Using Multispectral Images. AgriEngineering 2020, 2, 471–488. [Google Scholar] [CrossRef]
- Sa, I.; Popović, M.; Khanna, R.; Chen, Z.; Lottes, P.; Liebisch, F.; Nieto, J.; Stachniss, C.; Walter, A.; Siegwart, R. WeedMap: A Large-Scale Semantic Weed Mapping Framework Using Aerial Multispectral Imaging and Deep Neural Network for Precision Farming. Remote Sen. 2018, 10, 1423. [Google Scholar] [CrossRef]
- Su, J.; Yi, D.; Coombes, M.; Liu, C.; Zhai, X.; McDonald-Maier, K.; Chen, W.-H. Spectral Analysis and Mapping of Blackgrass Weed by Leveraging Machine Learning and UAV Multispectral Imagery. Comput. Electron. Agric. 2022, 192, 106621. [Google Scholar] [CrossRef]
- Martín, M.P.; Ponce, B.; Echavarría, P.; Dorado, J.; Fernández-Quintanilla, C. Early-Season Mapping of Johnsongrass (Sorghum halepense), Common Cocklebur (Xanthium strumarium) and Velvetleaf (Abutilon theophrasti) in Corn Fields Using Airborne Hyperspectral Imagery. Agronomy 2023, 13, 528. [Google Scholar] [CrossRef]
- Papp, L.; van Leeuwen, B.; Szilassi, P.; Tobak, Z.; Szatmári, J.; Árvai, M.; Mészáros, J.; Pásztor, L. Monitoring Invasive Plant Species Using Hyperspectral Remote Sensing Data. Land 2021, 10, 29. [Google Scholar] [CrossRef]
- Cao, J.; Fu, J.; Yuan, X.; Gong, J. Nonlinear Bias Compensation of ZiYuan-3 Satellite Imagery with Cubic Splines. Isprs J. Photogramm. 2017, 133, 174–185. [Google Scholar] [CrossRef]
- Tucker, C.J. Red and Photographic Infrared Linear Combinations for Monitoring Vegetation. Remote Sens. Environ. 1979, 8, 127–150. [Google Scholar] [CrossRef]
- Gao, B.-C. NDWI—A Normalized Difference Water Index for Remote Sensing of Vegetation Liquid Water from Space. Remote Sens. Environ. 1996, 58, 257–266. [Google Scholar] [CrossRef]
- Barnes, E.; Clarke, T.; Richards, S.; Colaizzi, P.; Haberland, J.; Kostrzewski, M.; Waller, P.; Choi, C.; Riley, E.; Thompson, T. Coincident Detection of Crop Water Stress, Nitrogen Status and Canopy Density Using Ground Based Multispectral Data. In Proceedings of Fifth International Conference on Precision Agriculture, Bloomington, MN, USA, 16–19 July 2000. [Google Scholar]
- Kurbanov, R.K.; Zakharova, N.I. Application of Vegetation Indexes to Assess the Condition of Crops. Agric. Mach. Technol. 2020, 14, 4–11. [Google Scholar] [CrossRef]
- Eng, L.; Ismail, R.; Hashim, W.; Baharum, A. The Use of VARI, GLI, and VIgreen Formulas in Detecting Vegetation in aerial Images. Int. J. Technol. 2019, 10, 1385. [Google Scholar] [CrossRef]
- Goutte, C.; Gaussier, E. A Probabilistic Interpretation of Precision, Recall and F-Score, with Implication for Evaluation. In Proceedings of European Conference on Information Retrieval, Santiago de Compostela, Spain, 21–23 March 2005; pp. 345–359. [Google Scholar]
- Vapnik, V. The Nature of Statistical Learning Theory; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2013. [Google Scholar]
- Valero-Jorge, A.; González-De Zayas, R.; Matos-Pupo, F.; Becerra-González, A.L.; Álvarez-Taboada, F. Mapping and Monitoring of the Invasive Species Dichrostachys cinerea (Marabú) in Central Cuba Using Landsat Imagery and Machine Learning (1994–2022). Remote Sens. 2024, 16, 798. [Google Scholar] [CrossRef]
- Chen, T.; Guestrin, C. Xgboost: A Scalable Tree Boosting System. In Proceedings of 22nd ACM Sigkdd International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August 2016; pp. 785–794. [Google Scholar]
- Rudin, C.; Chen, C.; Chen, Z.; Huang, H.; Semenova, L.; Zhong, C. Interpretable Machine Learning: Fundamental Principles and 10 Grand Challenges. Stat. Surv. 2022, 16, 1–85. [Google Scholar]
- Raniga, D.; Amarasingam, N.; Sandino, J.; Doshi, A.; Barthelemy, J.; Randall, K.; Robinson, S.A.; Gonzalez, F.; Bollard, B. Monitoring of Antarctica’s Fragile Vegetation Using Drone-Based Remote Sensing, Multispectral Imagery and AI. Sensors 2024, 24, 1063. [Google Scholar] [CrossRef] [PubMed]
- Krichen, M. Convolutional Neural Networks: A Survey. Computers 2023, 12, 151. [Google Scholar] [CrossRef]
- Gavrikov, P.; Keuper, J. The Power of Linear Combinations: Learning with Random Convolutions. arXiv 2023, arXiv:2301.11360. [Google Scholar]
- Ma, H.; Huang, W.; Dong, Y.; Liu, L.; Guo, A. Using UAV-Based Hyperspectral Imagery to Detect Winter Wheat Fusarium Head Blight. Remote Sens. 2021, 13, 3024. [Google Scholar] [CrossRef]
- Chai, T.; Draxler, R.R. Root Mean Square Error (RMSE) or Mean Absolute Error (MAE). Geosci. Model. Dev. Discuss. 2014, 7, 1525–1534. [Google Scholar]
- Chicco, D.; Warrens, M.J.; Jurman, G. The Coefficient of Determination R-Squared is More Informative Than SMAPE, MAE, MAPE, MSE and RMSE in Regression Analysis Evaluation. Peerj Comput. Sci. 2021, 7, e623. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Zhao, C.; Liu, X.; Chen, X.; Li, C.; Wang, T.; Wu, J.; Zhang, Y. Non-Linear Effects of the Built Environment and Social Environment on Bus Use among Older Adults in China: An Application of the XGBoost Model. Int. J. Environ. Res. Public. Health 2021, 18, 9592. [Google Scholar] [CrossRef]
- Ramdani, F.; Furqon, M.T. The Simplicity of XGBoost Algorithm Versus the Complexity of Random Forest, Support Vector Machine, and Neural Networks Algorithms in Urban Forest Classification. F1000Research 2022, 11, 1069. [Google Scholar] [CrossRef]
- Yu, F.; Zhang, Q.; Xiao, J.; Ma, Y.; Wang, M.; Luan, R.; Liu, X.; Ping, Y.; Nie, Y.; Tao, Z.; et al. Progress in the Application of CNN-Based Image Classification and Recognition in Whole Crop Growth Cycles. Remote Sens. 2023, 15, 2988. [Google Scholar] [CrossRef]
- Mukhamediev, R.I.; Symagulov, A.; Kuchin, Y.; Yakunin, K.; Yelis, M. From Classical Machine Learning to Deep Neural Networks: A Simplified Scientometric Review. Appl. Sci. 2021, 11, 5541. [Google Scholar] [CrossRef]
- Amarasingam, N.; Vanegas, F.; Hele, M.; Warfield, A.; Gonzalez, F. Integrating Artificial Intelligence and UAV-Acquired Multispectral Imagery for the Mapping of Invasive Plant Species in Complex Natural Environments. Remote Sens. 2024, 16, 1582. [Google Scholar] [CrossRef]
- Lobo Torres, D.; Queiroz Feitosa, R.; Nigri Happ, P.; Elena Cué La Rosa, L.; Marcato Junior, J.; Martins, J.; Olã Bressan, P.; Gonçalves, W.N.; Liesenberg, V. Applying Fully Convolutional Architectures for Semantic Segmentation of a Single Tree Species in Urban Environment on High Resolution UAV Optical Imagery. Sensors 2020, 20, 563. [Google Scholar] [CrossRef]
- Kislov, D.E.; Korznikov, K.A. Automatic Windthrow Detection Using Very-High-Resolution Satellite Imagery and Deep Learning. Remote Sens. 2020, 12, 1145. [Google Scholar] [CrossRef]
- Amarasingam, N.; Hamilton, M.; Kelly, J.E.; Zheng, L.; Sandino, J.; Gonzalez, F.; Dehaan, R.L.; Cherry, H. Autonomous Detection of Mouse-Ear Hawkweed Using Drones, Multispectral Imagery and Supervised Machine Learning. Remote Sens. 2023, 15, 1633. [Google Scholar] [CrossRef]
- Ma, C.; Wang, W.; Wang, H.; Cao, Z. Ensemble of Deep Convolutional Neural Networks for Real-Time Gravitational Wave Signal Recognition. Phys. Rev. D 2022, 105, 083013. [Google Scholar] [CrossRef]
- Gupta, J.; Pathak, S.; Kumar, G. Deep Learning (CNN) and Transfer Learning: A Review. J. Phys. Conf. Ser. 2022, 2273, 012029. [Google Scholar] [CrossRef]
- Thongsuwan, S.; Jaiyen, S.; Padcharoen, A.; Agarwal, P. ConvXGB: A New Deep Learning Model for Classification Problems Based on CNN and XGBoost. Nucl. Eng. Technol. 2021, 53, 522–531. [Google Scholar] [CrossRef]
- Jiao, W.; Hao, X.; Qin, C. The Image Classification Method with CNN-XGBoost Model Based on Adaptive Particle Swarm Optimization. Information 2021, 12, 156. [Google Scholar] [CrossRef]
- Maimaitijiang, M.; Sagan, V.; Sidike, P.; Daloye, A.M.; Erkbol, H.; Fritschi, F.B. Crop Monitoring Using Satellite/UAV Data Fusion and Machine Learning. Remote Sens. 2020, 12, 1357. [Google Scholar] [CrossRef]
- Sagan, V.; Maimaitijiang, M.; Sidike, P.; Maimaitiyiming, M.; Erkbol, H.; Hartling, S.; Peterson, K.; Peterson, J.; Burken, J.G.; Fritschi, F. UAV/Satellite Multiscale Data Fusion for Crop Monitoring and Early Stress Detection. In Proceedings of the 4th ISPRS Geospatial Week 2019, Enschede, The Netherlands, 10–14 June 2019. [Google Scholar]
- Parvathi, S.; Tamil Selvi, S. Detection of Maturity Stages of Coconuts in Complex Background Using Faster R-CNN Model. Biosyst. Eng. 2021, 202, 119–132. [Google Scholar] [CrossRef]
Invasive Species | Imagery Type | ML Models | Performance | Spatial Resolution (cm/Pixel) | Reference |
---|---|---|---|---|---|
Bitou bush | RGB | MLPR | OA: 82% | 3 | [10] |
Bitou bush | RGB | ANN | OA: 88–97% | 1–2 | [8] |
Weeds in rice field | RGB | Magenet | OA: 77.5% | 0.3 | [11] |
Bitou bush | MS | U-net | OA: 98% | 2.2 | [7] |
Milk thistle weed | MS | SVM | OA: 96% | 50 | [12] |
Amaranth, Pigweed, and Mallow weed | MS | NN and OBIA | OA: 92% | 0.543 | [6] |
Weeds in sugar beet fields | MS | DeepMultiFuse | F1 score: 85.6–99% | 1 | [13] |
Weeds in lettuce field | MS | YOLOv3, and R–CNN | OA: 89% | 0.22 | [14] |
Weeds in sugar beet fields | MS | SegNet | OA: 57.6–86.3% | 0.85–1.181 | [15] |
blackgrass weed | MS | RF | OA: 93% | 1.16 | [16] |
barnyard grass and velvetleaf | MS and RGB fusion | DCNN | OA: 81.1–92.4% | 0.41 | [9] |
Johnsongrass | HS | SAM and SMA | OA: 60–80% | 2000 | [17] |
Common milkweed | HS | SVM and ANN | OA: 92.95–99.61% | 40 | [18] |
Bitou bush | HS | SVM and XGB | OA: 86% | 3.5 | [7] |
Sites | Bunyan: Site 1 and Site 2 | Cooma: Site 3 and Site 4 |
---|---|---|
Seasonal Condition | Flowering: Cool, Wet, High Wind | Vegetative: Warm, Sunny, High Wind |
Date and Time | Site 1: 13 December 2022, 1:00 p.m.–1:19 p.m. Site 2: 14 December 2022, 9:42 a.m.–12:57 p.m. | Site 3: 5 December 2023, 3:42 p.m.–3:45 p.m. Site 4: 5 December 2023, 3.51 p.m.–4.00 p.m. |
Data Source | MS: MicaSense Altum HS: Specim AFX VNIR | MS: MicaSense RedEdge |
Flight altitude (m) | 50 | 40 |
Resolution (cm/pixel) | MS: 2.2 HS: 3.5 | MS: 1.7 |
Temperature (°C) | 6–12 | 28 |
Average Wind Speed (m·s−1) | 12 | 8 |
Total Precipitation (mm) | 3 | 0 |
Cloud Cover (%) | 75 | 10 |
Channels | Spectral Indices | Equation |
---|---|---|
SI1 | NDVI | |
SI2 | NDWI | |
SI3 | GCI | |
SI4 | GLI | |
SI5 | NDRE | |
SI6 | ALGB | |
SI7 | ALGG | |
SI8 | ALGR | |
SI9 | ALGRE | |
SI10 | ALGNIR |
Season | Site Location | Model Development Sites | Test Site |
---|---|---|---|
Flowering | Bunyan | Site 1 | Site 2 |
Vegetative | Cooma | Site 4 | Site 3 |
Seasonal Dataset | Metrics | RF | SVM | XGB | Custom CNN | U-Net |
---|---|---|---|---|---|---|
Flowering | Precision (%) | 95.4 | 97.8 | 99.8 | 99.8 | 99.6 |
Recall (%) | 94.7 | 97.8 | 99.8 | 99.8 | 99.6 | |
F1 Score (%) | 94.7 | 97.8 | 99.8 | 99.8 | 99.6 | |
Accuracy (%) | 95 | 98 | 99 | 99 | 99 | |
Vegetative | Precision (%) | 90.5 | 95.1 | 98.4 | 98.5 | 97.5 |
Recall (%) | 90.4 | 94.9 | 98.4 | 98.5 | 97.3 | |
F1 Score (%) | 90.5 | 94.9 | 98.4 | 98.5 | 97.4 | |
Accuracy (%) | 90.4 | 95 | 98 | 98 | 97.4 | |
Flowering and Vegetative | Precision (%) | 90.8 | 92.3 | 99.2 | 99.2 | 97.6 |
Recall (%) | 88.2 | 91.6 | 99.2 | 99.1 | 97.4 | |
F1 Score (%) | 88.2 | 91.3 | 99.2 | 99.2 | 97.5 | |
Accuracy (%) | 88 | 92 | 99 | 99 | 98 |
Season Used to Develop Models | Metrics | Season Used to Test Models | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Flowering | Vegetative | ||||||||||
SVM | RF | XGB | Custom CNN | U-Net | SVM | RF | XGB | Custom CNN | U-Net | ||
Flowering | RMSE | 37.32% | 40.86% | 17.56% | 5.77% | 16.47% | 51.15% | 63.91% | 33.64% | 22.33% | 31.44% |
R2 | 0.1990 | 0.0306 | 0.977 | 0.989 | 0.9660 | 0.4781 | 0.2335 | 0.596 | 0.574 | 0.6705 | |
Precision (%) | 66.83 | 75.74 | 85.61 | 87.79 | 78.81 | 72.20 | 67.03 | 51.95 | 51.20 | 54.72 | |
Recall (%) | 62.21 | 65.22 | 83.08 | 87.40 | 74.76 | 70.80 | 67.06 | 62.11 | 58.95 | 44.63 | |
F1 Score (%) | 59.36 | 60.20 | 82.24 | 86.40 | 73.21 | 67.75 | 58.10 | 55.14 | 52.73 | 35.07 | |
Vegetative | RMSE | 77.02% | 73.15% | 71.03% | 72.58% | 74.72% | 15.29% | 19.11% | 14.2% | 12.9% | 18.41% |
R2 | 0.2672 | 0.3247 | 0.322 | 0.298 | 0.2648 | 0.8880 | 0.8403 | 0.831 | 0.851 | 0.8504 | |
Precision (%) | 32.17 | 53.94 | 53.40 | 43.39 | 70.79 | 76.15 | 73.27 | 78.19 | 73.76 | 70.23 | |
Recall (%) | 41.35 | 45.86 | 41.17 | 43.76 | 66.61 | 67.94 | 66.05 | 71.02 | 70.31 | 72.09 | |
F1 Score (%) | 32.06 | 37.17 | 36.71 | 35.35 | 59.33 | 60.10 | 57.95 | 62.14 | 61.64 | 70.62 | |
Flowering and Vegetative | RMSE | 34.25% | 32.08% | 19.72% | 8.23% | 14.32% | 15.42% | 18.68% | 15.25% | 14.02% | 18.47% |
R2 | 0.3005 | 0.7527 | 0.978 | 0.966 | 0.9643 | 0.8511 | 0.8247 | 0.81 | 0.821 | 0.8555 | |
Precision (%) | 69.41 | 77.43 | 83.33 | 87.63 | 76.79 | 76.49 | 76.92 | 75.36 | 71.12 | 69.6 | |
Recall (%) | 70.80 | 72.58 | 81.62 | 87.47 | 72.3 | 66.05 | 65.60 | 70.50 | 70.25 | 70.04 | |
F1 Score (%) | 66.07 | 66.34 | 80.02 | 87.06 | 50.33 | 56.87 | 56.77 | 61.19 | 62.62 | 69.5 |
ALG Class Metrics | Season Used to Test Models | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Flowering | Vegetation | |||||||||
SVM | RF | XGB | Custom CNN | U-Net | SVM | RF | XGB | Custom CNN | U-Net | |
Precision (%) | 72.72 | 72.79 | 74.85 | 85.81 | 73.08 | 90.31 | 92.31 | 86 | 89.10 | 95.56 |
Recall (%) | 92.04 | 98.66 | 99.35 | 98.41 | 99.81 | 85.55 | 83.79 | 95.89 | 92.17 | 83.15 |
F1 Score (%) | 81.25 | 83.77 | 85.37 | 91.68 | 84.38 | 87.86 | 87.84 | 90.68 | 90.61 | 88.93 |
Models | RF | SVM | XGB | Custom CNN | U-Net |
---|---|---|---|---|---|
Development time (s) | 941.8 | 6749.7 | 54.4 | 737.5 | 3700.4 |
Testing time (s) | 0.65 | 73 | 0.72 | 2.14 | 46.48 |
Computer specification | Processor: 12th Gen Intel(R) Core (TM) i7-1255U 1.70 GHz RAM: 16.0 GB (15.6 GB usable) | Processor: AMD EPYC 7713 64-Core RAM: 100 GB GPU: A100-SXM4-40GB |
Dataset | Metrics | Imagery | |||||||
---|---|---|---|---|---|---|---|---|---|
Multispectral | Hyperspectral | ||||||||
SVM | RF | XGB | Custom CNN | SVM | RF | XGB | Custom CNN | ||
Validation data | Precision (%) | 91.69 | 88.60 | 98.36 | 98.93 | 99.88 | 92.38 | 99.83 | 99.9 |
Recall (%) | 91.60 | 88.36 | 98.35 | 98.92 | 99.87 | 92.39 | 99.82 | 99.9 | |
F1 Score (%) | 91.49 | 88.18 | 98.35 | 98.92 | 99.88 | 92.38 | 99.82 | 99.9 | |
Test data | RMSE | 27.82% | 28.4% | 20.54% | 20.51% | 19.66% | 33.34% | 24.46% | 19.58% |
R2 | 0.6308 | 0.8234 | 0.9661 | 0.878 | 0.8532 | 0.4950 | 0.8079 | 0.962 | |
Precision (%) | 94.64 | 90.92 | 94.72 | 96.9 | 98.21 | 90.09 | 98.47 | 99.06 | |
Recall (%) | 93.87 | 89.3 | 93.76 | 96.89 | 98.19 | 89.89 | 98.46 | 99.05 | |
F1 Score (%) | 93.99 | 89.56 | 93.93 | 96.88 | 98.19 | 89.93 | 98.46 | 99.05 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Keerthinathan, P.; Amarasingam, N.; Kelly, J.E.; Mandel, N.; Dehaan, R.L.; Zheng, L.; Hamilton, G.; Gonzalez, F. African Lovegrass Segmentation with Artificial Intelligence Using UAS-Based Multispectral and Hyperspectral Imagery. Remote Sens. 2024, 16, 2363. https://doi.org/10.3390/rs16132363
Keerthinathan P, Amarasingam N, Kelly JE, Mandel N, Dehaan RL, Zheng L, Hamilton G, Gonzalez F. African Lovegrass Segmentation with Artificial Intelligence Using UAS-Based Multispectral and Hyperspectral Imagery. Remote Sensing. 2024; 16(13):2363. https://doi.org/10.3390/rs16132363
Chicago/Turabian StyleKeerthinathan, Pirunthan, Narmilan Amarasingam, Jane E. Kelly, Nicolas Mandel, Remy L. Dehaan, Lihong Zheng, Grant Hamilton, and Felipe Gonzalez. 2024. "African Lovegrass Segmentation with Artificial Intelligence Using UAS-Based Multispectral and Hyperspectral Imagery" Remote Sensing 16, no. 13: 2363. https://doi.org/10.3390/rs16132363
APA StyleKeerthinathan, P., Amarasingam, N., Kelly, J. E., Mandel, N., Dehaan, R. L., Zheng, L., Hamilton, G., & Gonzalez, F. (2024). African Lovegrass Segmentation with Artificial Intelligence Using UAS-Based Multispectral and Hyperspectral Imagery. Remote Sensing, 16(13), 2363. https://doi.org/10.3390/rs16132363